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Two-level system strongly coupled to a single resonator mode (harmonic oscillator) is a paradigmatic model in
many subfields of physics. We study theoretically the Landau-Zener transition in this model. Analytical solution
for the transition probability is possible when the oscillator is highly excited, i.e., at high temperatures. Then the
relative change of the excitation level of the oscillator in the course of the transition is small. The physical picture
of the transition in the presence of coupling to the oscillator becomes transparent in the limiting cases of slow and
fast oscillator. A slow oscillator effectively renormalizes the drive velocity. As a result, the transition probability
either increases or decreases depending on the oscillator phase. The net effect is, however, the suppression of the
transition probability. On the contrary, a fast oscillator renormalizes the matrix element of the transition rather
than the drive velocity. This renormalization makes the transition probability a nonmonotonic function of the

coupling amplitude.
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I. INTRODUCTION

Since the publication of seminal papers [1,2], see also the
review Ref. [3], the effect of environment on the dynamics of a
two-level system is modeled by introducing the coupling of the
levels to the infinite set of harmonic oscillators. In the course of
the Landau-Zener (LZ) transition [4—7], when the energy levels
of the two-level system undergo the avoided crossing under the
action of external drive, the effect of environment amounts to
the loss of adiabaticity of the transition. More quantitatively,
the probability for the system to stay in the ground state
after the transition is diminished by the environment [8—19].
The underlying reason for this is the absorption of “quanta”
of the environment. This absorption leads to decoherence,
which suppresses the interference of different virtual tunneling
pathways.

The situation is more delicate when the environment is
represented by a single oscillator [20-29]. In experiment, the
role of such an oscillator, which is coupled to a two-level
system, is played, e.g., by the transmission line resonator
[30], like in circuit quantum electrodynamics, see the review,
Ref. [31], or by the optical resonator [32].

In the absence of coupling, the amplitude of the LZ
transition can be viewed as coherent superposition of many am-
plitudes corresponding to virtual trajectories. In the language
of spins, virtual trajectory of the LZ transition represents a
sequence of virtual spin flips [10]. With coupling, each virtual
transition is accompanied by the excitation of the oscillator.
On the other hand, the stronger the oscillator is excited, the
stronger is the feedback that it exercises on the two-level
system. Then itis a compound object, two-level system dressed
by many oscillator quanta [31] thatundergoes the LZ transition.

For the two-level system coupled to the environment with
a continuous spectrum only the weak-coupling regime is
of interest. This is because, upon increasing coupling, the
interference is completely suppressed, so that the transition
probability, P>, assumes the value P;;* = 1/2. On the
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contrary, when the two level system is coupled to a single
oscillator, there is a wide domain of parameters when the
coupling is strong while Pz; Vs still a strong function of
the drive velocity.

Nontriviality of the Landau-Zener (LZ) transition in the
presence of coupling to the oscillator is highlighted by the
exact result reported in Ref. [21]. This result pertains strictly to
zero temperature when at time ¢+ — —oo the oscillator is in the
ground state. It was demonstrated in Ref. [21] that if the two-
level system starts in the state 1 and ends in the state 1, then the
oscillator remains in the ground state at# — oo. This result can
be viewed as a manifestation of the “no-go” theorem [33-35] in
application to the spin-boson model. Certainly, at intermediate
times, the oscillator can be excited. As a consequence of the
above restriction, the two-level system and the oscillator end
up entangled.

Another manifestation of nontriviality of the LZ transition
with coupling to a single oscillator is the dependence of PLT . v
on the coupling strength g. In particular, numerical results of
Ref. [25] suggest that, for finite-temperature oscillator, the
dependence of PLT; ‘ on g is a nonmonotonic curve with a
minimum. In other words, upon increasing g, the adiabaticity
of the transition first decreases and then increases again. There
is no clear physical picture explaining the emergence of this
minimum. In theory, coupling to the oscillator turns a single
avoided crossing, taking place in the course of the LZ transi-
tion, into a network of avoided crossings [36] corresponding
to different oscillator levels. The coupling strength quantifies
the “talking” between the 1 and | amplitudes pertaining to a
certain oscillator level to the corresponding amplitudes for two
neighboring oscillator levels.

In general, the problem of the LZ transition in the presence
of coupling to the oscillator contains, in addition to g, three
other parameters with the dimensionality of frequency: the
matrix element between 1 and | levels, the inverse bare LZ
transition time, and the oscillator frequency. Definitely, it is
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impossible to derive an analytical expression for PLT e ¥ for
arbitrary relations between these parameters. In the present
paper we focus on the situation when the oscillator is highly
excited. Under this simplifying assumption we identify the do-
main of parameters where the asymptotic analytical expression
for PLT . ¥ can be found. Roughly speaking, the two domains
correspond to slow and fast oscillator depending on whether the
LZ transition time is shorter or longer than the oscillator period.
Coupling to a slow oscillator effectively renormalizes the drive
velocity. In the case of a fast oscillator, the LZ transition splits,
as aresult of coupling, into a sequence of individual transitions
even spaced in time. The corresponding gaps are the oscillating
functions of coupling strength g. Nonmonotonic behavior of
the survival probability with g is the result of interference
of partial transition amplitudes. We confirm this behavior by
solving the many-level Schrodinger equation numerically.

II. BASIC RELATIONS

Our study of the dynamics of a two-level coupled to an
oscillator is based on the following Hamiltonian

N A P Ao
A=——6.~ 6 +wblb+ g6 ®b+5bhH, 1)

where w is the oscillator frequency, while b and b' are,
respectively, the annihilation and the creation operators of
the oscillator. The drive is characterized by the rate v of
the change of the energies of the 1 and | states coupled
directly by the matrix element A /2. It is assumed that the
coupling between the two-level system and the oscillator is
longitudinal. The Hamiltonian Eq. (1) differs from the standard
spin-boson Hamiltonian with drive [21] only in one respect:
In the spin-boson model there is a summation over many
oscillators.

Denote with af and a@; the amplitudes to find the system
in the states 1 and | with n quanta excited. As follows from
Eq. (1), these amplitudes satisfy the following infinite system
of coupled equations

P V) 1 . A,
la; + 5611 + (n + E)a)a1 - Eaz

= —g[(n + 1)1/2a7+1 + nl/zaffl],idg

vt 1 . A,
—geb (et 3)os - 3

= g[(n+ D25t +n' 2y )

Our goal is to find the analytical solution of this system in
the limit when the oscillator is highly excited, so that the
relevant n values are big. In this limit, we can neglect the
difference between (n + 1)'/2 and n'/2. Denote the initial state
of the oscillator with n = ny >> 1. A crucial simplification is
achieved if, in the course of the transition, the excitation level of
the oscillator changes relatively weakly, i.e., by m quanta with
m much smaller than n¢. This allows us to eliminate the explicit
n dependence from the system Eq. (2). Upon introducing the
new variables

aj(t) = b (t)exp [iwt(no +m + 3)],
ay(t) = by (t)exp [iot (ng +m + 1)1, 3)

we get
v A . |
by Sy = S0 = Gl e e
v A . |
iby = Sby = b= Gyl byl @)
where

G = gn(l)/z. ®)

Obviously, the partial solutions of the system Eq. (4) are the
plane waves

bi'(t) = Bi(t)e ™™, b3(1) = Bay(t)e ™™, (6)

where « is the wave vector. The amplitudes B, B, satisfy the
system

. rut A
iB + [? + 2G cos(wt — K)]B1 - 332 =0,

. vt A
iBy — [5 +2G cos(wr — ;c)]B2 ~3Bi=0. (D

This system describes the LZ transition within a given k. The
form Eq. (7) suggests the interpretation of « as a phase of the
classical oscillator.

Original system Eq. (2) describes the “spreading” of the
initial state with n = ng over the states with n = ng + m. The
survival probability Q"7 "+ is the probability for the system,
which starts at r — —oo from a single nonzero amplitude
al, to remain in one of the states a}°™™ at t — oo. After
reducing the original system to the form Eq. (7) the amplitude
B, represents a combination ), b}' exp(—ixm). The initial
condition that at t — —oo the m dependence of amplitude b’
is 8,,,0 suggests that the solutions of Eq. (7) corresponding to
different « have the same absolute value at + — —oo. This
allows us to express the net LZ survival probability via the
survival probabilities corresponding to all ¥ values

— n—(n+m ™ dk
Qrz=1-Pl;7 =" 0;;" >=/ 57 Qrz(). (®)

¥

In the remainder of the paper we study the dependence of
Q17 found from Eqgs. (7) and (8) in the limits of slow and
fast oscillator.

III. SLOW OSCILLATOR

To illustrate how delicate is the effect of coupling to the
low-frequency oscillator on the survival probability, we plot in
Figs. 1(a) and 1(b) the numerical solutions of the system Eq. (7)
for different G values. Figure 1(a) corresponds to the wave
vector k = 7 /2, while Fig. 1(b) corresponds to k = —m /2.
The solutions Q; () correspond to the “subgap” frequency
@ = 0.25A. The drive velocity is chosen to be v = w A%/4,
so that, without coupling, the survival probability Q7 =
exp (—mw A?/2v) is small, Q;, = e~2. Comparing Figs. 1(a)
and 1(b), we conclude that the effect of coupling on Q; 7 is very
different for these two values of k. For k = 7/2 the survival
probability increases monotonically with the coupling strength
G, while for xk = —m/2, already for the minimal coupling
G = 0.25A, the value of Q;  is smaller than in the absence
of coupling.
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FIG. 1. Survival probability Q7 calculated numerically from the
system Eq. (7) is plotted versus dimensionless time, At /2, for several
values of the coupling amplitude G and for the oscillator phases k =
/2 (a) and k = —m /2 (b). The oscillator frequency is chosen to be
o = 0.25A, where A is the gap at t = 0, while the drive velocity is
chosen to be v = m A?/4. At zero coupling, the survival probability
att — 00is Q;z(00) = e 2. For k = /2 the values Q; 7(00) grows
monotonically with G, while for k = —m /2 the value Q; z(00) first
drops with G and then grows with G.

Formal explanation of this peculiar dependence of Q7 on
k follows from the expression of the time-dependent energy
levels of the system Eq. (7). This expression reads

A2 vt 'z
E:i[7+<3+2Gcos(wt—K)> ] . ©)]

InFig. 2(a) we plot these levels for G = 0.25A andk = +m/2.
It is seen that the plots E(¢) for k = £ /2 lie on the opposite
sides of the G = 0 curve. Thus, for « = /2, the coupling
to the oscillator effectively increases the drive velocity, and,
thus, Q7 gets enhanced. For x = —m/2, the effective drive
velocity is decreased due to the coupling to the oscillator and,
correspondingly, Q; 7 is diminished.

Dramatic difference of the survival probabilities for dif-
ferent « values becomes even more dramatic upon further
increase of coupling strength. This is illustrated in Fig. 3,
where the curves Q; z(G) obtained numerically are plotted for

Kk =m/2, k = —m/2, and k = 0. While all three curves start
from Q; 7 = e 2, thek = /2 and xk = O curves increase with
G, while the k = —m /2 curve decreases with G. It also follows

from Fig. 3 that beyond certain G value all three curves exhibit
strong oscillations.

@) 2E/A

FIG. 2. The time-dependent energy levels Eq. (9) are plotted
for k = m/2 and different oscillator frequencies and the coupling
strengths: (a) G = 0.25A, w = 0.25A; (b) G =4A, w = 0.25A;
(¢) G =0.5A, w =10A. The level positions in the absence of
coupling are shown with dashed lines. Three distinct shapes of the
curves E(t) illustrate three different scenarios of how the coupling
to the oscillator affects the LZ transition. (a) and (b) correspond
to the slow oscillator regime. In (a), the coupling amounts to
effective modification of the drive velocity. Upon increasing the
coupling, (b), the LZ transition is the result of interference of
many isolated LZ transitions. For the fast oscillator, (c), the de-
scription of the LZ transition in terms of time-dependent energy
levels is inadequate. Blue lines in (a) show the energy levels cal-
culated for the same coupling and frequency as red lines but for
Kk =—m/2.
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FIG. 3. The survival probability, Q; 7, att — oo is plotted versus
the dimensionless coupling strength for the phases of oscillator x =
/2 (a), k = —m/2 (b), and x = 0 (c). Blue curves were obtained
by solving the system Eq. (7) numerically. Red curves are theoretical
obtained from Eqgs. (13), (14). In the lower panel (d) the result of the
numerical averaging of Q,z(«) is plotted with a blue line. The green
line shows the analytical result Eq. (15), while the analytical result
obtained from Egs. (13), (14) is shown with a red line. The drive
velocity and the oscillator frequency are the same as in Fig. 1.

The goal of the theory is to account for the shapes of
the curves. To this end, we recall that, in the absence of
coupling, the most concise way to derive expression Q7 =
exp (—w A?/2v) is to perform the analytic continuation of
the semiclassical solutions, exp (+i fot dt'E(t")), for the 1, |
amplitudes to the complex plane [37]. Then O emerges in
the form of the following integral between the turning points
on the imaginary axis

InQLy = —/TR de| E(it)|

T

A/2v A2 2_291/2
—/ dr[— — i] . (10)
—A/2v 4 4

Here t; and 7y are the left and the right turning points,
E(ity) = E(itg) = 0, which, in the absence of coupling, are
simply equal to A /2v. General expression Eq. (10) suggests
that the extension to the finite coupling at x = £ /2 amounts
to the modification of

2 172

E(it) — [AT - (% +2G sinh(wr))2i| Can

The equation for 7;, T becomes transcendental. Still, for a
given set of parameters, the dependence Q;7(G) determined
by Egs. (10) and (11) can be obtained by the numerical
integration. The results are shown in Figs. 3(a), 3(b) and 3(c).
They agree very well with O, found from the numerical
solution of the system (7).

At weak coupling, the term £2G sinh(wt) amounts to the
modification of the drive velocity. For the effective velocity
obtained by expansion sinh(wt) at small T we find

4Gw
Veff = v(l + —) 12)
v

Upon substituting v into the LZ survival probability we
get the results which agree perfectly with the result obtained
above using the semiclassical E(it), Eq. (10). This agreement
could be expected only in “perturbative” regime G < v/w,
but, for numerical reasons, this agreement holds up to the
maximal value of G = v/4w. For this maximum value veg at
k = —m /2 turns to zero. Thus, we use this simplified procedure
for arbitrary «. In doing this, it is very important to take
into account that for « different from 4w /2 the transition
point is shifted from ¢ = 0 to some ¢ = z.g. The combination
”7’ + 2G cos(wt — k) should be replaced by %[Ueff(t — legr)]-
Figure 3(c) illustrates that theoretical dependence Q;7(G) is
in good agreement with the numerical solution of the system
Eq. (7)atx = 0.

Summarizing, we write the expression for survival proba-
bility in the limit of a slow oscillator in the form

T A? } (13)
20[1 — 462 sin(wter)] J

v

Orz(k) =exp {—

where f.¢ is determined by the condition

11
% +2G cos(wie — ) = 0. (14)

The final step is averaging of Eq. (13) over «. This averaging
can be performed analytically when the renormalization of
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the velocity due to the coupling to the oscillator is weak.
Expanding the denominator, we get

A2 27 A2Gw
QOrz=exp|— Iy 5 ,
2v v

where I(z) is the modified Bessel function. We note that, while
deriving this result, we assumed that G is much smaller than
v/w, the argument of I can be bigger than 1. This is because
this argument contains an additional big factor 7 A?/2v. In
other words, Eq. (15) captures strong enhancement of the
survival probability caused by the coupling to the oscillator.

In Fig. 3(d) we compare the results of three approaches to
the calculation of the evolution of Q7 with coupling strength.
The first result, shown with blue curve, is purely numerical.
Namely, the dependence Q; (k) was obtained for each G
value and then averaged over « numerically. The second result
(red line) is semianalytical, obtained from Eqs. (13), (14), and,
finally, the analytical result Eq. (15) (green line). As could be
expected, Eq. (15) captures the O z(G) behavior only for small
couplings. The semianalytical descriptions works well until
G ~ A.The origin of the discrepancy between this description
and the numerics is that Q7 is the result of the averaging of
rapidly growing and rapidly decaying contributions.

In the limit of large G 2 v/w the curves in Fig. 3 start to
oscillate. The oscillations survive the averaging over x. The
origin of these oscillations becomes clear from Fig. 2(b). LZ
transition at small G evolves into a sequence of individual well-
resolved LZ transitions upon increasing G. The net number
of transitions, Ny = 4Gw/mv, grows linearly with coupling.
Passage of these transitions may result in constructive or
destructive interference depending on the phase accumulated
between the subsequent transitions. The situation is fully
analogous to the Landau-Zener-Stiickelberg interferometry
[38].

s5)

IV. FAST OSCILLATOR

From Fig. 2(c) we realize that the description based on time-
dependent energy levels is inadequate for the fast oscillator.
This is also clear from physical arguments, since the “local”
velocity is much bigger than the drive velocity. The role of the
oscillator at large w is to renormalize not the drive velocity but
rather the matrix element, A /2, between the levels. To see this,
we make the following substitution in the system Eq. (7)

2i G sin(wt — K)]

Bi(t) =D (1) exp [ »

2iG sin(wt — k)
By(t) =D,(1) exp [ - 7] (16)
after which it acquires the form

. vt A 4iG sin(wt — k)
iDi4+ —D) = —Dyexp| — —— |,

2 2 1)
- vt A 4iG sin(wt — k)
iDy— —Dy=—Djexp| + ———|. U17)

2 2 )

In the form Eq. (17), the interlevel matrix element oscillates
with time. If the time of the LZ transition, ~A /v, is much
longer than the period of oscillations, the gap oscillates many

Qrz

STy
“\..v.».‘.ly

FIG. 4. Survival probability Q,7, calculated numerically from
the system Eq. (17), is plotted versus the dimensionless time At
for specific coupling strength G = 12A and frequency @ = 20A, so
that %G = 2.4 and Jy(4G/w) = 0. Different curves correspond to the
values of «: x = /2 (blue), k = /3 (red), and k = 7w /4 (green).
It is seen that Q; does not change near r = 0, where the k = 0 LZ
transition is expected suggesting that the gap is suppressed. Black line
shows the time evolution of Q7 at zero coupling. The drive velocity
is v = m A?/4 in all the curves.

times in the course of the transition. This suggests that the
oscillating factor can be replaced [39] by its average Jo(4G /w),
where Jj is the Bessel function. This replacement immediately
leads to the survival probability

0 TA? (4G
o= 225(%)]

This result suggests that a very small Q;7 = e~2 at zero
coupling increases rapidly with coupling, reaches Q;7 = 1,
when the Bessel function passes through zero, and then drops
down.

To check numerically the validity of averaging over the
oscillator period, in Fig. 4 we show the time dependence
Q1 z(t) calculated by numerical solution of Eq. (17) for
particular value g = 0.6, when the Bessel function Jy(4G/w)
turns to zero. We see that, for this coupling, Q; z(¢) does not
change with time in a certain domain around ¢ = 0 suggesting
that the effective gap is zero. However, unlike what Eq. (18)
predicts, the value of O 7 is not one in this domain. The reason
is that the system Eq. (17) encodes a number of individual
transitions which take place around the times #;, = kw/v. This
becomes apparent if we make the following substitution in the
system Eq. (17)

(18)

. ~ w
Di(t) = €lwt/2D1 (l — —),
v

Da(t) = e'/2 P, (r — %) (19)
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Upon this substitution, Eq. (17) assumes the form

(-5 3
= %Dz(z - %) exp [i(a)t - 4Gs1n(w$/<))],
b))
= %D](I— %)expl:—i(a)t— %:M)}

(20)

The same argument as above suggests that, as a result of being
fast, the exponent in the right-hand side can be averaged over
the period, 27 /w. Then the system Eq. (20) will describe
a regular LZ transition taking place around 7 = ¢ with a
gap reduced by J;(4G/w), where J; is the first-order Bessel

function. The corresponding survival probability reads

2
) TA 2 4G
=exp|—J; | — )| 21
0y, P[ 2y 1 ( » 21
Naturally, a similar transition taking place around ¢t = —%

is described by the same QS; Note also, that, in addition

to J1(4G/w), the averaged matrix element is multiplied by
exp (ix). The physical meaning of the moments ¢ = + is
transparent. The energy separation between 1 and | state
changes with time as vt. At = ¢ this separation becomes
equal to the oscillator quantum.
The extension of Egs. (18) and (21) to arbitrary k is
straightforward:
2
0 =exp [—”ﬁ J,3<4—G)}. 22)

w

The transitions taking place at t = #;, can be viewed as well
separated if the time w/v is much bigger than the individual
LZ transition time ~A /v, yielding the criterion w >> A. The
second condition to be met is that the effective time averaging
takes place during the LZ transition time, so that A /v > 1/w.
The second condition can be cast in the form ¥ > 5. If
the bare survival probability is small, A? > v, then the first
condition is more restrictive.

Figure 4 offers an insight into a general scenario of the LZ
transition in a two-level system coupled to a fast oscillator.
The system undergoes a number of individual transitions at
times ¢ = #; characterized by survival probabilities Q(Lk)z Itis
also seen from Fig. 4 that the evolution of Q7 with time
depends on the wave vector «. This is a consequence of
interference of partial transition amplitudes. To find the net
survival probability analytically, we first assume that averaging
over k suppresses the interference effects completely. Then
we can write the recurrent relation for Qu, which are the

J
/ 1 . /] 1 i / 0
(l Z) i Q(l Z) e Q([ )Z
M =

—iyJ1=Qjye ™ [0l

—iyJ1 =00 eix

0.4
L
4

—7/
Z

0 0.1 0.2 0.3
G/w

Q7

FIG. 5. The “incoherent” survival probability is plotted from
Eq. (24) versus the dimensionless coupling amplitude for differ-
ent values of the bare survival probability: Q;7(0) = e~2 (blue),
017(0) = e* (red), and Q;7(0) = e~'* (green). For the latter curve
the approach to the asymptote Q;7(c0) = % is nonmonotonic.

successive values of Q; 7 after N transitions

Ovn = 0n(1- 05"+ -onely". @3

This relation expresses the fact that the occupation of the state
1 after the transition comes from the occupation of this state
before the transition as well as from the occupation of the
state | which flips in the course of the transition. It is
straightforward to derive from Eq. (23) the expression for Q7
after the arbitrary number of transitions

Oz =75 - %1:[ (1-20%). (4)

In Fig. 5 the behavior of Q, versus the coupling is plotted
from Eq. (24) for different bare values of Q. Naturally, all
the curves approach 1/2 at very large coupling. This is because,
at large coupling, the information about the initial state of
the two-level system is erased. For the bare value Q;; = e 2
the approach to 1/2 is monotonic. However, for Q;; = e a
wiggle emerges at % ~ (.23. This feature evolves into a well
pronounced maximum for bare Q; 7 = e~ '°.

At the position of maximum in Fig. 5 (green line) the
argument, 4G /w, of the Bessel functions is about 0.6. For
this value and also for smaller couplings we can restrict
consideration to only three LZ transitions taking place att = 0
and ¢ = £+w/v, since all higher Bessel functions are small.
With only three transitions, we can incorporate the interference
effects into the theory. To do so, we should take into account
that each partial LZ transition is characterized by a scattering
matrix which contains the survival probability and a phase, x.
The evolution of the amplitudes to find the system in 1 and |
states is described by the product of scattering matrices

—iy/1—0f)elx Vol i1 —0)ein

(1
LZ
Ny —iJ1= e /of)
(25)
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FIG. 6. Red: the survival probability Qg is plotted from Eq. (18)
versus the dimensionless coupling amplitude. The bare survival
probability is chosen to be Q;7(0) = e~2; blue: the small-G portion
of the “incoherent” result shown in Fig. 5; green: the dependence Q(LGZ)
with interference effects incorporated is plotted from Eq. (28).

From this product one can infer the following expression for
the amplitude to change the level after the three transitions [40]

m /i O i
ALy =—i0;, Lze ' °
\/Qa) 091 — Q) (e %1 4 i)

+i(1 — Q(LI)Z) /1 — Q(Loée*i(xzfszer)' (26)

Different contributions to A4_, | describe partial amplitudes to
change the level at one transition and to not change the level
at other two transitions. The survival probability is given by
Qrz =1—[A15 %

If we assume that the phases xi, x2, and x3 are completely
uncorrelated the averaging over these phases yields

(LC)Z — [ (1)] Q(O) Q(O)[ (1)]2

which is nothing but the result Eq. (24) in which only the terms
k = 0and k = %1 are kept. Now we take into account that the

transitions k = —1 and k = 1 are identical, set x; = x3, and
perform the averaging over the two phases. This gives
1) H© 1
01z =0 —20,,01,[1 - 0}] @8

We note that the interference contribution to Eq. (28) is nega-
tive. In fact, itleads to amaximum in Q; (G) behavior even for
the bare O,z = e~ 2, asillustrated in Fig. 6. Thus, itis the result
Eq. (28) that should be compared to the numerical calculations.
The results of these calculations are shown in Fig. 7, where
probability, Q;, calculated by solving the system Eq. (17)
and averaging over « is shown for three oscillator frequencies
versus the dimensionless coupling amplitude. In the domain
g < 0.1 all three curves coincide and agree with the “inco-
herent” and “coherent” theoretical results shown in Fig. 6.
The position of the maxima also agrees with the prediction
of the “coherent” theory Eq. (28). However, the peak value
01z ~ 0.61s higher than Q; 7 = 0.35 predicted by the theory.
The possible origin of the discrepancy is that the theory Eq. (28)

N
~
C -
0.8F ...n' * o,
06+ .-:._..ou...'. .'.. K
0::.. ..o. ..o '..
. . % .
04F :'3‘ '-.. 'o. ..‘
02 T
0 1 1 1
0 0.1 0.2 0.3 G/UJ

FIG. 7. The net survival probability Q;z(co) calculated by solv-
ing numerically the system Eq. (17), and subsequently averaged over
Kk, is plotted versus the dimensionless coupling amplitude for three
values of the oscillator frequency: @ = 20A (green), ® = 22 A (blue),
and w = 23A (red). The bare Q; , value is chosentobe Q;, = e~2,
as in Fig. 4, which corresponds to the drive velocity v = w A%/4.
In the domain % < 0.1 all three curves coincide and agree with the
“incoherent” and “coherent” theoretical results shown in Fig. 6. The
position of the maximum also agrees with the “coherent” curve in
Fig. 6. However, the peak value Q7 =~ 0.61is higher than O, = 0.35
predicted by theory. Note that the theoretical result Eq. (28) takes into
account only £ = 0 and k = %1 intermediate transitions.

takes into account only k = 0 and k = %1 intermediate tran-
sitions. Our overall conclusion is that nonmonotonic behavior
of Q;7(G) is the result of the interference of intermediate
LZ transitions.

V. DISCUSSION AND CONCLUDING REMARKS

In the present paper we have focused on the question:
how the longitudinal coupling to a harmonic oscillator affects
the survival probability of the Landau-Zener transition in a
driven two-level system. On general grounds, one would expect
the following answer to this question. Weak coupling, by
making the transition less adiabatic, increases the survival
probability. At very strong coupling this probability should
approach 1/2, since the memory about the initial state of
the two-level system gets erased due to coupling. There is,
however, the evidence that these expectations are not entirely
correct. Firstly, the exact result obtained in Ref. [21] states that,
for purely longitudinal coupling, the effect is identically zero
for any coupling strength. Secondly, the numerical simulations
of Ref. [25], which pertain to longitudinal coupling suggest
that, at finite temperature, Q; z(G) is a nonmonotonic function
with a maximum. The domain of parameters investigated in
Ref. [25] is intermediate in all respects: The temperature, the
oscillator frequency, and the LZ tunneling gap were of the same
order. In this regime it is difficult to infer the underlying origin
of this maximum.

To establish the above physical picture, we have adopted
a strong assumption that the oscillator is highly excited, so
that the change of the excitation level in the course of the
transition is relatively small. Under this assumption, we studied
the effect of coupling on the LZ transition in two limiting
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cases of slow and fast oscillator. For the slow oscillator our
analytical results for the survival probability are given by
Egs. (13), (14), and Eq. (15). For the fast oscillator they are
given by Eq. (24) and Eq. (28). We can now quantify the
validity of our main assumption. For both the slow and the
fast oscillator, the LZ transition in the presence of coupling
transforms into a sequence of individual transitions [41]. This
is illustrated in Fig. 2(b) for the slow oscillator and in Fig. 4
for the fast oscillator. The number of transitions for the slow
oscillator is Ny = 4Gw/mv. For the fast oscillator this number
can be estimated by equating the argument of the Bessel
function in Eq. (22) to the index, i.e., Ny = 4G /w. Since each
individual transition is associated with a different level of the
oscillator, the criterion that the oscillator is highly excited can
be quantified as follows: The initial excitation level ny should
be bigger than N, for the slow oscillator, while for the fast
oscillator it should be bigger than N .

Although our analytical results essentially confirm
the general expectations, we find that, in both limits,
Q1z(G) approaches 1/2 with oscillations. These oscil-
lations are the consequence of the interference of the
amplitudes corresponding to different pathways through
multiple LZ transitions. It is likely that nonmonotonic
017(G) established in Ref. [25] is the consequence of this
interference.

Our study is most closely related to Refs. [20] and [29].
In these papers the LZ transition in the presence of a periodic
perturbation was studied. In fact, in Ref. [29] the qualitative
difference between the slow oscillations regime and fast
oscillations regime was identified. Since in Refs. [20] and
[29] periodic perturbation was assumed to be deterministic,
it did not contain its own dynamics. In other words, there
was no feedback from the two-level system on the source of
the oscillating field. With regard to relation of our study to
Refs. [22-24], Ref. [22] essentially restates the fundamental
result of Ref. [21] for the case of a single oscillator. A new
powerful step reported in Ref. [23] is that for an oscillator
in the initial state n, the probability | 1 ,n) — | | ,n) can be
evaluated explicitly. This finding is insufficient to calculate the
full survival probability. Concerning Ref. [24], it also deals
with a highly excited oscillator, but the Landau-Zener gap A
is set to be zero from the start. Note finally that throughout
the paper we assumed the bare survival probability is small, so
that, unlike Ref. [42], the perturbative treatment does not apply.
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