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Correlation function diagnostics for type-I fracton phases
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Fracton phases are recent entrants to the roster of topological phases in three dimensions. They are characterized
by subextensively divergent topological degeneracy and excitations that are constrained to move along lower-
dimensional subspaces, including the eponymous fractons that are immobile in isolation. We develop correlation
function diagnostics to characterize type-I fracton phases which build on their exhibiting partial deconfinement.
These are inspired by similar diagnostics from standard gauge theories and utilize a generalized gauging procedure
that links fracton phases to classical Ising models with subsystem symmetries. En route, we explicitly construct
the space-time partition function for the plaquette Ising model which, under such gauging, maps into the X-cube
fracton topological phase. We numerically verify our results for this model via Monte Carlo calculations.
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Introduction. Recent studies [1–7] of exactly solvable sta-
bilizer codes in three dimensions (3D) have identified a new
class of topologically ordered states that exhibit subextensive
topological degeneracy on closed manifolds. Unlike the emer-
gent gauge theories of topological order these “fracton” models
lack a pointlike excitation free to propagate in 3D. Owing to
this, they exhibit translationally invariant glassy dynamics even
at nonzero energy density [8,9]. Instead of fully deconfined
point particles, their excitation spectrum generically includes
immobile fractons as well as a hierarchy of other excitations
free to move along lower-dimensional subspaces. Depending
on whether fractons may be created at the corners of two-
dimensional (2D) membranes or only upon the application
of fractal operators, fracton models may be further divided
into “type-I” or “type-II” fracton phases, in turn, related to
distinct subsystem symmetries of the classical spin models
related to them via a generalized gauging procedure [6,7].
Finally we note that resonating plaquette phases as dis-
cussed in Refs. [10–12] have the potential to describe fracton
phases.

Despite rapid progress [13–25] in advancing the theory
of these novel 3D topological phases, there is a paucity of
sharp characterizations of fracton deconfinement away from
the stabilizer limit, e.g., when fractons acquire dynamics or
are at finite density. One possible diagnostic is to extract
topological contributions to the entanglement entropy [26–28],
but this requires an exact computation of ground states,
typically challenging in 3D, and does not immediately gen-
eralize to T > 0. For topological orders described by stan-
dard lattice gauge theories, a trio of loop observables suit-
ably oriented in Euclidean space-time serves this role and
furthermore may be directly computed from, e.g., quantum
Monte Carlo simulations. Can such diagnostics be adapted to
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study these new states in the presence of dynamical fractonic
matter?

Here, we answer this in the affirmative for the so-called
X-cube model and argue that our results may be generalized
to all type-I fracton phases of which it is the paradigmatic
example. We do so by formulating a generalized “plaquette
gauge theory” (PGT) for the plaquette Ising model, a classical
spin model with spin-flip symmetries along planar subsystems.
The PGT (and its dual, which we will introduce) describes a
perturbed X-cube model. Although quasiparticle excitations of
these models are always constrained to lower-dimensional sub-
spaces and are hence not truly deconfined, they are in a sense
partially deconfined within these subspaces. We show that the
standard technology for diagnosing the deconfined and con-
fined phases [29,30], reviewed next, can indeed be generalized
in a straightforward manner to detect this partial deconfinement
that can be viewed as a defining property of fractonic matter.
We also verify our claims via Monte Carlo calculations [31].

Ising gauge theory. To orient our discussion, we first review
the gauging procedure that leads to the Ising gauge theory
(IGT) and discuss its deconfinement diagnostics [29]. We begin
with the classical Ising Hamiltonian on the square lattice with
matter degrees of freedom τ z

s on site s and nearest-neighbor
Jτ zτ z interactions (we will often suppress the site subscript
when the meaning is obvious). This model has a global Z2

symmetry, which is a flip of all τ z, that can be gauged by
introducing an Ising spin σ z

l on each link l and modifying
the interaction term accordingly: Jτ zτ z → Jσ zτ zτ z. This ex-
pands the global Ising symmetry to a local Z2 gauge symmetry
Gs on each site, obtained by considering a simultaneous flip
of τ z

s and each σ z coupled to it by an interaction term—
i.e., those on the four links surrounding site s. The IGT is
obtained by restricting to the subspace where Gs = +1 for
all s. Finally, we give quantum dynamics to both gauge and
matter degrees of freedom by adding the terms �σx and �Mτx

to our Hamiltonian. To complete our construction of the IGT
Hamiltonian, we add a gauge “potential energy” by identifying
the simplest gauge-invariant pure-σ z term that commutes with
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τ x , here a product of σ z around a plaquette p with coupling
strength K , yielding

HIGT = −K
∑

p

∏
l∈∂p

σ z
l − �M

∑
s

τ x
s

− J
∑

l

σ z
l

∏
s∈∂l

τ z
s − �

∑
l

σ x
l (1)

subject to the constraint Gs = τ x
s

∏
l∈∂s σ x

l = 1, where s,l,p

denote links, sites, and plaquettes, and we denote by ∂s,∂l,∂p

the objects touching them (in this case the four links surround-
ing a site, the two sites straddling a link, and the four links
encircling a plaquette).

Precisely at J = � = 0, this model reduces to Kitaev’s
toric code [32] (this can be seen by enforcing the constraint
to replace τ x

s by
∏

l∈∂s σ x
l ). Introducing nonzero J or �

can then be thought of as perturbations from the toric code
point. Turning � too high will drive the gauge theory into a
trivial confined phase, and turning J too high will result in
a Higgs transition into a symmetry-broken phase where 〈τ z〉
obtains an expectation value. These two limits are smoothly
connected [33], thus we will refer to both as the confined limits,
and small perturbations of the toric code point as the deconfined
limit (characterized by Z2 topological order).

Let us now consider moving along the “pure gauge theory”
axis � > 0, J = 0 along which the matter is static τ x

s = 1
and therefore can be ignored. Here, the spatial Wilson-loop
W = ∏

l∈C σ z
l , where C is a closed loop (taken for simplicity

to be an L × L square), serves as a diagnostic that can
distinguish the confined and deconfined phases. At the toric
code point � = 0, we have 〈W 〉 = 1. Small perturbations in
� create local fluctuations of pairs of “visons,” plaquettes on
which

∏
l∈∂p σ z

l = −1 (the magnetic-flux excitations of the
theory). As the Wilson loop measures the average parity of
visons contained within it, these fluctuations will cause the
expectation value to decay proportionally to the perimeter of
the loop, following a perimeter law: log〈W 〉 ∼ −L for large
L. In the confined phase at large �, the visons are condensed,
and so here log〈W 〉 ∼ −L2 follows an area law for large L.
However, as soon as we add dynamical matter J > 0, the
Wilson loop follows a perimeter law everywhere. To see this,
notice that in perturbation theory in J about the J = 0 ground
state |ψ0〉, a term matching the Wilson-loop operator appears at
O(JL): |ψ〉 = |ψ0〉 + αe−βLW |ψ0〉 + · · · for some numbers
α ∼ O(1) and β ∼ − ln J so that there is at least a perimeter
law component to 〈W 〉 which dominates as L → ∞. Thus,
the Wilson loop fails as a deconfinement diagnostic as soon as
J > 0.

Now, consider moving along the “pure matter theory”
axis with J > 0, � = 0. Here, the gauge field exhibits no
fluctuations, and it is convenient to work with σ z = 1 and
project onto the gauge-invariant subspace if needed. In this
subspace, the Hamiltonian is simply the original Ising model
in a transverse field. Beyond a critical J , there is a transition
to an ordered phase where 〈τ z〉 gains an expectation value.
However, τ z alone does not correspond to a gauge-invariant
operator; only pairs of τ z do. This transition can therefore be
diagnosed by an open Wilson-loop τ z

s τ z
s ′

∏
l∈Css′

σ z
l where Css ′

is a path connecting sites s and s ′, which in this subspace
is simply the spin-spin correlation function 〈τ z

s τ z
s ′ 〉. As one

takes |s − s ′| → ∞, this either goes to zero in the deconfined
(paramagnetic) phase or approaches a constant in the confined
(Higgs ferromagnetic) phase. This can also be understood
without referring to the matter theory as the vanishing of a line
tension in the Euclidean action [29]. Now consider adding in a
small� perturbatively:σx anticommutes with theσ z chain, and
so 〈τ z

s σ z · · · σ zτ z
s ′ 〉 decays to zero exponentially with |s − s ′|

in both phases. We therefore again are in a situation where a
diagnostic that works exactly along this axis fails as soon as
� > 0.

How then can we distinguish the confined from the decon-
fined phase away from these special axes? The answer is to
measure an appropriate line tension, using wisdom gained from
the Euclidean path-integral representation which maps the
problem onto an isotropic 3D statistical mechanical problem
of edges and surfaces [29,34]. This can be linked to the
expectation value of a “horseshoe operator,” viz. a L × L

Wilson loop cut in half (with τ z inserted at the ends for gauge
invariance), W1/2 = τ z

s τ z
s ′

∏
l∈C1/2

σ z
l , where C1/2 defines the

half-Wilson loop of dimension L/2 × L, terminating at sites s

and s ′. The ratio of expectation values as L → ∞,

R(L) = 〈W1/2〉√〈W 〉
L→∞−−−→

{
0, deconfined,

const., confined (2)

can then be understood as measuring the “cost” of opening
the Wilson loop. In the deconfined phase, opening a Wilson
loop will cause the expectation value to decay exponentially
with the size of the gap. In the confined phase, the expectation
value of the Wilson loop follows a perimeter law regardless
of whether it is opened or closed, thus the scaling with L is
exactly canceled out by dividing by the square root of the full
Wilson loop.

Since the Euclideanized IGT is space-time symmetric, by
choosing distinct orientations and “cuts” of the loop, we can
identify three different diagnostics. Besides (1) the “spatial
loop” discussed above, the two possible cuts for the orientation
extending along the time direction also have elegant physical
interpretations [29]: either (2) as the Fredenhagen-Marcu
diagnostic [35,36], measuring the overlap between the ground
state and the normalized two-spinon state; or (3) as a measure
of delocalized spinon (electric-charge) excitations. By the
self-duality of the IGT this exercise could have been performed
in the dual model, which defines a different Wilson-loop object
and exactly interchanges the role of the gauge (�,K) and matter
(J,�M ) sectors [37].

Euclidean path integral and Wilson loops for plaquette
gauge theory . We will now proceed with our analysis of
the PGT, which arises from applying the generalized gauging
procedure to the classical plaquette Ising model [6,7,38] and
produces X-cube fracton topological order in its deconfined
phase by analogy with the IGT of the preceding section. The
main deviation from the standard gauging procedure is that we
place σ at the center of each interaction in the Hamiltonian
(the plaquettes in this model), rather than always on the links
(these are the “nexus” spins of Ref. [6]).

The classical (3D) plaquette Ising model (CPIM) is de-
scribed by HCPIM = −J

∑
p

∏
s∈∂p τ z

s where the sum is over
the plaquettes and the product is over the four sites at the corner
of plaquette p. Applying the gauging procedure, we arrive at
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the PGT Hamiltonian,

HPGT = −K
∑
c,i

∏
p∈bi (c)

σ z
p − �M

∑
s

τ x
s

−J
∑

p

σ z
p

∏
s∈∂p

τ z
s − �

∑
p

σ x
p , (3)

where now the σ ’s live at the center of plaquettes p, c denotes
a cube, and bi(c) for i = 1–3 correspond to the three distinct
combinations of four plaquettes that wrap around the cube
c (sometimes aptly called “matchboxes”). We further have
a constraint defined on each site s, Gs = τ x

s

∏
p∈∂s σ x

p = 1
where the product is over the 12 plaquettes touching s. Note
that this model, for small J and �, is just a perturbed X-cube
model (which is usually defined on the dual lattice where
our plaquettes become links) and that the topological order is
stable to small perturbations [39]. The deconfined phase of this
model hosts two types of excitations: the electric (τ x = −1)
excitations are fractons, whereas the magnetic excitations are
one-dimensionally mobile quasiparticles, which we will refer
to as lineons (short for “line vison”).

In standard gauge theory, one is often only concerned
about the deconfinement of the electric charge excitations.
The X-cube model (unlike the toric code) does not possess an
electromagnetic (σ z ↔ σx) self-duality, so for completeness,
we also consider the “electromagnetic” dual to the PGT. This
dual model arises naturally from the same generalized gauging
procedure on the classical dual of the CPIM, which can be writ-
ten as an anisotropically coupled Ashkin-Teller model [40,41].
Note that the duality discussed here maps between two full
gauge-matter theories; the “F -S duality” between a pure matter
theory and a pure fracton gauge theory [6] is a limiting case. We
construct deconfinement diagnostics for the electric charge in
both the PGT and its dual, thus providing diagnostics for both
fracton and lineon excitations.

For a full space-time discussion of Wilson-loop analogs, we
construct a discrete-time Euclidean path integral for the PGT
Hamiltonian Eq. (3) via the usual Suzuki-Trotter decompo-
sition. The gauge constraint is enforced by the introduction
of auxiliary spin-1/2 degrees of freedom along the time
links of the four-dimensional (4D) hypercubic lattice [37,42],
that we will denote as λ (in the IGT one has a space-time
symmetric structure, so these spins can be thought of as σ

spins along the time links, but this is not the case here). After a
straightforward calculation (for details, see Ref. [31]), we find
ZPGT = Tr{τ,σ,λ}e−SPGT with the Euclidean action,

SPGT = −K̃
∑
t,c,i

∏
p∈bi (c)

σ (t)
p − �̃M

∑
t,s

τ (t)
s λ(t)

s τ (t+1)
s

−J̃
∑
t,p

σ (t)
p

∏
s∈∂p

τ (t)
s − �̃

∑
t,p

σ (t)
p σ (t+1)

p

∏
s∈∂p

λ(t)
s , (4)

where the integer t labels the Euclidean time slice (which
extends to infinity for zero temperature), τ (t)

s (σ (t)
l ) is now a

classical Ising variable associated with sites (links) in the time-
slice t , and λ(t)

s is similarly associated with the link connecting
site s between time-slices t and t + 1. The couplings in SPGT

are related to those in HPGT and the Trotter time-step ε via
K̃ = εK, J̃ = εJ , and �̃(M) = − 1

2 log tanh ε�(M). This can
be viewed as a statistical mechanical model of edges, surfaces,

c

b

a

Plaquette Ising Plaquette Ising Dual

Spatial Loop

Temporal Loop

Horseshoes

FIG. 1. The Euclidean time representation of the Wilson-loop and
horseshoe generalizations for the PGT and its dual, which realize the
X-cube topological phase. The blue circles represent τ ’s (which lie
on vertices), red represent σ ’s (which lie on the spatial plaquettes in
the PGT but on spatial links in its dual), and the green lines represent
the auxiliary spin λ’s (which lie on the links along the imaginary time
direction). Nonequal time operators are shown projected to a 2 + 1D
subspace with the time direction pointing “up” on the page. The three
possible cut orientations are labeled by a, b, and c.

and volumes in 4D but with a more subtle set of rules for how
to build allowed objects from these.

Proceeding by analogy with the IGT, we construct the
Wilson loops for the PGT and its dual (Fig. 1). Spatial loops are
constructed by choosing a set of cubes c whose centers lie on
a plane and taking the product of their matchbox terms (terms
multiplying K in the action) such that the vacant squares of
each matchbox lie parallel to the plane, resulting in a “ribbon
loop” encircling it. This can equivalently can be thought of as
the dynamical process of moving a two-dimensionally mobile
combination of charges around in a loop lying on a plane
via applications of the term multiplying J in the action. For
the PGT, this is a pair of fractons, whereas for the dual it
is a pair of parallel-moving lineons. Temporal Wilson loops
are constructed in a similar fashion by taking the product of
the six-spin terms (that multiply �) corresponding to each
space-time cube in a L × Lτ space-time sheet, leaving open
spatial ribbons at the initial and final slices, whose corners are
linked by strings of λ’s. This can equivalently be constructed by
moving a one-dimensionally mobile combination of charges a
distance L apart, evolving both for Lτ in imaginary time and
bringing them back together again. The combination again
consists of a fracton pair in the PGT but now only a single
lineon in the dual. The corresponding horseshoes (or cut
Wilson-loop) operators are then obtained by cutting open the
loop and terminating it with the appropriate combination of τ ’s
with three distinct possible orientations labeled a, b, and c in
Fig. 1.

Diagnostic behaviors. We now consider the expectation
value of these operators at various points in the phase diagram.
First, note that the spatial Wilson loop alone functions as a
diagnostic only in the pure gauge theory. When J = 0, for
small �, vison-pair fluctuations occur only on small length
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scales so that only pairs along the perimeter of the loop will
affect the expectation value. In contrast, flux excitations are
condensed in the confined phase at large � so that the loop
now exhibits an area law. As in the IGT, for any J > 0 the
loop obeys a perimeter law in both phases.

Next, note also that the spatial horseshoe alone serves
as a diagnostic only along the � = 0 axis where it can be
understood as measuring the vanishing of a macroscopic string
tension. To understand why this expectation value is nonzero
in the Higgs/confined phase, we draw on known results for the
CPIM [38]. Early work on the “fuki-nuke” model [43], which
may be thought of as an anisotropic limit of the CPIM with
J = 0 for the plaquettes on the xy plane, reveals that this model
maps onto a stack of decoupled 2D (xy-planar) Ising models. In
terms of the original spins, the local observable 〈τ z

s τ z
s+ẑ〉 gains

a nonzero expectation value in the ordered phase but is free
to spontaneously break the symmetry in different directions
for each xy plane. Now, the horseshoe operator (a) obtained
by cutting open a xy Wilson loop is exactly the correlation
function of this observable: 〈τ z

s τ z
s+ẑτ

z
s ′τ

z
s ′+ẑ〉 for s,s ′, which

are constrained to be on the same xy plane, which therefore
approaches a constant as |s − s ′| → ∞ in the ordered phase.
This correlator continues to function as a diagnostic even for
the isotropic model where we are free to choose planes oriented
in any direction [44–46].

Away from the J = 0 or � = 0 cases, we must rely on the
ratios R(L) [Eq. (2)] to distinguish between the confined and
the (partially) deconfined phases. The ratio for the spatial cut
(a in Fig. 1) as before measures of the cost of opening up a
gap in the loop, which depends exponentially on the size of the
gap in the deconfined phase but not in the confined phase. In
the Supplemental Material [31], we verify numerically using
quantum Monte Carlo that R(L) shows the expected behavior
crossing the transition at a generic point in the phase diagram.
At � = 0, R(L) reduces to the fuki-nuke correlation function
above.

Next, we examine the temporal loops. Consider cut b of
the PGT, W1/2 = τ z

s τ z
s+uτ

z
s ′τ

z
s ′+u

∏
p∈Cu

ss′
σ z

p(−T/2), where s,s ′

are two sites on the same plane orthogonal to u = x̂,ŷ,ẑ and
Cu

ll′ defines the set of plaquettes forming a path between them
(as in Fig. 1). We have also defined σ z(T ) = eHT σ ze−HT , and
T = L/c for a velocity c in the continuum time-limit ε → 0.
Calling our candidate two-fracton-pair (four fractons in total)

state |χ〉 = W1/2|G〉, created from ground-state |G〉, we see
thatR(L) = 〈G|χ〉/√〈χ |χ〉measures the overlap between the
ground state and our candidate state. This is a generalization
of the Fredenhagen-Marcu diagnostic [35,36] measuring the
deconfinement of fracton pairs with the constraint that the two
fracton pairs must be on the same plane of movement. The
final orientation of the horseshoe (cut c) probes the existence
of delocalized fracton-pair states in the spectrum in exactly
the same way as the delocalized spinons are probed in the
IGT [29].

Thus, rather than measuring the deconfinement of sin-
gle spinons as in the IGT, our Wilson-loop and horseshoe
generalizations instead measure the same quantities but for
the smallest mobile combinations of quasiparticles in their
subspace of allowed movement. For the PGT, this is a fracton
pair. As stated, these diagnostics only probe the deconfinement
properties of fracton pairs and not single fractons. To identify
the deconfinement of individual fractons one can perform
the same calculation but using Wilson loops and horseshoes
with finite widths that also scale with L. This distinction
can be important, for example, in an anisotropic version of
the PGT [31] which exhibits an intermediate phase in which
single fractons are confined into pairs, whereas pairs remain
deconfined (reminiscent of quark confinement into mesons).

Concluding remarks. We have shown that deconfinement
diagnostics for the Ising gauge theory (or conventional
topological order) can be generalized to the plaquette
Ising gauge theory, which exhibits the X-cube fracton
topological order in its deconfined phase. Despite never being
fully deconfined in the sense of having excitations free to
move in all three dimensions, the expectation value of our
generalized Wilson loops and horseshoes diagnoses the partial
deconfinement of these excitations with various physical
interpretations depending on their orientation in Euclidean
space-time. The procedure for identifying Wilson-loop-type
operators is quite general and can be extended to other similar
type-I fracton models, such as the checkerboard model [6].
However, the extension to type-II fracton theories where the
fractons (and their composites) are fully immobile remains an
open question worthy of future study.
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