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Erratum: First-principles DFT+DMFT calculations of structural properties of actinides:
Role of Hund’s exchange, spin-orbit coupling, and crystal structure [Phys. Rev. B 94, 115148 (2016)]
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The calculations reported in the original paper contain an error: The effective Hund’s coupling J used in the combination
of density functional theory and dynamical mean field theory (DFT+DMFT) does not use the same convention as the effective
Hund’s coupling J computed in the constrained random-phase approximation (cRPA). The definition of J presented in Ref. [1]
and used in the original paper in the cRPA calculation follows the expression of J1:
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A more common definition of J can however be established using the expression of J2 deduced from (see Ref. [2] or the
Appendix of Ref. [3])
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As discussed in Ref. [4], even if the second expression is used more, the choice between Eqs. (1) and (2) is a matter of
convention. However, for self-consistent calculations as those used in the original paper, there is an error because the convention
used for J in DFT + U in the ABINIT code [5] is the one from Eq. (2) and not the one from Eq. (1). Moreover, in the original
paper, the J values computed with Eq. (1) were used in a DFT+DMFT code which uses Eq. (2).

So, first, we have reproduced the self-consistent cRPA calculations of effective interactions. They are reproduced in Table I
and Fig. 2 for actinides. The (correct) values of J , defined by Eq. (2), are around 0.1 eV larger. The values of U are not affected.

As the DFT+DMFT calculations use these values of U and J , we also recompute all the data for all figures that depend on
J (see Tables II, III, Figs. 3, 4, and 6–9).

Importantly, we see in Fig. 3 and Table II that the quantitative agreement of the DFT+DMFT calculations with experiments
is improved with the correct value of the Hund’s interaction. The interpretations and discussions of all figures and tables are
unchanged, except that the role of J is larger (see Fig. 4).

TABLE I. The values in eV of the effective and bare interactions for actinides. U crpa is the F 0 Slater integral, and U
crpa
diag is the average of the

diagonal elements of the direct Coulomb interaction matrix (see, e.g., Refs. [1,4]).

U Np Pu Am Cm

U crpa 0.8 1.0 0.95 1.5 3.4
U

crpa
diag 1.5 1.7 1.7 2.3 4.3

J crpa 0.5 0.5 0.6 0.5 0.7
U bare 17.6 18.4 18.6 19.0 20.0
J bare 0.7 0.7 0.8 0.7 0.8
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FIG. 2. Ab initio bare and effective interactions in actinides. Bare direct Coulomb interaction v [in part (a)], the Hubbard U , and the Hund’s
exchange J [in part (b)] interactions for U, Np, Pu, Am, and Cm.

TABLE II. Structural parameters of uranium, neptunium, americium, curium, and some phases of plutonium obtained in this paper in
comparison with various other methods and experiment. NM, AFM, and OP stand for nonmagnetic calculation, antiferromagnetic calculation,
and orbital polarization (see Sec. IV of the original paper). See also the Supplemental Material of the original paper, Sec. I for a benchmark of
our NM GGA calculations with other calculations.

α-U α-Np α̃-Pu α-Pu δ-Pu γ -Pu ε-Pu Am Cm

Experiment [11,13,15,16,18,19]

V (Å
3
) 20.6 [11] 19.2 [20] 20.08 [13] 25.0 [19] 23.5 [19] 24.4 [19] 29.3 [16] 30.05 [18]

B0 (GPa) 115 [11] 120 [21] 54 [13] 29 to 30 [19] 25.7 [19] 45 [19] 29.7 [16] 30.5 [18]

Experiment extrapolated to 0 K (Lanata et al. [6] and Wallace [22])

V (Å
3
) 19.5 25.5 21.9 22.3

B0 (GPa) 70 [14] 38

GGA/SOC+DMFT (NM) (this paper)

V (Å
3
) 20.5 18.9 19.2 25.2 21.6 22.5 29.1 28.5

B0 (GPa) 124 143 103 34 42 17 35 34
E (meV) 0 108 39 126

GGA/SOC (NM) (this paper)

V (Å
3
) 20.2 18.5 18.0 17.8 19.5 17.9 17.2 19.9 20.8

B0 (GPa) 139 174 193 141 86 124 142 61 54
E (meV) 0 −45 700 400 380

LDA/SOC+GA (NM) [6] 0 K (U = 4.5 eV, J = 0.36 eV)

V (Å
3
) 21.1 25.5 21.3 21.2

B0 (GPa) 50–70 15–35 45–70 35–55
E (meV) 0 26 9 72

GGA NM NM AFM AFM AFM AFM AFM AFM

V (Å
3
) 20.2 [11] 18.4–18.8 [12,23] 18.5 [7] 23.4 [7] 21.9 [7] 21.2 [7] 29.2 [8] 29.34 [8]

B0 (GPa) 134 [11] 158–170 [12,23] 101 [7] 55 [7] 45 [7] 45 [7] 28.3 [8] 40.3 [8]
E (meV) 0 [7] 122 [7] 109 [7] 175 [7]

GGA/SOC+OP (AFM) [9,10]

V (Å
3
) 20.3 24.9 24.3 24.6 29 28.5

B0 (GPa) 50 41 33 23
E (meV) 0 20 15 110
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TABLE III. Comparison of our DFT+DMFT calculations (∗) of volumes and bulk moduli with other DFT+DMFT calculations and
DFT+GA calculations. For completeness, we show the structural data obtained with our ab initio interactions and with the interactions
proposed by some authors. IS stands for interpolation scheme (see Ref. [24]).

U,J (eV) V (Å
3
) B0 (GPa)

δ-plutonium
GGA + DMFT/CTQMC∗ (continuous-time quantum Monte Carlo) 0.94, 0.58 25.2 34
LDA+GA [6] 4.50, 0.36 25.5 15–35
LDA + DMFT/CTQMC∗ 4.50, 0.36 24.3 43
GGA+DMFT/IS [24] 4.00, 0.00 26.5
GGA + DMFT/CTQMC∗ 4.00, 0.00 25.8 28
Americium
GGA + DMFT/CTQMC∗ 1.53, 0.52 29.1 35
LDA+DMFT/Hubbard I [25] 4.50, 0.60 27.4 45
LDA + DMFT/CTQMC∗ 4.50, 0.60 28.0 44
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FIG. 3. Theoretical volumes for actinides compared to experiment. (d) Theoretical volumes as obtained in the DFT/PBE (Perdew-Burke-
Ernzerhof) (NM) and in the DFT/PBE+DMFT—with the calculated values of the effective direct Coulomb and Hund’s interactions (see
Fig. 2) in comparison to experiment (extrapolated to 0 K for γ, ε, and δ Pu [6]), (a) generalized gradient approximation (GGA) (AFM) [7,8],
(b) GGA+OP (AFM) [9,10], and (c) local-density approximation (LDA)+GA (NM) [6]. Experimental data are taken from Refs. [11–18].
NM refers to a nonmagnetic calculation without any local or global static magnetic moment. AFM refers to antiferromagnetic calculations.
GGA+DMFT with the ab initio determination of U and J is able to describe the equilibrium volumes of all elements and all phases of Pu
without any magnetic moment, in agreement with experiment. See Sec. IV of the original paper for a detailed discussion.
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FIG. 4. The role of spin-orbit coupling (SOC) and exchange. Volumes (per atom) of α-Pu, δ-Pu, and Am for the full DMFT calculations
(with J and SOC) for calculations without exchange J and for calculations without SOC, in comparison to experiment. The nonmagnetic
calculation for curium is not stable without spin-orbit coupling. These calculations show that the combination of both spin-orbit coupling and
exchange J is necessary to recover the equilibrium volume of δ-Pu and Am.
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FIG. 6. The role of the crystal structure on theoretical volumes. Comparison of DFT+DMFT calculations of volumes (per atom) for
actinides with fcc structures, the γ -Pu structure, the δ-Pu structure, and experimental structures. The arrows show the direction of the decrease
in DFT+DMFT energy towards the most stable phase (in agreement with experiment). For, e.g., plutonium, we indeed found that the α phase
is more stable than the γ phase whereas the δ-fcc phase is less stable, in agreement with experiment.
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FIG. 7. DFT+DMFT calculations of volumes (per atom) for actinides with the same imposed structure (the γ phase of plutonium). The
graph compares calculations with computed U and J for each actinide with calculations with fixed U and J . For reference, DFT+DMFT
calculations for experimental structures also are given.
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FIG. 8. DFT+DMFT 5f spectral functions of δ-Pu compared to the GGA and GGA + U 5f projected density of states (DOS) used for
the cRPA calculation of U . Calculations are performed at 800 K and GGA + U , and GGA DOS are widened (with a 0.5-eV broadening) to be
compared easily to the DFT+DMFT spectral function.
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FIG. 9. Experimental photoemission spectra (left) of α uranium (398 K) [26], α neptunium (80 K) [27], plutonium (α at 423 K and δ

at 77 K) [28], americium (at 298 K) [29], and curium (298 K) [30], compared to our DFT+DMFT spectral functions (right) computed with
ab initio effective interactions computed with the self-consistent cRPA scheme. The full spectral function and theoretical direct photoemission
spectra are presented with the dashed and full curves, respectively. The results are nearly identical at 800 and 200 K. The magnetic calculations
for curium are indicated by the dotted lines.
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