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We study the quantum multicritical point in a (2+1)-dimensional Dirac system between the semimetallic phase
and two ordered phases that are characterized by anticommuting mass terms with O(N1) and O(N2) symmetries,
respectively. Using ε expansion around the upper critical space-time dimension of four, we demonstrate the
existence of a stable renormalization-group fixed point, enabling a direct and continuous transition between the
two ordered phases directly at the multicritical point. This point is found to be characterized by an emergent O(N1 +
N2) symmetry for arbitrary values of N1 and N2 and fermion flavor numbers Nf as long as the corresponding
representation of the Clifford algebra exists. Small O(N )-breaking perturbations near the chiral O(N ) fixed point
are therefore irrelevant. This result can be traced back to the presence of gapless Dirac degrees of freedom at
criticality, and it is in clear contrast to the purely bosonic O(N ) fixed point, which is stable only when N < 3. As
a by-product, we obtain predictions for the critical behavior of the chiral O(N ) universality classes for arbitrary
N and fermion flavor number Nf . Implications for critical Weyl and Dirac systems in 3+1 dimensions are also
briefly discussed.
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Introduction. The interplay and competition of different
ordering tendencies in many-body systems are the source
of various exciting phenomena, including unconventional su-
perconductivity, the nature of quantum spin liquids, and the
physics of deconfined criticality. These notoriously challeng-
ing problems sometimes become theoretically accessible when
an emergent higher symmetry can be found. The complex
phase diagram of the high-Tc superconductors, for instance,
has been argued to be deducible from an emergent symmetry
in which the O(3) Néel and U(1) superconducting order
parameters are combined into a five-tuplet which turns out
to be a vector under O(5) [1]. Numerical simulations of the
deconfined critical point between Néel and valence-bond-solid
orders on the square lattice also find evidence for an emergent
O(5) symmetry [2]. The emergence of this symmetry can
be made natural by postulating duality relations between the
bosonic gauge theory describing the deconfined critical point
and certain fermionic theories [3,4]. Similarly, recent quantum
Monte Carlo simulations of Dirac fermions in 2+1 dimensions
find a direct and continuous transition between O(3) and Z2

ordered phases with an emergent O(4) symmetry at criticality
[5].

Despite the general interest, however, a simple model in
which emergent O(N ) symmetry with N � 4 can be explicitly
shown appears to be still lacking. This is certainly true within
the standard Landau-Ginzburg-Wilson approach in which a
continuous quantum phase transition is assumed to be de-
scribed by bosonic order-parameter fluctuations alone [6–8]:
The purely bosonic O(N ) fixed point in 2 + 1 dimensions
is unstable under small perturbations that break the O(N )
symmetry for all N > 3, and presumably even the Heisenberg
fixed point is unstable under a cubic anisotropy [9,10]. In
this Rapid Communication, we demonstrate that the stability
under symmetry-breaking perturbations significantly changes

in the presence of gapless fermionic degrees of freedom. In
particular, we demonstrate that the chiral O(N ) fixed point in
which the bosonic order parameter is coupled to Nf flavors
of massless Dirac fermions in 2 + 1 dimensions is stable
under perturbations that break the O(N ) symmetry. This adds a
prime example to the general observation of fermion-induced
symmetry enhancement in quantum critical Dirac systems
[11–15]. Our results can be immediately applied to the triple
point between the semimetallic and the O(3) Néel and U(1)
Kekulé valence-bond-solid phases on the honeycomb lattice.
The crucial ingredient here is the anticommuting nature of the
corresponding Dirac mass terms, enabling us to combine them
into a single order parameter that becomes a vector under O(5).
The triple point is characterized by emergent O(5) symmetry
and features a continuous and direct transition between the
ordered phases as long as the system is tuned directly through
the multicritical point. The corresponding universal exponents
define the chiral O(5) universality class for which we provide
estimates. A similar reasoning applies to the multicritical point
between the Dirac semimetal and the O(3) and Z2 ordered
phases [5].

Anticommuting Dirac masses. Consider the gapless Dirac
Hamiltonian in D = d + 1 space-time dimensions,

H0( �p) = αipi, i = 1, . . . ,d. (1)

We assume the summation convention over repeated indices.
The matrices αi fulfill the Clifford algebra {αi,αj } = 2δij1dγ

with dγ being the dimension of the representation. The Hamil-
tonian H0 can be gapped out by adding (explicit or dynamical)
mass terms,

Hm = maβ
φ
a + mbβ

χ

b , a = 1, . . . ,N1, b = 1, . . . ,N2.

(2)
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The mass operators β
φ
a and β

χ

b anticommute with H0 and
among themselves. Their commutators M

φ

aa′ = i
2 [βφ

a ,β
φ

a′ ] and
M

χ

bb′ = i
2 [βχ

b ,β
χ

b′ ] commute with H0 and generate an O(N1) ⊕
O(N2) symmetry under which the mass operators β

φ
a and

β
χ

b transform as vectors. In this Rapid Communication, we
assume the masses ma and mb to be compatible, i.e., their
mass operators β

φ
a and β

χ

b also to mutually anticommute,{
βφ

a ,β
χ

b

} = 0, for all a,b. (3)

The massive Hamiltonian H0 + Hm has the spectrum ε �p =
±

√
p2 + m2

a + m2
b , and ma and mb do not compete [16].

The Dirac system with O(N1) ⊕ O(N2) anticommuting
mass terms in d spatial dimensions requires N1 + N2 + d an-
ticommuting dγ × dγ matrices. The number of Dirac fermion
components dγ is therefore [17],

dγ � 2�(N1+N2+d)/2�, (4)

where �·� denotes the floor function. In the situation relevant
for graphene we have d = 2 and dγ = 8, and the maximal
number of anticommuting mass terms is thus N1 + N2 � 5,
which is consistent with the known classification of the 36
mass terms of spin-1/2 fermions on the honeycomb lattice [16].
We note that, in general, smaller (real) representations are
possible if one employs a Nambu particle-hole construction,
and the right-hand side of Eq. (4) is then to be replaced by n/2,
where n is the dimension of the irreducible real representation
of the Clifford algebra C(d,N1 + N2) [18].

Model. We study the system of gapless Dirac fermions

 and 
† coupled to compatible order parameters φ ≡∑N1

a φaβ
φ
a and χ ≡ ∑N2

b χbβ
χ

b with anticommuting mass
operators β

φ
a and β

χ

b . This is described by the Lagrangian

LF = 
†[∂τ + H0(−i �∇) + g1φ + g2χ ]
, (5)

with the Yukawa-type couplings g1 and g2 parametrizing the
coupling to the fluctuating boson fieldsφ andχ . When radiative
corrections are taken into account, the latter receive their own
dynamics as well as bosonic self-interactions. We therefore
include already from the outset all symmetry-allowed terms
that may become generated by the fluctuations, up to fourth
order in the fields,

LB = 1
2φa

( − ∂2
μ + r1

)
φa + 1

2χb

( − ∂2
μ + r2

)
χb

+ λ1
(
φ2

a

)2 + λ2
(
χ2

b

)2 + 2λ3φ
2
aχ

2
b , (6)

with (∂μ) ≡ (∂τ , �∇) and μ = 0,1, . . . ,d.
The action of the full system then is given by S =∫

dτ dd �x(LF + LB). This action describes a theory space
with an explicit O(N1) ⊕ O(N2) symmetry generated by the
[N1(N1 − 1) + N2(N2 − 1)]/2 commutators M

φ

aa′ and M
χ

bb′ ,
where a < a′ = 1, . . . ,N1 and b < b′ = 1, . . . ,N2, respec-
tively. It includes an O(N1 + N2)-invariant subspace, which
is achieved by choosing g1 = g2, λ1 = λ2 = λ3, r1 = r2. The
additional generators promoting O(N1) ⊕ O(N2) to O(N1 +
N2) are the N1N2 operators M

φχ

ab = i
2 [βφ

a ,β
χ

b ]. They rotate φ

and χ into each other, allowing to construct a (N1 + N2)-tuplet
(φa,χb), which transforms as a vector under O(N1 + N2).

The Yukawa-type couplings and the bosonic self-
interactions have the scaling dimension [g2

1] = [g2
2] = [λ1] =

[λ2] = [λ3] = 3 − d and therefore become simultaneously
marginal in three spatial dimensions. In the following, we will
mainly consider 1 < d < 3 with a focus on d = 2. In this case,
all couplings become relevant in the renormalization-group
(RG) sense. However, the ratios g2

1/r1 and g2
2/r2, describing

the effective strengths of the interaction [19], are irrelevant for
large enough r1 and r2, respectively. In this limit, the massive
boson fields can be integrated out, leaving behind the stable
noninteracting semimetal phase. The latter is trivially within
the O(N1 + N2)-invariant subspace. Upon lowering r1 (r2)
towards zero, on the other hand, the O(N1) [O(N2)] part of
the full symmetry group becomes spontaneously broken to
a residual O(N1 − 1) [O(N2 − 1)] symmetry, characterized
by a finite vacuum expectation value of 〈φa〉 �= 0 [〈χb〉 �= 0]
for some a (b). Due to the Yukawa couplings g1 and g2,
the condensation of the bosonic fields simultaneously opens
a mass gap of the Dirac fermions. r1 and r2 are the tuning
parameters for the corresponding quantum phase transitions.
We are interested in the behavior of the fermionic multicritical
point [20–23] in which both r1 and r2 are tuned to their critical
values.

An important example in d = 2, to which the above model
can be immediately applied, is the physics of interacting
spin-1/2 fermions on the honeycomb lattice. One of the 56
distinct five-tuplets of pairwise anticommuting mass operators
consists of, for instance, the three components of the Néel order
parameter and the two components of the Kekulé valence-
bond-solid order parameter [16]. In the notation of Ref. [24],
these masses read(

βφ
a

)
a=1–3 = �σ ⊗ γ0,

(
β

χ

b

)
b=1,2 = 12 ⊗ (iγ0γ3,iγ0γ5).

In the lattice model of Ref. [5], the O(2) symmetry in the
Kekulé sector is explicitly broken down to Z2 � O(1) [25].
Note that the chiral O(N ) fixed point in the presence of a
small O(N )-breaking perturbation can be understood as a
multicritical point, and our model therefore applies also to this
problem.

Flow equations. The existence of a unique upper critical
dimension allows a controlled expansion in powers of ε =
3 − d. Integrating over the momentum shell from �/b to �,
we obtain the flow equations to the leading order,

ġ2
1 = (ε − η1 − 2η
)g2

1 + 2(N1 − 2)g4
1 + 2N2g

2
1g

2
2, (7)

ġ2
2 = (ε − η2 − 2η
)g2

2 + 2(N2 − 2)g4
2 + 2N1g

2
1g

2
2, (8)

where ġ2
i ≡ dg2

i

d ln b
, i = 1,2, and accordingly,

λ̇1 = (ε − 2η1)λ1 − 4(N1 + 8)λ2
1 − 4N2λ

2
3 + Nfg

4
1, (9)

λ̇2 = (ε − 2η2)λ2 − 4(N2 + 8)λ2
2 − 4N1λ

2
3 + Nfg

4
2, (10)

λ̇3 = (ε − η1 − η2)λ3 − 16λ2
3 − 4(N1 + 2)λ1λ3

− 4(N2 + 2)λ2λ3 + Nfg
2
1g

2
2, (11)

with fermion anomalous dimension η
 = (N1g
2
1 + N2g

2
2)/2

and order-parameter anomalous dimensions ηi = 2Nfg
2
i . In

order to arrive at the above equations, we have rescaled the
couplings as g2

i �
ηi+2η
−ε/(8π2) �→ g2

i and λi�
2ηi−ε

/(8π2) �→ λi with η3 = (η1 + η2)/2 and abbreviated
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Nf := dγ /4. We have tuned both φ and χ to criticality by
setting r1 = r2 = 0. This system of flow equations simplifies to
various known results within respective limits: For g1,g2 → 0,
we recover the flow equations of the purely bosonic system
with O(N1) ⊕ O(N2) symmetry [6,7,10]. For N1 = 1 and
N2 = 2, Eqs. (7)–(10) also agree with the stability analysis of
the Z2 × O(2) Gross-Neveu-Yukawa theory [20,26]. Finally,
in the isotropic limit g1 = g2 and λ1 = λ2 = λ3, the flow
equations reduce to the known equations for the chiral Ising,
chiral XY, and chiral Heisenberg universality classes for
N1 + N2 = 1, 2, and 3, respectively [24,27,28].

Stability of the isotropic fixed point. As the bosonic self-
interactions do not feed back into the Yukawa-coupling sec-
tor, the latter can be solved independently. In addition to
the noninteracting Gaussian fixed point at g2

1 = g2
2 = 0, the

system of two coupled quadratic equations for g2
1 and g2

2 allows
three interacting fixed points. Due to the homogeneity of the
equations, two of them must be located on the g1 and g2 axes.
These two decoupled fixed points describe the chiral O(N1)
and O(N2) universality classes, respectively. The coupling to a
second critical scalar field, however, is a relevant perturbation,
and the decoupled fixed points are therefore unstable when
both φ and χ are tuned to criticality. The topology of the flow
then requires the third interacting fixed point to be stable. For
symmetry reasons, it must be located on the bisectrix g2

1 = g2
2

and thus describes the chiral O(N1 + N2) universality class.
This is the isotropic fixed point. It is generally expected that the
chiral O(N ) universality classes exist for all N and Nf compat-
ible with Eq. (4) and the isotropic fixed point should therefore
be located within the real coupling space g2

1 = g2
2 > 0. Small

symmetry-breaking perturbations are always irrelevant, and
O(N1 + N2) symmetry becomes emergent when both φ and χ

are tuned to criticality, at least within the Yukawa sector. This
general expectation is corroborated by the explicit evaluation
of the one-loop flow: The isotropic fixed point is located at

g∗2
1 = g∗2

2 = ε

2Nf + 4 − N
+ O(ε2), (12)

and it is characterized by the stability exponents, which
determine the flow near the fixed point,

(θ1,θ2) =
(

−1, − 2Nf + 4

2Nf + 4 − N

)
ε + O(ε2), (13)

with N := N1 + N2. Here, θ1 corresponds to the flow within
the O(N1 + N2) invariant subspace, whereas θ2 corresponds
to perturbations out of this subspace. For all N1, N2, and Nf

compatible with Eq. (4), we have 2Nf + 4 − N > 0, and thus
the isotropic fixed point is always real and stable within the
Yukawa sector. We have explicitly checked that this remains
true when the Nambu particle-hole construction is employed
[18]. The flow diagram in the g1-g2 sector is depicted for the
example of the chiral O(3) ⊕ O(2) theory with emergent O(5)
in Fig. 1. Using Eq. (12), we find the corresponding bosonic
couplings at the isotropic fixed point as λ∗

1 = λ∗
2 = λ∗

3 = λ∗
with

λ∗ = fN (Nf ) + 4 − N − 2Nf

8(N + 8)(2Nf + 4 − N )
ε + O(ε2), (14)

where fN (Nf ) = 2Nf

√
1 + 5N+28

Nf
+ ( N−4

2Nf
)
2

> 2Nf + N .
Consequently, the effective potential is real and bounded

O(5
)

Néel

g2
1/ε

K
ek
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é

g
2 2
/
ε

G F1

F2
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FIG. 1. RG flow diagram in the g2
1-g2

2 sector near the multicritical
point between the O(3) Néel antiferromagnet and the O(2) Kekulé
order using dγ = 4Nf = 8. The decoupled fixed points F1 and
F2 describe the individual chiral Heisenberg and XY universality
classes. The unique stable fixed point is the isotropic fixed point I ,
characterized by an emergent O(5) symmetry.

from below. The remaining stability exponents (θ3,θ4,θ5),
corresponding to the flow in the bosonic sector in the presence
of g∗

1 and g∗
2 , are smaller than θ1 and θ2 for all N1, N2, and

Nf compatible with Eq. (4), see Ref. [29]. The isotropic fixed
point is therefore fully stable within the entire coupling space
when both r1 and r2 are tuned to criticality. Consequently,
the multicritical point between the Dirac semimetal and the
gapped phases with O(N1) and O(N2) order parameters is
characterized by an emergent O(N1 + N2) symmetry. The
scaling behavior near the multicritical point is described by the
chiral O(N ) universality class with N = N1 + N2. The leading
corrections to scaling correspond to a flow direction within
the higher-symmetric subspace. The corresponding exponent
is ω1 = −θ1. Small symmetry-breaking perturbations are
strongly irrelevant and contribute to the corrections to scaling
only at subleading order with a comparatively large exponent
ω2 = −θ2. At the isotropic fixed point, we find the anomalous
dimensions

(ηφ,η
) = 1

2Nf + 4 − N

(
2Nf ,

N

2

)
ε + O(ε2), (15)

with ηφ = η1 = η2. The correlation-length exponent ν is ob-
tained from the flow of the tuning parameters r1 and r2 at the
isotropic fixed point and reads

ν = 1

2
+ 2Nf (N + 14) + (N + 2)[fN (Nf ) + 4 − N ]

8(N + 8)(2Nf + 4 − N )
ε

+O(ε2). (16)

Equations (15) and (16) generalize previous results for the
chiral Ising, XY, and Heisenberg universality classes [24,28]
to the chiral O(N ) universality classes with arbitrary N ∈ N.

Critical exponents from functional RG. Improved esti-
mates for the critical exponents can be obtained from the
nonperturbative functional RG (FRG) method. In particular,
this is a suitable approach for calculations directly in 2+1
dimensions and has been shown to compare well to other
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TABLE I. Chiral O(N ) universality classes in 2+1 dimensions
from functional RG and ε expansion for dγ = 4Nf = 8: Correlation-
length exponent ν, anomalous dimensions ηφ and η
 , and leading
corrections-to-scaling exponent ω1. For the chiral Ising, XY, and
Heisenberg universality classes, various further estimates are known,
see Ref. [28].

Nf = 2 ν ηφ η
 ω1

Chiral Ising FRG 1.018 0.760 0.032 0.872
ε1 31/42 4/7 1/14 1

Chiral XY FRG 1.160 0.875 0.062 0.878
ε1 4/5 2/3 1/6 1

Chiral Heisenberg FRG 1.296 1.015 0.084 0.924
ε1 97/110 4/5 3/10 1

Chiral O(4) FRG 1.364 1.159 0.091 1.017
ε1 1 1 1/2 1

Chiral O(5) FRG 1.356 1.285 0.089 1.132
ε1 31/26 4/3 5/6 1

methods in the context of Gross-Neveu-type universality
classes [23,30–40]. The central FRG equation is formulated
in terms of the effective average action �k , which interpolates
between the microscopic action S at the UV cutoff k =
� and the full quantum effective action � in the infrared
k → 0 [41,42]. For an approximate solution, we expand �k

in powers of derivatives and truncate beyond the leading
order,

�k =
∫

τ,�x

[
Z

̄ /∂
 + g
̄φ
 − Zφ

2
φa∂

2
μφa + U (ρ)

]
.

This constitutes the so-called local potential approximation.
Here, /∂ ≡ γ μ∂μ is the standard Dirac operator, and 
̄ ≡

†γ 0 denotes the Dirac conjugate. φa, a = 1, . . . ,N are the
components of an O(N ) symmetric order-parameter field φ ≡∑N

a φaβ
φ
a . It couples to the fermions via the scale-dependent

Yukawa-type coupling g. The scale-dependent effective po-
tential U (ρ) is a functional of all symmetry-allowed boson
self-interactions and as such depends only on the field-invariant
ρ = 1

2φaφa . Finally, we have introduced the wave-function
renormalizations Z
 and Zφ , which also carry a scale de-
pendence and are related to the anomalous dimensions via
η� = −(∂tZ�)/Z� with � ∈ {
,φ}. Explicit expressions of
the FRG flow equations for the dimensionless versions of the
scale-dependent quantities U (ρ) and g as well as for η
 and
ηφ are given in Ref. [29]. In practice, we expand U (ρ) in a
finite power series in ρ around the origin up to order ρ6. This
yields a closed set of algebraic fixed-point equations, which we
solve numerically. For all N and compatible Nf tested, we find
a unique stable fixed point, characterizing the corresponding
chiral O(N ) universality class. For the example of Nf = 2,
relevant to spin-1/2 fermions on the honeycomb lattice, our
estimates for the universal exponents are given in Table I. The

estimates from FRG and the leading-order ε expansion are in
reasonable agreement for ν, ηφ , and ω1. Significant differences
appear in the fermion anomalous dimension η
 .

Implications for 3+1 dimensions. In the limit of ε → 0,
which applies to (3+1)-dimensional Weyl and Dirac systems,
both the Yukawa couplings and the bosonic self-interactions
become marginally irrelevant. They flow to zero, however, with
fixed ratios g2/g1 → 1 and λ2,3/λ1 → 1, indicating emergent
O(N ) symmetry also in this case.

Conclusions. We have demonstrated that the multicritical
Dirac systems with compatible O(N1) and O(N2) order param-
eters are generically characterized by emergent O(N1 + N2)
symmetry. Within the first-order ε expansion, this result holds
for all N1 and N2 and fermion flavor numbers Nf as long as
the corresponding representation of the Clifford algebra exists.
Put differently, the chiral O(N ) universality classes are stable
under any small perturbation that breaks O(N ) symmetry. This
conclusion is in surprising contrast to the purely bosonic O(N )
universality classes in which symmetry-breaking perturbations
destabilize the isotropic O(N ) fixed point when N � 3 [6–10].
There, however, it is well known that the first-order ε expan-
sion, when extrapolated to ε = 1, significantly overestimates
the stability of the isotropic fixed point. In the present system,
by contrast, higher-loop corrections become suppressed for a
large number of Dirac fermions Nf . Consequently, we expect
our conclusion of emergent O(N ) symmetry for all N > 1 to
be true also in d = 2 as long as Nf is large enough. Within
the first-order ε expansion, symmetry-breaking perturbations
are strongly irrelevant also for small Nf , and one is therefore
tempted to argue that higher-order corrections will ultimately
not overturn the leading-order result also in this case. This
conjecture deserves further investigation. The chiral O(N )
universality classes are therefore in principle accessible in
lattice Dirac systems without an explicit O(N ) symmetry by
tuning two parameters through a suitable multicritical point.
The critical behavior is characterized by universal exponents
for which we have given estimates from ε expansion and
functional RG. Our result partly explains the recently observed
emergent O(4) symmetry in simulations of a Dirac system
with anticommuting mass terms [5]. There, however, evidence
for emergent O(4) is found also significantly away from the
multicritical point. This represents an interesting problem on
its own.

Note added. After this Rapid Communication was sub-
mitted, a related preprint appeared on the arXiv [43] also
demonstrating emergent O(N ) symmetry in multicritical Dirac
systems.
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[24] I. F. Herbut, V. Juričić, and O. Vafek, Phys. Rev. B 80, 075432

(2009).
[25] We note that the Kekulé transition on the honeycomb lattice is

naturally described by a complex order parameter with a discrete
Z3 symmetry which, however, is enhanced to an emergent U(1)
at the quantum critical point [11,12].

[26] The bosonic contributions ∝λ1λ3 and ∝λ2λ3 in Eq. (11) do
not agree with the corresponding equation given in Ref. [20].
Since only with these contributions our flow equations reproduce
the known purely bosonic limit [6,10,7], we expect them to be
correct.

[27] L. N. Mihaila, N. Zerf, B. Ihrig, I. F. Herbut, and M. M. Scherer,
Phys. Rev. B 96, 165133 (2017).

[28] N. Zerf, L. N. Mihaila, P. Marquard, I. F. Herbut, and M. M.
Scherer, Phys. Rev. D 96, 096010 (2017).

[29] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.97.041117 for explicit expressions of the
subleading exponents and functional RG flow equations.

[30] L. Rosa, P. Vitale, and C. Wetterich, Phys. Rev. Lett. 86, 958
(2001).

[31] F. Höfling, C. Nowak, and C. Wetterich, Phys. Rev. B 66, 205111
(2002).

[32] L. Janssen and H. Gies, Phys. Rev. D 86, 105007 (2012).
[33] D. Mesterházy, J. Berges, and L. von Smekal, Phys. Rev. B 86,

245431 (2012).
[34] L. Janssen and I. F. Herbut, Phys. Rev. B 89, 205403 (2014).
[35] F. Gehring, H. Gies, and L. Janssen, Phys. Rev. D 92, 085046

(2015).
[36] A. Eichhorn, L. Janssen, and M. M. Scherer, Phys. Rev. D 93,

125021 (2016).
[37] B. Knorr, Phys. Rev. B 94, 245102 (2016).
[38] L. Classen, I. F. Herbut, and M. M. Scherer, Phys. Rev. B 96,

115132 (2017).
[39] B. Knorr, arXiv:1708.06200.
[40] S. Yin, S.-K. Jian, and H. Yao, arXiv:1711.10473.
[41] C. Wetterich, Phys. Lett. B 301, 90 (1993).
[42] J. Berges, N. Tetradis, and C. Wetterich, Phys. Rep. 363, 223

(2002).
[43] B. Roy, P. Goswami, and V. Juričić, arXiv:1712.05400.
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