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Spectral correlations in Anderson insulating wires
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We calculate the spectral level-level correlation function of Anderson insulating wires for all three Wigner-
Dyson classes. A measurement of its Fourier transform, the spectral form factor, is within reach of state-of-the-art
cold atom quantum quench experiments, and we find good agreement with recent numerical simulations of the
latter. Our derivation builds on a representation of the level-level correlation function in terms of a local generating
function which may prove useful in other contexts.
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Introduction. Localization due to quantum interference in
disordered systems [1] is one of the cornerstones of condensed
matter physics, with exciting recent developments such as
topological Anderson insulators [2–6] and many-body local-
ization [7,8]. Notwithstanding our profound understanding of
the single-particle localization problem, examples of dynami-
cal correlation functions within the Anderson insulating phase,
which are accessible to direct experimental verification, are
rare. The experimental challenge is to provide setups which
allow for the controlled observation of strong localization
via some tunable parameter [9]. On the theoretical side, one
faces the notorious difficulty that Anderson insulators reside in
the nonperturbative strong-coupling limit of a nonlinear field
theory [10].

A series of recent papers proposes the direct observation of
spectral correlations in Anderson insulators within a cold atom
quantum quench experiment [11–14]. A specifically promising
variant of this proposal builds on a cold atom realization of the
kicked rotor and is within reach of state-of-the-art experiments
[15]. The quench protocol is summarized as follows: (i) A
cloud of cold atoms is prepared in an initial state with a
well-defined momentum ki, (ii) it is allowed to propagate freely
under the influence of a disorder potential for some time t , at
which (iii) the disorder is turned off and the atomic momentum
distribution ρ(kf ,t) is measured. A forward-scattering peak
at kf � ki is predicted to appear as a manifestation of an
accumulation of those quantum coherence processes leading to
strong Anderson localization. Within the quench setup, “time”
plays the role of the control parameter and the genesis of
the forward-scattering peak is described by the spectral form
factor. The latter is the Fourier transform of the connected
level-level correlation function,
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c
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where ν0 is the density of states (per spin) at the energy shell.
The theoretical study of level-level correlations (1) in dis-

ordered systems has a long history [16–25]. Analytical results
are, however, only known in specific limits. In low-dimensional
systems (d < 3), Eq. (1) describes how Wigner-Dyson statis-
tics at small system sizes L evolves into Poisson statistics with
increasing size. The former is associated with nonintegrable

chaotic dynamics, while the latter signals the breaking of
ergodicity due to quantum localization [26,27]. Fully uncor-
related Poisson statistics only realizes in the thermodynamic
limit of unbounded system sizes, and spectral correlations
remain in finite size systems. It is these correlations which are
accessible in the cold atom quench experiment, however, only
asymptotic results are known for the experimentally relevant
orthogonal and the symplectic symmetry class.

In this Rapid Communication, we derive the spectral
level-level correlation function for Anderson insulating wires
belonging to the three Wigner-Dyson classes. We show that the
latter is readily calculated from the ground-state wave function
of the transfer-matrix Hamiltonian for the supersymmetric
σ model reported in Ref. [28]. Our results are in perfect
agreement with recent numerical simulations of the quench
experiment [15], and their experimental verification would
mark an important benchmark for our understanding of strong
Anderson localization.

Field theory. We start out from the field theory description
of the level-level correlation function for a d-dimensional
disordered system [10,18,29],

K(ω) = 1

64
Re

〈[∫
(dx)str(k�Q�)

]2
〉

S

. (2)

Here, the average, 〈· · · 〉S ≡ ∫
DQ(· · · ) exp(S), is with respect

to the diffusive nonlinear σ -model action,

S = −πν̃0

8

∫
(dx)str[D(∂xQ)2 + 2iω�Q], (3)

where D the classical diffusion constant, “str” the generaliza-
tion of the matrix trace to “superspace,” and

∫
(dx) = 1. The

system belongs to one of the three Wigner-Dyson symmetry
classes, characterized by the absence of time-reversal symme-
try, T = 0 (unitary class), presence of time-reversal and spin-
rotational symmetry, T 2 = 1 (orthogonal class), or presence of
time-reversal and absence of spin-rotational symmetry, T 2 =
−1 (symplectic class). Throughout this Rapid Communication,
we adopt the notation of Ref. [10] where ν̃0 = ν0 in the unitary
and orthogonal, and ν̃0 = 2ν0 in the symplectic class. Q is
a supermatrix acting on an eight-dimensional graded space,
which is the product of two-dimensional subspaces, referred
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to as “bosonic-fermionic” (bf), “retarded-advanced” (ra), and
“time-reversal” (tr) sectors. Matrices k ≡ σ bf

3 , � ≡ σ ra
3 break

symmetry in bosonic-fermionic and advanced-retarded sec-
tors, respectively. � describes the classical, diffusive fixed
point and Q� ≡ Q − � deviations from the latter. Drawing
on the similarity of action (3) to Ginzburg-Landau theories
for phase transitions, str(�Q) corresponds to a symmetry-
breaking term relevant at large level separations or short
time scales t ∼ ω−1 � 
−1

ξ ≡ ξ 2/D, with ξ the localization
length. In this diffusive limit, Q � �, which allows for a
controlled perturbative expansion in Goldstone modes, viz.,
the diffusion modes of the disordered single-particle system.
Strong Anderson localization sets in at t ∼ ω−1 ∼ 
−1

ξ when
large fluctuations restore the symmetry in the ra sector. This
requires integration over the entire Q-field manifold and
calls for nonperturbative methods. Such methods are available
for quasi-one-dimensional geometries L � L⊥, where the
functional integral with action (3) takes the form of a path
integral of a quantum mechanical particle with coordinate Q

and mass ∼1/D, moving in a potential ∼str(�Q). The latter
can be mapped onto the corresponding Schrödinger problem,
and next we follow this strategy.

Anderson insulating wires. Concentrating then on a quasi-
one-dimensional geometry, one needs to express the spectral
correlation function Eq. (2) in terms of eigenfunctions of
the Hamiltonian for the Schrödinger problem, known as the
transfer-matrix Hamiltonian. This has been done in previous
work [10,30]. The resulting equations for the relevant functions
are, however, rather complex and closed solutions for all
Wigner-Dyson classes are unknown. We therefore follow here
a different route, which employs the graded symmetry of action
(3) in order to derive Eq. (1) from a local generating function.
The latter depends only on the ground-state wave function,
i.e., “zero modes” of the transfer-matrix Hamiltonian. This
implies a significant simplification of the problem, and allows
for an exact calculation of correlations (1). We momentarily
postpone the discussion of the rather technical derivation, and
state the final expression for the generating function in the case
of Anderson insulating wires L � ξ ≡ πν̃0D/L [31],

K(ω) = ξ

2βL
Re

∫
(dx)∂ηF(η,x)

∣∣∣∣
η=− iω


ξ

,

F(η) = 1

2

∫
dQ0 str(�Q0)Y 2

0 (Q0). (4)

Here, Y0 is the ground-state wave function of the Schrödinger
problem detailed below, and we introduced the symmetry
parameter β = 1(2) in the orthogonal and symplectic (unitary)
class. Notice that in Eq. (4) we already integrated out some c

number and all Grassmann variables. That is, Q0 here depends
only on c-number variables from the compact interval −1 �
λf � 1 (“fermionic radial variables”), and noncompact interval
1 � λb (“bosonic radial variables”). The precise number of ra-
dial variables depends on the symmetry class, i.e., Q0(R), with
R = {λf ,λb}, {λf ,λb,1,λb,2}, and {λf,1,λf,2,λb}, in the unitary,
orthogonal, and symplectic classes, respectively. Similarly,
dQ0 = dR

√
g(�), with Jacobians

√
g = 1/(λb − λf )2,

√
g =

(1 − λ2
f )/(λ2

1 + λ2
2+λ2

f −2λ1λ2λf −1)
2
, and

√
g = (λ2

b−1)/
(λ2

1 + λ2
2 + λ2

b − 2λ1λ2λb − 1)2 for the three symmetry

classes, and dR the flat measure. For notational convenience,
we suppress the graded index b,f in favor of the tr index
1,2. The ground-state wave function is a solution to the
homogeneous equation,[

− 
Q + η

2
str(�Q0)

]
Y0(Q0) = 0, (5)

obeying the boundary condition Y0(�) = 1, and we recall that
at Q0 = � all radial coordinates λ = 1. Here, we introduced
η = −iω/
ξ , and 
Q = 1√

g
∂λ

√
ggλρ∂ρ is the Beltrami-

Laplace operator on the Q0-field manifold with repeated
indices running over radial variables λ,ρ ∈ R and the metric
tensor gλρ = |λ2 − 1|δλρ in all symmetry classes, with δλρ the
Kronecker delta.

Correlations from zero mode. We may then use
the Schrödinger equation to express str(�Q0) Y0 =
−[2
Q + η str(�Q0)]Y ′

0 and η str(�Q0) Y0 = −2
QY0,
and arrive at

F(η) =
∫

dQ0(Y ′
0
QY0 − Y0
QY ′

0), (6)

where we introduced Y ′
0 ≡ ∂ηY0. Upon partial integration, this

results in the boundary contribution

F(η) =
∫

dR ∂λ

√
ggλρ(Y ′

0∂ρY0 − Y0∂ρY
′
0). (7)

At this point we notice that the metric elements gλρ vanish at
any boundary point λ = 1. At the same time, the Jacobian is
singular at Q0 = � where all λb,λf = 1. To deal with this
situation we regularize the integral Eq. (7) in any of the
variables λ, shifting the bound of integration to 1± ≡ 1 ± ε

with ± for a bosonic/fermionic variable. In the limit ε ↘ 0,
the boundary contribution (

√
ggλρ)|

λ=1± then reduces (up to
a numerical factor) to a δ function in the remaining radial
coordinates, fixing Q0 = �. Noting further that Y0(�) = 1 and
Y ′

0(�) = 0, we arrive at the remarkably simple expression

F(η) = −2∂λf Y
′
0|Q=�, (8)

where in the symplectic class λf can be either λ1,2. It can be
verified that ∂λY

′
0|Q=�

= ±∂ρY
′
0|Q=�

, where the positive sign
applies if λ and ρ are both bosonic or fermionic radial variables
and the negative sign else. This guarantees that Eq. (8) does
not depend on the regularization scheme, and one may, e.g.,
symmetrize the result in the radial variables [32]. An equivalent
relation between the ground-state wave function and the gen-
erating function for spectral correlations has been previously
encountered for the unitary class [33,34]. In this case the
derivation is built upon a mapping of the localization problem
in the unitary class to the three-dimensional Coulomb problem
[35]. The above Eq. (8) shows that the simple relation is not
accidental but applies to all Wigner-Dyson symmetry classes.

Using then the recent results of Refs. [28,32] for the ground-
state wave functions, we find (zη ≡ 4

√
η)

FU(η) = −8I0(zη)K0(zη), (9)

FO(η) = −4[I0(zη)K0(zη) + I1(zη)K1(zη)], (10)

FSp
± (η) = −4{[I0(zη) ± 1]K0(zη) + I1(zη)K1(zη)}, (11)
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FIG. 1. Level-level correlations in Anderson insulating wires
for the Wigner-Dyson classes. The residual level attraction in the
symplectic class with an odd number of channels reflects the presence
of a topologically protected metallic channel. The inset shows for
comparison the Wigner-Dyson spectral correlations of fully chaotic
systems.

where “U,” “O,” and “Sp” refers to the unitary, orthogonal, and
symplectic symmetry class, respectively, and +/− indicates an
even/odd number of channels.

Spectral correlations. From Eqs. (9)–(11) we find the level-
level correlations in Anderson insulating wires for all three
Wigner-Dyson classes,

K(ω) = 32ξ

βL
ReK(zη)|

zη=4
√

−iω/
ξ
, (12)

where

KU(zη) = [K1(zη)I0(zη) − K0(zη)I1(zη)]/zη, (13)

KO(zη) = K1(zη)I1(zη)/z2
η, (14)

KSp
± (zη) = K1(zη)[I1(zη) ± zη/2]/z2

η. (15)

Equations (12)–(15) are the main result of this Rapid
Communication. Strict Poisson statistics only applies for
limL→∞ K(L,ω) = 0, and correlations between localized
eigenstates remain in any finite system. At large level sep-
aration (s ≡ ω/
ξ � 1) these reflect the classically dif-
fusive dynamics on short time scales, on which quan-
tum interference processes remain largely undeveloped.
Correlations of close-by levels (s ≡ ω/
ξ � 1), on the
other hand, store information on the long-time limit,
i.e., the deep quantum regime in which the remain-
ing dynamical processes are due to tunneling between
almost degenerate, far-distant localized states [21,36,37].
The crossover between these two limits, described by
Eqs. (12)–(15), is shown in Fig. 1. For a comparison with fully
chaotic systems we also show in the inset the corresponding
Wigner-Dyson correlations with their characteristic level re-
pulsion at small level separations, and contrasting the residual
logarithmic level repulsion between localized states.

From the above expression, one readily recovers asymp-
totic correlations of far-distant levels s � 1, applying to all

FIG. 2. Forward-scattering peak in the orthogonal class. Points
are numerical data from a recent simulation of the quantum quench
experiment in a kicked rotor setup [15]. Different colors correspond to
different sets of system parameters, and the solid line shows Eq. (20)
without any fitting parameter [43]. Insets: Forward-scattering peak
for all Wigner-Dyson classes; see main text for a discussion.

Wigner-Dyson classes [38],

L

ξ
K(s) = − 1

4
√

2β

(
1

s3/2
− (−1)β3

128s5/2
+ · · ·

)
, (16)

with the leading Altshuler-Shklovskii contribution [19,39]. For
small level separations and systems in the unitary, orthogonal,
or symplectic class with an even number of channels (s � 1),

L

ξ
K(s) = −aβ[log(1/4s) − 2γ + bβ + cβπs + · · · ], (17)

where γ � 0.577 the Euler-Mascheroni constant, aU,Sp+ = 8,
aO = 4, bU = 0, bO = 1/2, bSp+ = 3/4, and cU = 3, cO = 2,
cSp+ = 3/2. In the symplectic class with an odd number of
channels (s � 1),

L

ξ
K

Sp
− (s) = 2 − 4πs − [(8s)2/3] log(s) + · · · , (18)

which signals the presence of a single topologically protected
metallic channel (see also Fig. 1).

Forward peak. The form factor derived from the above
results describes the genesis of the forward-scattering peak
in the quantum quench setup discussed in the Introduction
[32,40],

CU
fs (t) = θ (t)I0(8/t
ξ )e−8/t
ξ , (19)

CO
fs (t) = θ (t)[I0(8/t
ξ ) + I1(8/t
ξ )]e−8/t
ξ , (20)

CSp,±
fs (t) = 1

2

[
CO

fs (t) ± θ (t)e−4/t
ξ
]
. (21)

Here, we have normalized the peak with respect to its saturation
value limt→∞ Cfs(t). The forward peak in the unitary class
has been calculated previously [14,41]. Corresponding results
for the experimentally relevant orthogonal class [42] and the
symplectic class have been unknown. Figure 2 displays a
comparison of our results with recent numerical simulations of
the quantum quench experiment in the orthogonal class [41].
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The solid line is Eq. (20) and shows perfect agreement with
the numerical data without using any fitting parameter. The
forward peaks for all Wigner-Dyson classes are displayed
in the inset of Fig. 2. CO

fs is readily understood as a sum
of diagrams involving only ladders (“diffuson modes”) CU

fs ,
and diagrams containing crossed ladders (“Cooperon modes”).
CSp,±

fs follows the signal of the unitary class at short times,
τ ≡ t
ξ � 1, staying a factor of 2 below the signal in the
orthogonal class, and becomes sensitive to the channel number
once τ ≡ t
ξ � 0.1. For an odd channel number the signal in
the symplectic class then decays to zero as CSp,−

fs ∼ 4/τ 2 −
64/(3τ 3) + · · · , indicating delocalization due to the presence
of the topologically protected channel. Long- and short-time
signals in the remaining cases can be summarized as (τ ≡ t
ξ )

Cfs(τ ) =
{
aατ 1/2 + bατ 3/2 + · · · , s � 1,

1 − cα/τ + dα/τ 2 + · · · , s � 1,
(22)

where aO = 2aU,Sp+ = 1/(2
√

π ), bO = −2bU = 2bSp+ =
−1/(128

√
π ), cO,Sp+ = cU/2 = 4, and dO = dU/3 =

4dSp+/3.
Local generating function. The analysis above relied on

the representation of the level-level correlation function in
terms of a local generating function. The latter derives from
the graded symmetry of action (3), which is evident in the
polar parametrization Q = UQ0U

−1 [10]. Here, matrices U

are diagonal in the ra sector and contain all anticommuting
variables, while Q0 = cos θ̂σ ra

3 − sin θ̂σ ra
2 has an off-diagonal

structure in the latter [32]. The block-diagonal matrices in
the bf sector θ̂ = diag(iθ̂b,θ̂f )bf , with θ̂b,f matrices in the
tr sector, are conveniently parametrized by the noncompact
and compact radial variables introduced earlier, −1 � λf ≡
cos θf � 1, 1 � λb ≡ cosh θb [10]. The graded symmetry man-
ifests itself in the invariance of action (3) under constant
rotations Ū sharing the symmetries of U , U �→ ŪU . This
invariance can be used to linearly shift Grassmann variables in
the preexponential correlation function, and, e.g., implies that
finite contributions to the superintegral Eq. (2) may only derive
from the maximal polynomial of Grassmann variables PG [44].
It is then convenient to introduce (unnormalized) maximal
polynomials of Grassmann variables in retarded/advanced
sectors P

r/a
G with PG = P r

GP a
G and the generating function

F(η,x) ≡ 〈{str[k�Q�(x)]}2

str[�Q(x)] 〉
S
. Notice that in the quantum-dot

limit Q becomes x independent, and the generation of Eq. (2)
by ∂ηF is immediately evident. For general d-dimensional
systems, on the other hand, a straightforward calculation shows
that F(η,x) = 〈str(cos θ̂x)PG,x〉S [32,45], and similarly one
finds

∂ηF(η,x) ∝
∫

(dy)〈Cx,yPG,x〉S, (23)

K(ω) ∝
∫

(dx)
∫

(dy)
〈
Cx,yP

a
G,xP

r
G,y

〉
S
, (24)

with Cx,y = str(cos θ̂x)str(cos θ̂y). The graded symmetry can
now be used to shift P r

G,x(y) �→ P r
G,x + P r

G,y, in the first
(second) term, which implies that Eq. (2) is gener-
ated from the local correlation function for general d-
dimensional systems. Indeed, keeping numerical factors, one
finds K(ω) = −(16πν̃0)−1 Im

∫
(dx)∂ωF(ω,x), and F(η) =

8
β
〈str(cos θ̂x)P 0

G,x〉S with P 0
G now the normalized maximal

polynomial of Grassmann variables [32]. Upon integration
over the latter, one arrives at Eq. (4) for the Anderson insulating
wires. Notice that similar ideas have previously been applied
in the context of the replicated σ model [46] and parametric
correlations [47]. The representation of level-level correlations
in terms of the local generating function may also prove to be
useful in other contexts [48].

Summary. We have shown that spectral correlations in
the Wigner-Dyson classes can be calculated within the su-
persymmetric σ model from a local generating function.
In Anderson insulating wires this reveals a simple relation
between level-level correlations and the ground-state wave
function of the transfer-matrix Hamiltonian, which allowed us
to derive spectral correlation functions for all Wigner-Dyson
classes. The experimental observation of the spectral form
factor is within reach of state-of-the-art cold atom quantum
quench experiments, and a parameter-free comparison of our
findings with recent numerical simulations of the latter shows
perfect agreement. The experimental verification of the results
reported here would mark an important benchmark for our
understanding of strong Anderson localization.
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