
PHYSICAL REVIEW B 97, 035421 (2018)

Phonon hydrodynamics for nanoscale heat transport at ordinary temperatures
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The classical Fourier’s law fails in extremely small and ultrafast heat conduction even at ordinary temperatures
due to strong thermodynamic nonequilibrium effects. In this work, a macroscopic phonon hydrodynamic equation
beyond Fourier’s law with a relaxation term and nonlocal terms is derived through a perturbation expansion to
the phonon Boltzmann equation around a four-moment nonequilibrium solution. The temperature jump and
heat flux tangential retardant boundary conditions are developed based on the Maxwell model of the phonon-
boundary interaction. Extensive steady-state and transient nanoscale heat transport cases are modeled by the
phonon hydrodynamic model, which produces quantitative predictions in good agreement with available phonon
Boltzmann equation solutions and experimental results. The phonon hydrodynamic model provides a simple and
elegant mathematical description of non-Fourier heat conduction with a clear and intuitive physical picture. The
present work will promote deeper understanding and macroscopic modeling of heat transport in extreme states.
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I. INTRODUCTION

With the rapid development of advanced technologies in
recent years, there have been extensive studies on extremely
small and ultrafast heat conduction [1–3]. The exploration
of lowly and highly thermal conductive nanomaterials re-
spectively for thermoelectric [4,5] and micro/nanoelectronics
cooling [6,7] applications requires a deeper understanding of
the heat conduction at an extremely small spatial scale. On
the other hand, the short-pulse laser heating machining [8,9]
involves the mechanism of heat conduction during an ultrafast
time scale. The classical Fourier’s law is no longer valid in
these systems and processes due to strong thermodynamic
nonequilibrium effects, as the characteristic length and time
become comparable to or smaller than the mean-free path and
relaxation time of heat carriers.

To treat non-Fourier heat conduction, there have been usu-
ally three categories of theoretical approaches: microscopic,
mesoscopic, and macroscopic methods [3]. The microscopic
method mainly includes the ab initio (first-principles) calcu-
lation [10,11] and molecular dynamics simulations [12,13],
which are usually limited to relatively small structures and
simple systems. The current main trend is the mesoscopic
method based on a solution of phonon Boltzmann equa-
tion supplemented with phonon properties from microscopic
methods [14–17]. In spite of much progress in microscopic
and mesoscopic modeling of non-Fourier heat conduction,
researchers have not stopped looking for a macroscopic de-
scription based on a heat transport equation similar to Fourier’s
law [18–21]. Macroscopic methods provide not only a clear
and intuitive physical picture, but also an elegant and unified
mathematical description. Among the existing branches of
macroscopic methods, the phonon hydrodynamic model is the
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most promising one since it is a natural and direct production
from the phonon Boltzmann equation [3].

The study of phonon hydrodynamics began in the middle
years of the last century during the exploration of heat waves in
dielectric crystals [22]. The Guyer-Krumhansl (G-K) phonon
hydrodynamic equation was derived from the phonon Boltz-
mann equation with the eigenvalue analysis method [23,24],
and later obtained in the framework of nine-moment phonon
hydrodynamics [25,26] and the Chapman-Enskog expansion
[3]; however it is merely restricted to the low-temperature
situation where nonresistive phonon normal scattering plays
a major role. To meet situations in actual applications, the G-K
equation has been recently adapted to model non-Fourier heat
conduction in nanostructures often at ordinary temperatures
through an analogy between phonon flow and high-Knudsen-
number gas flow [19]. The phonon hydrodynamic model
provides an effective approach to understand heat conduction
in nanosystems from the fluid mechanical perspective [27–30],
and has also been verified to be compatible with the second law
in extended irreversible thermodynamics [31–34]. Yet there
still exists a theoretical gap between this phenomenological
phonon hydrodynamic model and more fundamental phonon
kinetic theory as the resistive phonon scattering mostly dom-
inates at ordinary temperatures [3,35]. On the other hand, the
heat flux boundary condition for the G-K equation was directly
borrowed from the velocity slip boundary condition for high-
Knudsen-number gas flow neglecting the difference between
phonons and molecules [19]. Some efforts have been made to
derive macroscopic heat transport equations from the phonon
Boltzmann equation based on a hypothetical division of the
phonon spectrum into a ballistic part and diffusive part [36–38].
A Hilbert-like asymptotic solution is given to the phonon
Boltzmann equation around the equilibrium distribution [39],
where the near-continuum heat transport with kinetic effects by
boundary inhomogeneity is modeled via the extended Fourier’s
description with jump-type boundary conditions and Knudsen
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layer corrections. This continuum model does not treat the ki-
netic effects in a spatially homogeneous material with temporal
and spatial thermal variations at a characteristic dimension
comparable to or even smaller than the phonon relaxation
time and mean-free path [39]. The classical maximum entropy
moment method is applied to derive macroscopic equations
for phonon heat transport at room temperature in a recent
study [40], which involves governing equations of at least 63
moments to reach satisfactory results. It will be inconvenient
for practical applications due to the nontrivial solution of so
many equations as well as the specification of both initial and
boundary conditions for the higher-order moment variables.

In this work, we will develop a macroscopic hydrodynamic
equation, together with the nonequilibrium boundary condi-
tions, of phonon transport in a confined space rigorously for
non-Fourier heat conduction at ordinary temperatures. The
feature of our derivation is a perturbation expansion around
the nonequilibrium distribution obtained by the maximum
entropy principle, such that this macroscopic model is capable
of describing both the temporal and spatial thermodynamic
nonequilibrium effects in nanoscale heat transport. The re-
mainder of this article is organized as follows: The theoret-
ical derivation of the phonon hydrodynamic equation from
the phonon Boltzmann equation is provided in Sec. II. The
nonequilibrium boundary conditions of heat flux and temper-
ature for the phonon hydrodynamic equation are developed
in Sec. III. In Sec. IV, classical non-Fourier phonon heat
transports including both the steady-state and transient cases
are modeled to demonstrate and validate the present phonon
hydrodynamic model. Concluding remarks are finally made in
Sec. V.

II. PHONON HYDRODYNAMIC EQUATION

A. Phonon Boltzmann equation

The quasiparticle picture is established for phonons when
heat conduction takes place in a dielectric crystal with a
characteristic length much larger than the dominant phonon
wavelength [41]. The transport behavior of phonons is thus
described by the phonon Boltzmann equation similar to the
classical Boltzmann equation for rarefied gas [42]:

∂f

∂t
+ vg · ∇xf = C(f ), (1)

where f ≡ f (x,t,k) is the phonon distribution function, with
f (x,t,k)dxdk denoting the probabilistic number of phonons
found within the spatial interval (x,x + dx) and wave vector
interval (k,k + dk) at a specific time t . The phonon group
velocity vg denotes the energy propagating speed of the lattice
wave and is determined from vg = ∇kω as long as the phonon
dispersion relation ω = ω(k) is available.

The scattering term C(f ) in Eq. (1) evaluates the variation
of phonon distribution function due to phonon scattering pro-
cesses which include mainly two categories: normal scattering
(N process) and resistive scattering (R process). The energy
conservation is ensured for both kinds of processes while
the quasimomentum of phonons is conserved only in the N
process. The full expression of the scattering term is extremely
complex due to the nonlinear nature of phonon scattering
processes. One common simplification is Callaway’s dual

relaxation model [43], which assumes that the N process and
R process restore the phonon distribution function separately
to a displaced Planck distribution and a Planck distribution.
Callaway’s model is widely applied in studying the classical
phonon hydrodynamics in low-temperature dielectric crystals
[25,26,44,45], where the N process dominates over the R
process. As we focus on non-Fourier heat conduction at
ordinary temperatures where the N process is negligible except
for the very special carbon materials [46–49], the single-mode
relaxation time approximation is adopted for the phonon
scattering term. In this way, the phonon Boltzmann equation
becomes [1]

∂f

∂t
+ vg · ∇xf = −f − f

eq
R

τR
, (2)

where the equilibrium distribution function for the R process
is the Planck distribution:

f
eq
R = 1

exp(h̄ω/kBT ) − 1
, (3)

with h̄ = h/2π the reduced Planck constant and kB the
Boltzmann constant.

The phonon relaxation time τR and phonon group velocity
vg are often dependent on the phonon frequency. This kind of
spectral dependency complicates the solution of Eq. (2), which
usually has recourse to numerical schemes such as the discrete
ordinate method (DOM) [50] and Monte Carlo (MC) method
[51]. It is a difficult task to develop a unified hydrodynamic
model considering the phonon spectral properties which are
diverse for different materials [39,40]. To capture the common
features of non-Fourier heat conduction, the following assump-
tions are made as a first step [3]: (i) the isotropic assumption,
in which phonon properties in one crystalline direction are
representative of those in the whole wave vector space; (ii) the
gray assumption, in which three identical acoustic phonon
branches are considered with an effective constant relaxation
time, with negligible contribution from the optical phonon
branches; (iii) Debye’s assumption, in which the linear phonon
dispersion relation ω = vgk is adopted.

B. Balance equations of energy density and heat flux

The phonon hydrodynamic model is a macroscopic method
based on field variables defined as the statistical average of the
phonon distribution function:

e =
∫

h̄ωf dk, q =
∫

vg h̄ωf dk, Q =
∫

vgvg h̄ωf dk,

(4)

with e, q, and Q denoting the phonon energy density, heat flux,
and flux of heat flux, respectively. Note that the integration over
wave vector space has included the summation over the three
phonon branches throughout the present work. Multiplying
the phonon energy quanta h̄ω on both sides of Eq. (2) and
integrating over the wave vector space, we acquire the balance
equation of energy density:

∂e

∂t
+ ∇ · q = 0. (5)
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The right-hand side of Eq. (5) vanishes because of the
energy conservation during phonon scattering. Through a
similar procedure by multiplying the phonon microscopic
variable vg h̄ω, we get the balance equation of the heat flux:

∂q
∂t

+ ∇ · Q = − q
τR

. (6)

The Planck distribution has no contribution to the right-hand
side of Eq. (6) since the isotropic equilibrium distribution
yields no heat flux.

Equations (5) and (6) are exactly the four-moment field
equations of the phonon Boltzmann equation. To have a closed
description of phonon transport, the flux of heat flux Q has
to be specified in terms of the four basic field variables
(e and the three components of q), which constitutes the
closure problem in kinetic theory. Two well-known methods
have been established to complete the closure in classical
gas kinetic theory: the Chapman-Enskog expansion method
[52] and Grad’s moment method [53]. The Chapman-Enskog
expansion to the Boltzmann equation successfully recovers the
Navier-Stokes-Fourier equations within first order whereas it
gives rise to unstable hydrodynamic equations within second
or higher order [52,54]. The Grad’s moment method pro-
vides an approach to obtain stable higher-order hydrodynamic
equations. But there are still several drawbacks to Grad’s
moment method, which limit its crucial applications [54].
Within about the last ten years, an approach termed the
“regularized moment method” (R13 moment method) has
been proposed and widely applied in modeling nonequilibrium
gas flows [54–56]. The R13 moment method combines the
advantages of the Chapman-Enskog expansion method and
Grad’s moment method, overcoming some drawbacks of each
[55]. Its main idea is a Chapman-Enskog expansion around
the Grad’s thirteen-moment nonequilibrium distribution rather
than the usual local Maxwell-Boltzmann equilibrium distribu-
tion [54,57]. As a result, the R13 equations are capable of
modeling the nonequilibrium high-Knudsen-number gas flow.
Inspired from the R13 moment method, we propose to accom-
plish the closure for phonon transport through a perturbation
solution to Eq. (2) around a four-moment nonequilibrium
phonon distribution obtained by the maximum entropy princi-
ple. Therefore the derived phonon hydrodynamic equation will
be able to describe the strong thermodynamic nonequilibrium
effects in nanoscale heat transport.

C. Four-moment nonequilibrium distribution

The maximum entropy principle is applied to derive a
nonequilibrium phonon distribution dependent on the four
basic field variables of phonons. The main idea of this principle
is to resolve the distribution function through a maximization
of entropy density under the constraints of specified field
variables [25,26]. In a mathematical view, the problem reduces
to maximizing the following functional:

� = −kB

∫
[f ln f − (1 + f ) ln (1 + f )] dk

+β

(
e −

∫
h̄ωf dk

)
+ γi

(
qi −

∫
vgi h̄ωf dk

)
, (7)

where the first right-hand term denotes the kinetic expression
of phonon entropy density [41], β and γi being the Lagrange
multipliers for energy density and heat flux, respectively. The
extremum conditions of the functional Eq. (7) include

∂�

∂f
=
∫ [

kB ln

(
1 + 1

f

)
− βh̄ω − γivgi h̄ω

]
dk = 0, (8)

∂�

∂β
= e −

∫
h̄ωf dk = 0, (9)

∂�

∂γi

= qi −
∫

vgi h̄ωf dk = 0. (10)

Equations (9) and (10) represent exactly the specified
energy density and heat flux, whereas Eq. (8) gives rise to
the four-moment nonequilibrium distribution:

f4 = 1

exp
(
β h̄ω

kB
+ γi

vgi h̄ω

kB

)− 1
, (11)

where the subscript 4 in the phonon distribution function
represents its dependence on the four basic field variables.

At equilibrium state, the heat flux and its corresponding
Lagrange multiplier vanish, such that Eq. (11) should reduce
to the Planck distribution Eq. (3). Thus the Lagrange multiplier
for energy density is specified as β = 1/T . For the nonequilib-
rium state, Eq. (11) is further linearized when heat transport is
not too far away from the equilibrium state:

f4 = f
eq
R − γjvgjT

2 ∂f
eq
R

∂T
. (12)

The Lagrange multiplier in Eq. (12) is determined through
evaluating heat flux based on the second formulation in Eq. (4):

qi = −1

3
γiT

2
∫

v2
g h̄ω

∂f
eq
R

∂T
dk. (13)

Under the gray Debye assumption made in this work, Eq. (13)
gives the Lagrange multiplier for heat flux as

γi = − 3qi

T 2v2
gCV

. (14)

Therefore, the four-moment nonequilibrium distribution is
obtained by substituting Eq. (14) into Eq. (12):

f4 = f
eq
R + 3

CV v2
g

∂f
eq
R

∂T
qivgi . (15)

With the help of Eq. (15), the closure problem for the
balance equation of heat flux is completed. Putting Eq. (15)
into the kinetic definition of the flux of heat flux in Eq. (4), we
acquire its explicit expression in terms of the energy density:

Q = 1
3v2

geI, (16)

with I denoting the unit tensor. Substituting Eq. (16) into
Eq. (6), we obtain the Cattaneo-Vernotte (C-V) type heat
transport equation [34]:

τR
∂q
∂t

+ q = −λ∇T . (17)

Therefore, Eq. (17) together with Eq. (5) makes up a closed
mathematical description of phonon heat transport. Below we
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consider a further perturbation expansion around the four-
moment nonequilibrium distribution Eq. (15). In other words,
we seek a higher-order approximation to the flux of heat flux
in Eq. (16). A generalized heat transport equation beyond the
C-V type one will be derived.

D. Higher-order approximation

The higher-order approximation to the flux of heat flux
Q is derived from its balance equation, which is obtained
by multiplying the phonon microscopic variable vgvg h̄ω on
both sides of Eq. (2) and integrating over the wave vector
space:

∂Qij

∂t
+ ∂

∂xk

Mijk = 1

τR

(
1

3
v2

geδij − Qij

)
, (18)

with the flux of Q being a third-order tensor and defined as

Mijk =
∫

vgivgj vgk h̄ωf dk. (19)

Before a regular perturbation expansion, Eq. (18) is rescaled as

∂Qij

∂t
+ ∂

∂xk

Mijk = 1

ετR

(
1

3
v2

geδij − Qij

)
. (20)

The theoretical foundation for the scaling in Eq. (20)
comes from the scaling of the phonon Boltzmann Eq. (2),
which can be nondimensionalized into the following form
[58]:

Sr
∂f ∗

∂t∗
+ v∗

g · ∇x∗f ∗ = C(f ∗)

Kn
, (21)

where all the variables with the “star” superscript denote
the dimensionless variables, with Sr and Kn the Strouhal
number and Knudsen number, respectively [58]. In the classical
Chapman-Enskog expansion to the Boltzmann equation, the
hydrodynamic equations are derived in the limit of a very
small Knudsen number (Kn < 0.01). For the transport process
with strong nonequilibrium effects considered in the present
work, the Knudsen number could be finite. Nevertheless, the
development of the phonon hydrodynamics is restricted to
the situation where the Knudsen number is smaller than 0.3
as will be shown later. Therefore, the Knudsen number can
still be approximated as a small parameter, and is adopted for
the ε in Eq. (20). Two Knudsen numbers will be introduced
in this work: the spatial Knudsen number defined as the
ratio of phonon mean-free path to the characteristic length,
and the temporal Knudsen number defined as the ratio of
phonon relaxation time to the characteristic time. A similar
approximation was also made in the regularized moment
method for high-Knudsen-number gas flow [55], where the
small parameter ε is used to represent the order of magnitude of
each term and will be set to unity at the end of the perturbation
expansion:

Qij = Q
(0)
ij + εQ

(1)
ij + · · · . (22)

Substituting Eq. (22) into Eq. (20), we obtain terms at each
order of magnitude on the small parameter respectively:

ε−1 : Q
(0)
ij = 1

3
v2

geδij , (23)

ε0 :

[
∂Q

(0)
ij

∂t
+ ∂

∂xk

M
(0)
ijk

]∣∣∣∣∣
f4

= − 1

τR
Q

(1)
ij . (24)

The zeroth-order approximation of Qij in Eq. (23) is exactly
Eq. (16) corresponding to the phonon distribution function f4

in Eq. (15). The first-order approximation of Qij is related to
its zeroth-order approximation from Eq. (24):

Q
(1)
ij = −τR

[
∂

∂t

(
Q

(0)
ij

∣∣
f4

)+ ∂

∂xk

(
M

(0)
ijk

∣∣
f4

)]
, (25)

where the zeroth-order approximations for Q and the flux of
Q are evaluated at the phonon distribution function f4 as

Q
(0)
ij

∣∣
f4

= 1
3v2

geδij , M
(0)
ijk

∣∣
f4

= 1
5v2

g(δij qk + δikqj + δjkqi).

(26)

Therefore the first-order approximation of Qij is acquired by
substituting Eq. (26) into Eq. (25):

Q
(1)
ij = 2

15
τRv2

g

∂qk

∂xk

δij − 1

5
τRv2

g

(
∂qi

∂xj

+ ∂qj

∂xi

)
. (27)

Combining the zeroth-order approximation Eq. (23) and
first-order approximation Eq. (27), we get the explicit expres-
sion for the flux of heat flux Q:

Qij = 1

3
v2

geδij + 2

15
τRv2

g

∂qk

∂xk

δij − 1

5
τRv2

g

(
∂qi

∂xj

+ ∂qj

∂xi

)
.

(28)

Higher-order approximate terms for the flux of heat flux are
thus derived in the form of the gradient of heat flux, which is
crucial for modeling nanoscale heat transport. Actually, such
terms have been called the nonlocal terms to describe the size
effect in several previous phenomenological macroscopic heat
transport models [19,20,59]. However, a rigorous derivation of
them from the phonon Boltzmann equation has been seldom
reported. This work aims to remedy this gap by providing
a theoretical ground for the nonlocal terms in macroscopic
models.

The phonon hydrodynamic equation is achieved by substi-
tuting the flux of heat flux Eq. (28) into the balance equation
of heat flux Eq. (6):

τR
∂q
∂t

+ q = −λ∇T + 1

5
�2

[
∇2q + 1

3
∇(∇ · q)

]
. (29)

The average mean-free path in Eq. (29) is fully expressed
as � = vgτR. Since it uses the same field variables as the
traditional Fourier’s description, the present hydrodynamic
model avoids the complexity of classical moment methods
involving the governing equation of higher-order moments
[25,26,40]. Comparing to the C-V type heat transport Eq. (17),
Eq. (29) contains also nonlocal terms of heat flux, which
are the key ingredients to capture the spatial nonequilibrium
effects in extremely small heat conduction. In comparison to
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the Fourier’s law, the other relaxation term of heat flux in
Eq. (29) aims at capturing the temporal nonequilibrium effects
in ultrafast heat conduction. In the diffusive limit where both
relaxation and nonlocal effects are negligible, Eq. (29) reduces
exactly to the Fourier’s law.

The preceding derivation of Eq. (29) at the level of the
moment equations has a counterpart in view of the phonon
distribution function. The perturbation expansion around f4

gives rise to the phonon distribution function as

f = f
eq
R − τR

(
∂f

∂t
+ vg · ∇f

)∣∣∣∣
f4

. (30)

Substituting Eq. (15) into Eq. (30), we obtain the expression
of the phonon distribution function:

f = f
eq
R + 3

CV v2
g

∂f
eq
R

∂T
qivgi + τR

CV

∂qi

∂xi

∂f
eq
R

∂T

− 3τR

CV v2
g

vgivgj

∂qi

∂xj

∂f
eq
R

∂T
. (31)

Equation (31) is exactly the nonequilibrium phonon distri-
bution function corresponding to the phonon hydrodynamic
equation (29). It can be checked that Eq. (31) recovers
precisely the energy density e, the heat flux q, and the flux
of heat flux Eq. (28), respectively. Furthermore, the derived
nonequilibrium phonon distribution Eq. (31) is dependent on
the field variables and their gradients, in a different way from
that as a function of local field variables in the classical
Grad’s type moment method [25,26,40,44]. In contrast to the
second- or higher-order Chapman-Enskog expansion solution
with higher-order gradient terms of field variables as a source
of instability [52], the present closure method yields a nonequi-
librium phonon distribution involving only first-order gradient
terms ensuring a stable hydrodynamic equation.

Finally, a comparison is made between the phonon hydro-
dynamic equation (29) and classical phonon hydrodynamic
equations in low-temperature dielectric crystals. The G-K
equation obtained with the eigenvalue analysis method is
[23,24]

τR
∂q
∂t

+ q = −λ∇T + 1

5
v2

gτNτR[∇2q + 2∇(∇ · q)]. (32)

A phonon hydrodynamic equation with one slightly different
coefficient in nonlocal terms of heat flux was derived through
the maximum entropy moment method in the limit of small
relaxation time of the N process (τN) [25,26]:

τR
∂q
∂t

+ q = −λ∇T + 1

5
v2

gτNτR

[
∇2q + 1

3
∇(∇ · q)

]
. (33)

The tiny coefficient difference between Eq. (32) and
Eq. (33) has been explained in the framework of Chapman-
Enskog expansion in our recent work [3]. Although the two
equations have a similar mathematical form to Eq. (29),
the underlying heat transport mechanisms are very different.
The nonlocal terms of heat flux in the classical phonon
hydrodynamic equations (32) and (33) originates from the
nonresistive phonon normal scattering. They represent the
transfer of phonon quasimomentum through the momentum-
conserving normal scattering, with the same physical meaning
as the viscous term in the Navier-Stokes equation for gas

x

y f - f +q (y)x

q xw

n

Tw

Tp

x

y

f -

f +

T（x）

n

(a)

(b)

FIG. 1. Derivation of nonequilibrium boundary conditions for the
phonon hydrodynamic equation: (a) heat flux tangential retardant
(HFTR) boundary condition; (b) temperature jump boundary condi-
tion. The solid lines represent the heat flux and temperature profiles.
f − and f + represent the distribution functions of incident phonons
and reflecting phonons, respectively.

flow. In contrast, the nonlocal terms of heat flux in the
present phonon hydrodynamic equation (29) are representative
of the spatial nonequilibrium effects from phonon-boundary
scattering or large spatial thermal variation. As a result, the
G-K heat transport equation is usually suitable for heat trans-
port in bulk dielectric crystals in low-temperature situations
[23–26,60,61], while the present phonon hydrodynamic equa-
tion (29) is developed for nanoscale heat transport at ordinary
temperatures. To have a complete mathematical description,
the nonequilibrium boundary conditions of heat flux and tem-
perature are developed for the phonon hydrodynamic equation
in the following section.

III. NONEQUILIBRIUM BOUNDARY CONDITIONS

In non-Fourier heat conduction at ordinary temperature,
there are mainly two macroscopic manifestations from thermo-
dynamic nonequilibrium effects: (i) the reduction of tangential
heat flux near an adiabatic surface due to enhanced phonon-
boundary scattering, as shown in Fig. 1(a); (ii) the noncontinu-
ous temperature distribution near an isothermal surface due to
insufficient phonon-boundary interaction and thermalization,
as shown in Fig. 1(b). The temperature jump and velocity slip
boundary conditions have been fully established to describe
the noncontinuous temperature and velocity distributions in
high-Knudsen-number gas flows [62]. A phenomenological
heat flux slip boundary condition was directly borrowed from
the gas velocity slip boundary condition [19,63]. However,
the gas flow and phonon flow are quite different; for instance,
the gas velocity vanishes at the wall (“non-slip”) in the
continuum regime wherein the phonon heat flux remains a
finite value (“finite-slip” or “infinite-slip”) as predicted by
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the Fourier’s law [3]. The tangential heat flux reduces near
the adiabatic boundary as the surface imposes retardancy on
the phonon flow. Thus we propose a heat flux tangential
retardant (HFTR) boundary condition for phonon flow in
confined space. The essential difference between the HFTR
boundary condition and velocity slip boundary condition will
be further elucidated through the case of in-plane transport in
Sec. IV A 1. On the other hand, the terminology “temperature
jump boundary condition” is still used since the temperature
jump in phonon flow holds almost the same physical picture
as that in high-Knudsen-number gas flow. Both the HFTR and
temperature jump boundary conditions are developed for the
phonon hydrodynamic equation in this section.

Our derivation is based on the principle in classical kinetic
theory [53,64] in which the boundary condition for a specific
macroscopic field variable (the corresponding microscopic
variable φ) is derived through the balance equation of its flux
at the boundary [64]:∫

�

f φvgdk =
∫

�−
f −φvgdk +

∫
�+

f +φvgdk, (34)

with �,�−,�+ denoting the whole wave vector space, the
hemispherical wave vector space with k · n < 0, and the
hemispherical wave vector space with k · n > 0, respectively.
n is the surface unit normal vector as shown in Fig. 1. As
long as the expressions of the distribution function of incident
phonons (f −) and reflecting phonons (f +) are known, Eq. (34)
relates the field variables of phonons near the surface to
those at the surface, exactly the boundary conditions. The
distribution function of incident phonons is available from the
nonequilibrium solution Eq. (31) in Sec. II D. The distribution
function of reflecting phonons is related to that of incident
phonons through the phonon-surface interaction model. The
most common Maxwell model is adopted here [65]:

f +(x,t,k) = sf −(x,t,k′) + (1 − s)f eq
R (x,t,k), (35)

where k′ ≡ k − 2(n · k)n denotes the wave vector of phonons
experiencing specular scattering, and s is the specularity
parameter, with s and 1 − s denoting the portion of phonons
experiencing specular scattering and diffuse scattering, re-
spectively. The thermalizing diffuse scattering is considered
in Eq. (35) which assumes that the incident phonons leave
the boundary after reaching thermal equilibrium with the
surface. Although the nonthermalizing diffuse scattering is
discussed in some recent literature [26,66], we choose the
thermalizing one due to both its simple formulation and wide
applications in Boltzmann equation modeling of phonon heat
transport [1,16,67,68]. In addition, later we will show that the
difference between mesoscopic diffuse scattering schemes is
smoothed out after an upgrade of the level of description to
macroscopic one. The present macroscopic model can still
produce consistent results with the Monte Carlo simulation
using the nonthermalizing diffuse scheme for heat conduction
through thin films with adiabatic lateral surfaces.

A. Heat flux tangential retardant boundary condition

To derive the boundary condition for heat flux, the phonon
microscopic variable φ = vg h̄ω is put into Eq. (34). As shown
in Fig. 1(a), we consider a steady-state phonon transport paral-

lel to an adiabatic surface under a uniform temperature gradient
such that the heat flux depends merely on the coordinate y. In
this case, Eq. (34) reduces to∫

�

f h̄ωvgxvgydk

=
∫

�−
f −h̄ωvgxvgydk +

∫
�+

f +h̄ωvgxvgydk. (36)

The distribution function of phonons incident on the surface is
obtained from Eq. (31):

f − =f
eq
R + 3

CV v2
g

∂f
eq
R

∂T
qxwvgx − 3τR

CV v2
g

vgxvgy

(
∂qx

∂y

)
w

∂f
eq
R

∂T
.

(37)

The distribution function of phonons leaving the surface is
determined from Eq. (35):

f + = sf −(vgx,−vgy) + (1 − s)f eq
R . (38)

The first term on the right-hand side of Eq. (36) is resolved
by substituting Eq. (37) inside and integrating over the hemi-
spherical wave vector space:∫

�−
f −h̄ωvgxvgydk = − 3

16
vgqxw − 1

10
τRv2

g

(
∂qx

∂y

)
w

.

(39)

The second term on the right-hand side of Eq. (36) is resolved
by substituting Eq. (37) and Eq. (38) inside and then integrating
over the hemispherical wave vector space:∫

�+
f +h̄ωvgxvgydk = s

[
3

16
vgqxw + 1

10
τRv2

g

(
∂qx

∂y

)
w

]
.

(40)

Putting Eq. (39) and Eq. (40) into Eq. (36), we acquire the
following relation at the boundary:

Qxy = (s − 1)

[
3

16
vgqxw + 1

10
τRv2

g

(
∂qx

∂y

)
w

]
. (41)

One also has the constitutive relation for the flux of heat flux
at the boundary from Eq. (28):

Qxy = −1

5
τRv2

g

(
∂qx

∂y

)
w

. (42)

A combination of Eq. (41) and Eq. (42) results in the HFTR
boundary condition:

qxw = 1 + s

1 − s

8

15
�

(
∂qx

∂y

)
w

. (43)

It is seen that the surface heat flux is proportional to the
gradient of heat flux near the surface. For the special case of a
fully diffuse surface often considered in engineering (s = 0),
Eq. (43) reduces to

qxw = 8

15
�

(
∂qx

∂y

)
w

. (44)

The present derivation based on a straight surface can be
extended for curved surfaces, where Eq. (43) is generalized
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to

qw = 1 + s

1 − s

8

15
�∇nq, (45)

with ∇n denoting the local gradient along the surface normal
direction.

B. Temperature jump boundary condition

To derive the boundary condition for temperature (energy
density), the phonon microscopic variable φ = h̄ω is substi-
tuted into Eq. (34). As shown in Fig. 1(b), a one-dimensional
(1D) steady-state phonon transport normal to an isothermal
surface is considered. In this case, Eq. (34) reduces to∫

�

f h̄ωvgxdk =
∫

�−
f −h̄ωvgxdk +

∫
�+

f +h̄ωvgxdk.

(46)
Based on the energy conservation principle, one has van-

ishing divergence of heat flux: ∂qx/∂x = 0. Therefore, the
distribution function of phonons incident on the surface is
reduced from Eq. (31) as

f − = f
eq
R (Tp) + 3

CV v2
g

∂f
eq
R

∂T
qxvgx, (47)

with Tp denoting the temperature of phonons in the vicinity of
the surface. The distribution function of phonons leaving the
surface is specified from Eq. (35) as

f + = sf −(−vgx,vgy) + (1 − s)f eq
R (Tw), (48)

with Tw denoting the temperature of the heat source. The first
term on the right-hand side of Eq. (46) is resolved by putting
Eq. (47) inside and integrating over the hemispherical wave
vector space:∫

�−
f −h̄ωvgxdk = −1

4
vge(Tp) + 1

2
qx. (49)

The second term on the right-hand side of Eq. (46) is resolved
by substituting Eq. (47) and Eq. (48) inside and then integrating
over the hemispherical wave vector space:∫

�+
f +h̄ωvgxdk = s

[
1

4
vge
(
Tp

)− 1

2
qx

]
+ (1 − s)

1

4
vge(Tw).

(50)

In deriving Eq. (49) and Eq. (50), the following correlation
has been used:∫

�+
f

eq
R h̄ωvgxdk = −

∫
�−

f
eq
R h̄ωvgxdk = 1

4
vge, (51)

which can be obtained through the following relations after
partial integration over the solid angle:

∫
�+

f
eq
R h̄ωvgxdk = 3

(2π )3 π

∫ kD

0

h̄v2
gk

3

exp(h̄ω/kBT ) − 1
dk,

(52)

e =
∫

�

f
eq
R h̄ωdk = 3

(2π )3 4π

∫ kD

0

h̄vgk
3

exp(h̄ω/kBT ) − 1
dk.

(53)

The upper limit of the wave number in Eq. (52) and Eq. (53)
is related to the Debye frequency (ωD) as kD = ωD/vg . The
coefficients 3 and 2π come from the number of acoustic
phonon branches and the elemental volume in wave vector
space, respectively. Putting Eq. (49) and Eq. (50) into Eq. (46),
we acquire the following relation at the boundary:

qx = 1 − s

1 + s

1

2
vgCV (Tw − Tp), (54)

where e(Tw) − e(Tp) ∼= CV (Tw − Tp) has been assumed
within first-order Taylor expansion when the heat transport is
driven under a relatively small temperature difference. One also
has the constitutive relation for the heat flux at the boundary
from Eq. (29):

qx = −λ
dT

dx
= −1

3
CV v2

gτR
dT

dx
. (55)

The combination of Eq. (54) and Eq. (55) gives rise to the
temperature jump boundary condition as

Tw − Tp
∼= −1 + s

1 − s

2

3
�

dT

dx
. (56)

It is seen that the temperature jump at an isothermal surface is
proportional to the temperature gradient near the surface. For
the special case of a fully diffuse heat source (phonon black-
body) often considered in engineering applications (s = 0),
Eq. (56) reduces to

Tw − Tp
∼= −2

3
�

dT

dx
. (57)

The temperature jump boundary condition Eq. (57) for the
fully diffuse case has been obtained in a recent work through
an approximate solution to the one-dimensional steady-state
phonon Boltzmann equation [69]. Nevertheless, the present
result Eq. (56) is more general than the previous one Eq. (57).
Furthermore, we provide a consistent framework for de-
veloping the boundary conditions for both heat flux and
temperature.

IV. RESULTS AND DISCUSSION

In this section, the phonon hydrodynamic model developed
in Sec. II and Sec. III is extensively validated with both
steady-state and transient nanoscale heat transport at room tem-
perature. Steady-state cases will be investigated in Sec. IV A
including in-plane and cross-plane phonon transport through
thin film and phonon transport through nanowire. Transient
cases are investigated in Sec. IV B including the 1D tran-
sient phonon transport across thin films, the high-frequency
periodic heating of a semi-infinite surface in a frequency
domain thermoreflectance (FDTR) experiment [70,71], and
the heat conduction in a transient thermal grating (TTG)
experiment [16,72] for the measurement of thermal properties
of nanostructures. The analytical solutions of the phonon
hydrodynamic model are obtained and compared to the so-
lutions of the phonon Boltzmann equation or experimental
results.
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A. Steady-state nanoscale heat transport

1. In-plane phonon transport through a thin film

For the in-plane phonon transport shown in Fig. 2(a), a
uniform temperature gradient −dT /dx is exerted along the
thin film with an arbitrary surface specularity parameter s from

0 (fully diffuse) to 1 (fully specular). The Fuchs-Sondheimer
model originally proposed for in-plane electron transport has
been extended to in-plane phonon transport [1]. In this model,
the analytical solution of the steady-state phonon Boltzmann
equation with the Maxwell boundary condition Eq. (35) is
obtained as [16,67]

g(y,θ,ϕ) =

⎧⎪⎨
⎪⎩

τRvg sin θ cos ϕ
∂f

eq
R

∂T
dT
dx

[
(1−s) exp (− y

� cos θ )
1−s exp (− d

� cos θ ) − 1
]
, 0 � θ � π

2 ,

τRvg sin θ cos ϕ
∂f

eq
R

∂T
dT
dx

[
(1−s) exp

(
− y−d

� cos θ

)
1−s exp ( d

� cos θ ) − 1

]
, π

2 � θ � π,

(58)

where the deviation of the phonon distribution function from the equilibrium distribution is introduced as g = f − f
eq
R . θ and ϕ

denote the zenith angle and azimuthal angle, respectively, for characterizing the direction of phonon motion as shown in Fig. 2.
The heat flux distribution is obtained by substituting Eq. (58) into the second formulation in Eq. (4):

q∗(Y) = 3

4

∫ 1

0
(1 − μ2)

{
2 −

(1 − s)
[
exp

(− Y
μKnl

)+ exp
(

Y−1
μKnl

)]
1 − s exp

(− 1
μKnl

)
}

dμ, (59)

where the directional cosine is μ ≡ cos θ and the dimensionless coordinate and heat flux are defined respectively as Y ≡ y/d

and q∗(Y) ≡ qx (y)
−λdT /dx

. The spatial Knudsen number is defined as the ratio of the phonon mean-free path to the thin-film thickness:
Knl ≡ �/d. The effective in-plane thermal conductivity of the thin film is acquired through an integration of the local heat flux
along the cross section:

λeff

λb

=
∫ 1

0
q∗(Y)dY, (60)

where λb = λ is the bulk thermal conductivity. Substitution of Eq. (59) into Eq. (60) results in the effective in-plane thermal
conductivity of the thin film [1]:

λeff

λb

= 1 − 3(1 − s)

2ξ

∫ 1

0
μ(1 − μ2)

1 − exp(−ξ/μ)

1 − s exp(−ξ/μ)
dμ, (61)

where ξ = 1/Knl is the inverse of the spatial Knudsen number.
The in-plane phonon transport through the thin film is also modeled by the phonon hydrodynamic equation (29), which reduces

to

qx = −λ
dT

dx
+ 1

5
�2 d2qx

dy2
. (62)

The boundary conditions for this second-order ordinary differential equation of heat flux include the HFTR boundary in Sec. III A
and the symmetrical boundary along the center line of the thin film:

y = 0, qx = 1 + s

1 − s

8

15
�

(
dqx

dy

)
w

, y = d

2
,

dqx

dy
= 0. (63)

The heat flux distribution is resolved through a solution of Eq. (62) with the help of boundary conditions Eq. (63):

q∗(Y) = 1 +
exp

[ √
5

Knl

(
Y − 1

2

)]+ exp
[− √

5
Knl

(
Y − 1

2

)]
(

1+s
1−s

8
3
√

5
− 1

)
exp

(− √
5

2Knl

)− (
1+s
1−s

8
3
√

5
+ 1

)
exp

( √
5

2Knl

) , (64)

where the dimensionless variables and parameters are the same as those in Eq. (59). The effective in-plane thermal conductivity
of the thin film is achieved by putting Eq. (64) into Eq. (60):

λeff

λb

= 1 +
2Knl√

5

[
exp

( √
5

2Knl

)− exp
(− √

5
2Knl

)]
(

1+s
1−s

8
3
√

5
− 1

)
exp

(− √
5

2Knl

)− (
1+s
1−s

8
3
√

5
+ 1

)
exp

( √
5

2Knl

) . (65)

The comparison of cross-sectional heat flux distributions
for in-plane phonon transport is shown in Fig. 3, where
an overall good agreement is achieved between the present
hydrodynamic modeling results and the Boltzmann equation

solutions. With increasing Knl , the heat flux distribution across
the thin film becomes more nonuniform as a result of the
spatial thermodynamic nonequilibrium effect. The heat flux
near the surface is reduced from the confinement of phonon-
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FIG. 2. Schematic of phonon transport through a thin film with a thickness d: (a) in-plane transport; (b) cross-plane transport. Th and Tc are
the temperatures of hot and cold sources, respectively.

boundary scattering, which is enhanced relative to the intrinsic
phonon-phonon scattering at a smaller thin-film thickness. The
phonon hydrodynamic model captures this non-Fourier feature

through both the nonlocal term of heat flux in the heat transport
equation and the HFTR boundary condition. Therefore, the
predicted effective in-plane thermal conductivity of the thin
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FIG. 3. The dimensionless cross-sectional heat flux distributions for in-plane phonon transport through thin film at different spatial Knudsen
numbers: (a) Knl = 0.05, (b) Knl = 0.1, (c) Knl = 0.2, (d) Knl = 0.3. The solid lines represent the analytical solution Eq. (64) based on the
present phonon hydrodynamic model, whereas the symbols represent the analytical solution Eq. (59) (Fuchs-Sondheimer model) based on the
phonon Boltzmann transport equation (BTE). Different specularity parameters are considered for the lateral surface of the thin film: s = 1
(circle), s = 0.9 (plus), s = 0.7 (diamond), s = 0.4 (triangle), s = 0 (square). The spatial Knudsen number is defined as the ratio of phonon
mean-free path to the thin-film thickness: Knl ≡ �/d .
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FIG. 4. The dimensionless effective in-plane thermal conduc-
tivity of the thin film. (a) Comparison to the theoretical solution.
The solid lines represent the analytical solution Eq. (65) based
on the present phonon hydrodynamic model, whereas the symbols
represent the analytical solution Eq. (61) (Fuchs-Sondheimer model)
based on the phonon Boltzmann transport equation (BTE). Different
specularity parameters are considered for the lateral surface of the
thin film: s = 1 (circle), s = 0.9 (plus), s = 0.7 (diamond), s = 0.4
(triangle), s = 0 (square). The spatial Knudsen number is defined
as the ratio of phonon mean-free path to the thin-film thickness:
Knl ≡ �/d . (b) Comparison to experimental results of thin films
with a diffuse lateral surface (s = 0) at room temperature (T =
300 K). The symbols with error bars are experimental data from the
literature [16,73–76], whereas the dashed line and solid line represent
respectively the solutions of the gray phonon BTE [16] and the present
phonon hydrodynamic model with a median-thermal-conductivity
phonon mean-free path �m = 441 nm [72,77]. The solid line with
the cross symbol denotes the solution of the spectral phonon BTE
[16].

film agrees well with the Fuchs-Sondheimer model, as shown
in Fig. 4(a). It is also seen that the spatial nonequilibrium effect
decreases with increasing value of the specularity parameter,
which can be explained by a larger effective thin-film thickness

for a smoother surface. In all, the phonon hydrodynamic model
gives appreciably accurate results at a spatial Knudsen number
smaller than about 0.3, i.e., up to the slip regime and early
transition regime. The result of the phonon hydrodynamic
model is further compared to the experimental measurement of
thermal conductivity of silicon thin films at room temperature
[16,73–76], as shown in Fig. 4(b), where a global agreement is
acquired. A fully diffuse scheme is used for phonon-boundary
scattering at the thin film surface [16,67]. The phonon spectral
property is taken into account by introducing an effective
“median-thermal-conductivity MFP,” �m, which is defined as
the MFP of phonons larger than �m contributing to 50% of
the bulk thermal conductivity from the phonon MFP spectra
[72,77]. The phonon MFP spectra of silicon at room temper-
ature have been reconstructed by different experimental or
computational methods, which produce a range of values for
�m. The results by the ab initio method (�m = 547 nm) and
the molecular dynamics simulation (�m = 335 nm) have been
recommended as the most two accurate ones [77]. Therefore,
we adopt the value of median-thermal-conductivity MFP of
phonons �m = 441 nm as an average of the two results. The
adopted value of the median-thermal-conductivity MFP is also
consistent with that (∼0.5 μm) in Ref. [72], where �m has
been suggested as a more useful parameter in analyzing the
onset of size effects in thermal conductivity.

Through the present study, some essential differences are
inferred between the nonequilibrium effects and hydrodynamic
modeling in micro/nanoscale gas flow and phonon flow.
As is known the Fourier’s law and Navier-Stokes equation
describe well the behaviors of heat and fluid flow in the
continuum regime. For gas flow in the slip regime and early
transition regime, the Navier-Stokes equation can still provide
an appreciably good prediction of the velocity profile when
supplemented with velocity slip boundary conditions including
first-order and second-order ones [62], as shown in Fig. 5(a).
In comparison, once phonon heat transport deviates from the
continuum (diffusive) regime, the Fourier’s law no longer
works in capturing any tiny amount of reduction of heat flux
near an adiabatic surface. The correction of the constitutive
heat transport equation is crucial for an adequate description
of phonon flow in a confined space. In other words, the
nonlocal terms of heat flux in Eq. (29) are indispensable
for modeling phonon transport in the slip regime and early
transition regime as shown in Fig. 5(b). This difference in
hydrodynamic modeling originates from the underlying dif-
ferent microscopic dynamics of gas molecules and phonons.
Gas molecules obey the classical Maxwell-Boltzmann statis-
tics and the total momentum is conserved during molecule-
molecule scattering [52]. In the gas Poiseuille flow shown in
Fig. 5(a), the momentum transfers from the internal molecules
to the molecules near the wall and is finally destructed by
the wall. Therefore, a vanishing macroscopic gas velocity
at the wall is observed in the continuum regime, where the
Navier-Stokes equation with the non-slip velocity boundary
condition works well [62]. Phonons are instead bosons obeying
the quantum Bose-Einstein statistics with the total momentum
not conserved during phonon-phonon umklapp scattering at
ordinary temperature [1,41]. In the phonon flow shown in
Fig. 5(b), the umklapp scattering taking place everywhere tends
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FIG. 5. Schematic of nonequilibrium effects and hydrodynamic modeling in the micro/nanoscale gas flow and phonon flow in the slip
regime. (a) The gas flow. The light blue dashed line and purple dashed line represent the solutions of the Navier-Stokes equation (N-S Eq.)
with the nonslip velocity boundary condition and velocity slip boundary condition, respectively. The red solid line denotes the real velocity
profile. (b) The phonon flow. The light blue dashed line and purple dashed line represent the solutions of Fourier’s law and the present phonon
hydrodynamic equation (PH Eq.) with the heat flux tangential retardant (HFTR) boundary condition, respectively. The red solid line denotes
the real heat flux profile. The Knudsen layer near the lateral boundary has a thickness of 1 ∼ 2 mean-free paths (�).

to introduce uniform resistance throughout the medium so
that the heat flux profile becomes a flat one in the diffusive
regime, as predicted by Fourier’s law. When coming to the
micro/nanoscale transport, the physical picture thus becomes
diverse. The rarefied interaction between gas molecules and
the wall at the micro/nanoscale makes the destruction of
molecule momentum insufficient at the wall, which induces
a macroscopic gas velocity slip at the wall. However, the
boundary shortens the free path of nearby phonons within
the Knudsen layer, which induces a further resistance to
phonon transport besides the intrinsic resistance by umklapp
scattering and thereafter a reduced heat flux at the boundary.
The present analysis also corroborates why the “heat flux
tangential retardant” (HFTR) boundary condition is introduced
in place of the “slip” boundary condition in Sec. III A for
nanoscale phonon heat transport.

2. Cross-plane phonon transport through a thin film

For the 1D steady-state cross-plane phonon transport shown
in Fig. 2(b), the phonon Boltzmann equation Eq. (2) is rewritten
into the equation of phonon radiative transfer (EPRT) [50]:

μ
∂I (y,μ)

∂y
= I eq(y) − I (y,μ)

�
, (66)

where the phonon intensity is defined as: I =∫
vgh̄ωf D(ω)

4π
dω, with the equilibrium phonon intensity

I eq = ∫
vgh̄ωf

eq
R

D(ω)
4π

dω. D(ω) is the density of phonon
states per unit volume around per unit frequency interval. We
consider two isothermal heat sources with partially diffuse and
partially specular surfaces. The boundary conditions Eq. (35)
for Eq. (66) become

y = 0, I+(0,μ) = (1 − s)I eq(Th) + sI−(0,−μ),

y = d, I−(d,μ) = (1 − s)I eq(Tc) + sI+(d,−μ). (67)

The numerical solution of Eq. (66) with the fully diffuse
isothermal boundaries [s = 0 in Eq. (67)] has been given in
the classical monograph [1]. A semianalytical series expan-
sion method was recently developed to solve the frequency-
dependent phonon Boltzmann equation for cross-plane heat
transport with a variety of isothermal boundary conditions [78].
As the gray phonon transport is considered in the present work,
we follow the general idea for the fully diffuse case in Ref. [1]
and provide the numerical solution of Eq. (66) with an arbitrary
value of specularity parameter s in Eq. (67).

The general solution of Eq. (66) is obtained through the
integration along its characteristics [1]:

I+(η,μ) = I+(0,μ) exp

(
− η

μ

)
+
∫ η

0

I eq(η′)
μ

exp

(
η′ − η

μ

)
dη′, 0 � μ � 1,

I−(η,μ) = I−(ξ,μ) exp

(
ξ − η

μ

)
−
∫ ξ

η

I eq(η′)
μ

exp

(
η′ − η

μ

)
dη′, −1 � μ � 0, (68)

where the dimensionless coordinate is defined as η = y/�, and the inverse of the spatial Knudsen number is ξ = 1/Knl = d/�.
For the fully diffuse isothermal boundaries (s = 0), I+(0,μ) and I−(ξ,μ) are known from the equilibrium distributions at the
temperature of hot and cold sources as I+(0,μ) = I eq(Th) and I−(ξ,μ) = I eq(Tc). For the partially diffuse and partially specular
isothermal boundaries (s �= 0), they are determined from Eq. (67) and Eq. (68) (details are shown in the Appendix A):

I+(0,μ) = 1 − s

1 − s2 exp(−2ξ/μ)
I eq(Th) + s(1 − s) exp(−ξ/μ)

1 − s2 exp(−2ξ/μ)
I eq(Tc) + s2 exp(−2ξ/μ)

1 − s2 exp(−2ξ/μ)

∫ ξ

0

I eq(η′)
μ

exp

(
η′

μ

)
dη′

+ s

1 − s2 exp(−2ξ/μ)

∫ ξ

0

I eq(η′)
μ

exp

(
−η′

μ

)
dη′, (69)
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I−(ξ,μ) = 1 − s

1 − s2 exp(2ξ/μ)
I eq(Tc) + s(1 − s) exp(ξ/μ)

1 − s2 exp(2ξ/μ)
I eq(Th) − s2 exp(2ξ/μ)

1 − s2 exp(2ξ/μ)

∫ ξ

0

I eq(η′)
μ

exp

(
η′ − ξ

μ

)
dη′

− s

1 − s2 exp(2ξ/μ)

∫ ξ

0

I eq(η′)
μ

exp

(
ξ − η′

μ

)
dη′. (70)

Substitution of Eq. (69) and Eq. (70) into Eq. (68) results in the expression of phonon intensity as a function of the integration
of equilibrium phonon intensity. With the aid of the relations between phonon intensity and energy density, I eq = vg

4π
eeq = vg

4π
e

and e = 1
vg

∫
4π

I (η,μ)d�, we derive an integral equation for energy density distribution:

2e∗(η) = G(η) +
∫ ξ

0
e∗(η′)

∫ 1

0
F (η′,η,μ)dμdη′, (71)

where the dimensionless energy density has been defined as e∗(η) ≡ e(η)−e(Tc)
e(Th)−e(Tc) . The function G(η) and integral kernel F (η′,η,μ)

are denoted fully as

G(η) =
∫ 1

0

[
1 − s

1 − s2 exp(−2ξ/μ)
exp

(
− η

μ

)
+ s(1 − s)

1 − s2 exp(−2ξ/μ)
exp

(
η − 2ξ

μ

)]
dμ, (72)

F (η′,η,μ) = 1

μ

{
exp

(
−|η′ − η|

μ

)
+ s

1 − s2 exp(−2ξ/μ)

[
exp

(
η′ + η − 2ξ

μ

)
+ exp

(
−η′ + η

μ

)]

+ s2

1 − s2 exp(−2ξ/μ)

[
exp

(
η − η′ − 2ξ

μ

)
+ exp

(
η′ − η − 2ξ

μ

)]}
. (73)

The temperature distribution across the thin film is related to the energy density distribution as �(Y) = e∗(η), with � ≡ T −Tc

Th−Tc

and Y ≡ η/ξ = y/d. The numerical method developed for the case of diffuse isothermal boundaries [1] is applied to solve
Eq. (71), with the trapezoidal scheme to compute the integration over the spatial coordinate η′ (the details of the numerical
solution are shown in Appendix B). A grid of Nη = 1001 is used after a verification of grid independence. Based on the kinetic
definition, qy = ∫

4π
μI (η,μ)d�, we obtain the expression of heat flux across the thin film:

q∗ = 2
∫ 1

0

[
1 − s

1 − s2 exp(−2ξ/μ)
μ − s(1 − s)

1 − s2 exp(−2ξ/μ)
μ exp(−2ξ/μ) + s − 1

1 − s2 exp(−2ξ/μ)

∫ ξ

0
e∗(η′) exp

(
−η′

μ

)
dη′

+ s(s − 1)

1 − s2 exp(−2ξ/μ)

∫ ξ

0
e∗(η′) exp

(
η′ − 2ξ

μ

)
dη′
]
dμ, (74)

where the dimensionless heat flux is defined as q∗ ≡
4qy

vg [e(Th)−e(Tc)] . The effective cross-plane thermal conductivity

is defined as λeff
λb

= qy

qb
= 3qy

vgKnl [e(Th)−e(Tc)] , and related to the
dimensionless heat flux as

λeff

λb

= 3

4Knl

q∗. (75)

The cross-plane phonon transport through the thin film is
also modeled by the phonon hydrodynamic equation Eq. (29),
which reduces to the classical Fourier’s law since the nonlocal
term of heat flux vanishes because of the energy conserva-
tion principle: dqy/dy = 0. Thus the temperature differential
equation becomes

d2T

dy2
= 0, (76)

with the boundary conditions obtained from Eq. (56):

y = 0, Th − T = −1 + s

1 − s

2

3
�

dT

dy
,

y = d, T − Tc = −1 + s

1 − s

2

3
�

dT

dy
. (77)

The temperature distribution is then achieved through a
solution of Eq. (76) with the boundary conditions Eq. (77):

� = 1 + 1+s
1−s

2
3 Knl

1 + 1+s
1−s

4
3 Knl

− Y

1 + 1+s
1−s

4
3 Knl

, (78)

where the dimensionless coordinate and temperature have
the same definitions as those in phonon Boltzmann equation
solutions. The heat flux across the thin film is derived from
qy = −λdT/dy as

qy = λ

1 + 1+s
1−s

4
3 Knl

Th − Tc

d
. (79)

The effective cross-plane thermal conductivity of the thin
film is acquired from Eq. (79) as

λeff

λb

= 1

1 + 1+s
1−s

4
3 Knl

. (80)

The comparison of temperature distributions in cross-plane
phonon transport is shown in Fig. 6, where an excellent
agreement is achieved between the results by the phonon
hydrodynamic model and by Boltzmann equation modeling.
The temperature jump near the boundaries increases with
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FIG. 6. The dimensionless temperature distributions in the cross-plane phonon transport through the thin film at different spatial Knudsen
numbers: (a) Knl = 0.05, (b) Knl = 0.1, (c) Knl = 0.2, (d) Knl = 0.3. The solid lines represent the analytical solution Eq. (78) based on
the present phonon hydrodynamic model, whereas the symbols represent the numerical solution of Eq. (71) based on the phonon Boltzmann
transport equation (BTE). Different specularity parameters are considered for the surface of the isothermal heat sources: s = 0 (circle), s = 0.3
(diamond), s = 0.6 (square), s = 0.9 (triangle). The spatial Knudsen number is defined as the ratio of phonon mean-free path to the thin-film
thickness: Knl ≡ �/d .

increasing Knl due to the thermodynamic nonequilibrium
effect. In addition, a larger temperature jump is obtained at
an elevated surface specularity parameter of the heat sources,
as induced by less sufficient phonon-boundary thermalization
and larger thermal resistance. Therefore, in contrast to the in-
plane transport, the effective cross-plane thermal conductivity
decreases as the specularity parameter increases, as shown
in Fig. 7. In all, the phonon hydrodynamic model produces
very accurate temperature distributions at a spatial Knudsen
number smaller than about 0.3. On the other hand, the heat
flux is predicted still very well when Knl reaches as high
as 5 or even larger, which has also been obtained in lattice
Boltzmann modeling of the same case [79]. Furthermore,

the present model provides a much more efficient approach
to the cross-plane heat transport which requires otherwise a
very complicated numerical solution of the phonon Boltzmann
equation. The phonon hydrodynamic model gives a simple
analytical solution as well as a clarified interpretation of the
boundary nonequilibrium effects.

3. Phonon transport through a nanowire

For phonon transport through a nanowire as shown in Fig. 8,
a uniform temperature gradient −dT /dx is exerted along the
nanowire with a lateral surface specularity parameter s. The
Boltzmann equation solutions have been already obtained for
the same electron transport problem [80], where the radial heat
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FIG. 7. The dimensionless effective cross-plane thermal conduc-
tivity of the thin film. The solid lines represent the analytical solution
Eq. (80) based on the present phonon hydrodynamic model, whereas
the symbols represent the numerical solution Eq. (75) based on the
phonon Boltzmann transport equation (BTE). Different specularity
parameters are considered for the surface of isothermal heat sources:
s = 0 (circle), s = 0.3 (diamond), s = 0.6 (square), s = 0.9 (trian-
gle). The spatial Knudsen number is defined as the ratio of the phonon
mean-free path to the thin-film thickness: Knl ≡ �/d .

flux distribution is

q∗(r∗)=1 − 3

4π
(1 − s)

∞∑
n=0

sn

∫ π

0
dθcos2θ sin θ

∫ 2π

0
dϕ

× exp

[
− r∗ sin ϕ + (2n + 1)

√
1 − r∗2cos2ϕ

Knl sin θ

]
,

(81)

where the dimensionless radial coordinate and heat flux are
defined respectively as r∗ ≡ r/R and q∗(r∗) ≡ qx (r)

−λdT /dx
, with

the spatial Knudsen number Knl = �/R. The effective thermal
conductivity of the nanowire is therefore obtained as [80]

λeff

λb

= 1 − 12

π
(1 − s)2

∞∑
n=1

nsn−1
∫ 1

0

√
1 − t2

×
∫ 1

0
exp

(
−nκt

u

)√
1 − u2ududt, (82)

x

r

0

R

FIG. 8. Schematic of phonon transport through a nanowire with
radius R.

where κ is related to the inverse of the spatial Knudsen number
as κ = 2/Knl .

This phonon heat transport is also modeled by the phonon
hydrodynamic model Eq. (29), which reduces to

1

5
�2 d2qx(r)

dr2
+ 1

5
�2 1

r

dqx(r)

dr
− qx(r) = λ

dT

dx
. (83)

Equation (83) is a second-order ordinary differential equation
of heat flux, which needs two boundary conditions:

r = 0,
dqx(r)

dr
= 0,

r = R, qx(r) = −1 + s

1 − s

8

15
�

dqx(r)

dr
. (84)

The general solution of the Bessel equation (83) is qx(r) =
C1J0(i

√
5r/�) − λdT

dx
, where the zeroth-order Bessel function

is defined as J0(ix) = ∑∞
k=0 (x/2)2k/(k!k!). The first boundary

condition in Eq. (84) has been naturally satisfied. The coeffi-
cient C1 is determined from the second boundary condition
in Eq. (84), and the radial heat flux distribution solution is
acquired as

q∗(r∗) = 1 −
J0
(
i

√
5

Knl
r∗)

J0
(
i

√
5

Knl

)− 1+s
1−s

8
3
√

5
iJ1
(
i

√
5

Knl

) , (85)

where the first-order Bessel function is defined as
J1(ix) = i

∑∞
k=0 (x/2)2k+1/[k!(k + 1)!]. The effective

thermal conductivity of the nanowire is obtained through
integrating the heat flux over the whole cross section:
λeff/λb = (

∫ R

0 qx(r)2πrdr)/(−λdT
dx

πR2) = 2
∫ 1

0 q∗(r∗)r∗dr∗,
which gives rise to the following result when putting Eq. (85)
inside:

λeff

λb

= 1 +
2Knl√

5
iJ1
(
i

√
5

Knl

)
J0
(
i

√
5

Knl

)− 1+s
1−s

8
3
√

5
iJ1
(
i

√
5

Knl

) . (86)

The radial heat flux distributions and effective thermal con-
ductivity of phonon transport through the nanowire are shown
in Fig. 9 and Fig. 10, respectively, where comparisons are
made between the present hydrodynamic modeling results and
Boltzmann equation solutions. An appreciably good agreement
between them is achieved at a spatial Knudsen number smaller
than about 0.3. Similarly to in-plane phonon transport through
a thin film, there is a heat flux reduction near the lateral surface
at increasing Knl due to the thermodynamic nonequilibrium
effect. The amount of reduction is larger at a smaller surface
specularity parameter, resulting in a smaller effective thermal
conductivity as seen in Fig. 10.

B. Transient nanoscale heat transport

1. 1D transient phonon transport across a thin film

For the 1D transient phonon transport across a thin film
shown in Fig. 11(a), the thin film is initially at a uniform
temperature Tc. Suddenly the left-hand side of thin film comes
in contact with a hot source at a constant temperature Th > Tc,
while the right-hand side comes in contact with a cold source at
a constant temperature Tc. Fully diffuse surfaces are considered
for both the hot and cold sources. The solution of the phonon

035421-14



PHONON HYDRODYNAMICS FOR NANOSCALE HEAT … PHYSICAL REVIEW B 97, 035421 (2018)

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

r*

q*

 

 

Phonon BTE s=1
Hydrodynamic model s=1
Phonon BTE s=0.9
Hydrodynamic model s=0.9
Phonon BTE s=0.7
Hydrodynamic model s=0.7
Phonon BTE s=0.4
Hydrodynamic model s=0.4
Phonon BTE s=0
Hydrodynamic model s=0

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

r*

q*

 

 

Phonon BTE s=1
Hydrodynamic model s=1
Phonon BTE s=0.9
Hydrodynamic model s=0.9
Phonon BTE s=0.7
Hydrodynamic model s=0.7
Phonon BTE s=0.4
Hydrodynamic model s=0.4
Phonon BTE s=0
Hydrodynamic model s=0

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

r*

q*

 

 

Phonon BTE s=1
Hydrodynamic model s=1
Phonon BTE s=0.9
Hydrodynamic model s=0.9
Phonon BTE s=0.7
Hydrodynamic model s=0.7
Phonon BTE s=0.4
Hydrodynamic model s=0.4
Phonon BTE s=0
Hydrodynamic model s=0

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

r*

q*

 

 

Phonon BTE s=1
Hydrodynamic model s=1
Phonon BTE s=0.9
Hydrodynamic model s=0.9
Phonon BTE s=0.7
Hydrodynamic model s=0.7
Phonon BTE s=0.4
Hydrodynamic model s=0.4
Phonon BTE s=0
Hydrodynamic model s=0

(a) (b)

(c) (d)

FIG. 9. The dimensionless cross-sectional heat flux distributions for phonon transport through a nanowire at different spatial Knudsen
numbers: (a) Knl = 0.05, (b) Knl = 0.1, (c) Knl = 0.2, (d) Knl = 0.3. The solid lines represent the analytical solution Eq. (85) based on the
present phonon hydrodynamic model, whereas the symbols represent the analytical solution Eq. (81) based on the phonon Boltzmann transport
equation (BTE). Different specularity parameters are considered for the lateral surface of the nanowire: s = 1 (circle), s = 0.9 (plus), s = 0.7
(diamond), s = 0.4 (triangle), s = 0 (square). The spatial Knudsen number is defined as the ratio of the phonon mean-free path to the nanowire
radius: Knl ≡ �/R.

Boltzmann equation for this problem has been obtained by
the discrete ordinate method (DOM) in previous work [36,81].
For a convenient comparison, we use an efficient energy-based
deviational Monte Carlo method [51,82] to solve the phonon
Boltzmann equation.

This transient phonon transport problem is also modeled
by the present phonon hydrodynamic model, with the heat
transport equation (29) and energy balance Eq. (5) reducing
to respectively

∂q∗

∂τ
+ q∗ = −1

3
Knl

∂�

∂X
+ 4

15
Kn2

l

∂2q∗

∂X2
, (87)

∂�

∂τ
= −Knl

∂q∗

∂X
, (88)

where the dimensionless time, spatial coordinate, temperature,
and heat flux have been introduced separately as τ ≡ t/τR, X ≡
x/d, � ≡ (T − Tc)/(Th − Tc), q∗ ≡ qx/[vgCV (Th − Tc)], and
the spatial Knudsen number is defined as Knl = �/d. A
temporal Knudsen number is introduced as the ratio of phonon
relaxation time to characteristic time: Knt = τR/t (the inverse
of dimensionless time). The dimensionless temperature differ-
ential equation is obtained by combining Eq. (87) and Eq. (88):

∂2�

∂τ 2
+ ∂�

∂τ
= 1

3
Kn2

l

∂2�

∂X2
+ 4

15
Kn2

l

∂3�

∂X2∂τ
. (89)

The dimensionless initial conditions for Eq. (89) are τ = 0,
� = 0, ∂�/∂τ = 0. The temperature jump boundary condi-
tions Eq. (57) are adopted, with their dimensionless forms
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FIG. 10. The dimensionless effective thermal conductivity of the
nanowire. The solid lines represent the analytical solution Eq. (86)
based on the present phonon hydrodynamic model, whereas the
symbols represent the analytical solution Eq. (82) based on the
phonon Boltzmann transport equation (BTE). Different specularity
parameters are considered for the lateral surface of the nanowire:
s = 1 (circle), s = 0.9 (plus), s = 0.7 (diamond), s = 0.4 (triangle),
s = 0 (square). The spatial Knudsen number is defined as the ratio of
the phonon mean-free path to the nanowire radius: Knl ≡ �/R.

given as

X = 0, � − 1 = 2

3
Knl

∂�

∂X
,

X = 1, � = −2

3
Knl

∂�

∂X
. (90)

A Laplace transform method is applied to solve Eq. (89),
where the Laplace transform of temperature distribution is
�̄(X; p) = ∫∞

0 �(X,τ ) exp(−pτ )dτ , with p being a complex
parameter. In this way, the partial differential equation (PDE)
Eq. (89) of �(X,τ ) reduces to an ordinary differential equation
(ODE) of �̄(X; p) in terms of the spatial coordinate X. The
analytical solution of dimensionless temperature distribution
in the frequency domain is obtained when supplemented with
the Laplace transform of boundary conditions Eq. (90). The
dimensionless temperature distribution in the real domain is
then computed through an inverse Laplace transform via a
Riemann-sum approximation [83]. After obtaining the solution
of temperature distribution evolution, the heat flux distribution
evolution is related to the former based on the Laplace
transforms of Eq. (87) and Eq. (88). The mathematical details
of the solution of the phonon hydrodynamic model for 1D
transient phonon transport across a thin film are provided in
Appendix C. To demonstrate the advantage of the present
hydrodynamic model, we also include the analytical solutions
of the classical Fourier’s law and C-V type heat transport
law for comparison. The analytical solution of Fourier’s law
can be found in Ref. [79] whereas the analytical solution
of the C-V law is obtained also by the Laplace transform
method. Another well-known non-Fourier model for ultrafast
heat conduction, the dual-phase-lag (DPL) model [18,83], is
not included here for comparison because it involves two

L
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ΔT

=cos(ω   t)H

x
T∞

O

(a) (b)

(c)

FIG. 11. Schematic of transient nanoscale heat transport: (a) 1D
transient phonon transport across the thin film; (b) high-frequency
periodic heating of a semi-infinite surface; (c) heat conduction in the
transient thermal grating (TTG) experiment.

empirical phase lags which have usually to be determined by
adjusting to experimental data of the thermal response [3].

The temporal evolutions of temperature distribution and
heat flux distribution across the thin film are shown in Fig. 12
and Fig. 13, respectively. When the thin-film thickness is large
such that the spatial Knudsen number is vanishingly small, both
the phonon hydrodynamic model and the C-V law recover the
Fourier’s solutions, as seen in Fig. 12(a) and Fig. 13(a). With
decreasing film thickness and increasing spatial Knudsen num-
ber, the Fourier’s law becomes no longer available due to the
thermodynamic nonequilibrium effects from both spatial and
temporal aspects. At the early heating stage (a finite temporal
Knudsen number), there is a large temperature jump at X = 0
caused by the insufficient interaction between the hot source
and thin film due to both short time duration and small space di-
mension, as shown in Figs. 12(b)–12(d). The temperature jump
at X = 0 gradually decreases with time because of the temporal
accumulation of the thermalization between the hot source
and thin film. The temporal nonequilibrium effect vanishes
when the process reaches the final steady state, with merely the
spatial nonequilibrium effect left. Therefore, the temperature
jump on both sides of the thin film reduces to the value in
steady-state cross-plane phonon transport through the thin film
in Sec. IV A 2. The C-V type law shows an improvement over
the Fourier’s law in capturing the front of the heat propagation
attributed to the relaxation term of the heat flux, yet it reduces
to the Fourier’s law in the steady state. In contrast, the present
phonon hydrodynamic model describes well these non-Fourier
features and provides good predictions consistent with the
Monte Carlo solutions of the phonon Boltzmann equation, as
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FIG. 12. The temporal evolutions of the dimensionless temperature distribution for the 1D transient phonon transport across the thin film
at different spatial Knudsen numbers: (a) Knl = 0.01, (b) Knl = 0.1, (c) Knl = 0.2, (d) Knl = 0.3. The solid lines and dashed-dotted lines
represent the analytical solutions based on the present phonon hydrodynamic model and C-V law, respectively, whereas the symbols represent
the analytical solution based on Fourier’s law [79] in (a) or the energy-based deviational Monte Carlo solution of the phonon Boltzmann
transport equation (BTE) in (b)–(d). The dashed lines represent the analytical solution based on Fourier’s law [79] in (b)–(d). The temporal
Knudsen number is defined as the ratio of phonon relaxation time to the characteristic time (inverse of the dimensionless time), Knt = τR/t ,
whereas the spatial Knudsen number is defined as the ratio of the phonon mean-free path to the thin-film thickness, Knl = �/d .

shown in Figs. 12(b)–12(d) and Figs. 13(b)–13(d). The phonon
hydrodynamic model works well when both the spatial and
temporal Knudsen numbers are smaller than about 0.3, i.e., up
to the early transition regime, and can still capture the transient
phonon behavior up to Knt = 1.

2. High-frequency periodic heating of a semi-infinite surface

For the phonon transport in high-frequency periodic heating
of a semi-infinite surface shown in Fig. 11(b), the medium is
initially at a uniform temperature T∞. Suddenly, the left-hand
side surface comes in contact with a heat source with a cosine
temperature variation versus time. After a sufficiently long

time, the system reaches a quasisteady state independent of the
initial condition. A fully diffuse surface is considered for the
heat source. The solution of the phonon Boltzmann equation
for this problem has been recently obtained by a two-flux
method, which gives the temporal evolution of the temperature
distribution at the quasisteady state as [71]

�(X,τ ) = 1

2

√
1 + 2c cos ψ + c2 exp(−

√
3bX)

× cos(Knt τ −
√

3aX + φ1), (91)

where the dimensionless time and spatial coordinate is
defined as τ = t/τR and X = x/�, with the dimension-
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FIG. 13. Temporal evolutions of dimensionless heat flux distribution for the 1D transient phonon transport across the thin film at different
spatial Knudsen numbers: (a) Knl = 0.01, (b) Knl = 0.1, (c) Knl = 0.2, (d) Knl = 0.3. The solid lines and dashed-dotted lines denote the
analytical solution based on the present phonon hydrodynamic model and C-V law, respectively, whereas the symbols represent the analytical
solution based on Fourier’s law [79] in (a) or the energy-based deviational Monte Carlo solution of the phonon Boltzmann transport equation
(BTE) in (b)–(d). The dashed lines represent the analytical solution based on Fourier’s law [79] in (b)–(d). The temporal Knudsen number is
defined as the ratio of the phonon relaxation time to the characteristic time (inverse of the dimensionless time), Knt = τR/t , whereas the spatial
Knudsen number is defined as the ratio of the phonon mean-free path to the thin-film thickness, Knl = �/d .

less temperature being �(X,τ ) = [T (x,t) − T∞]/�T . The
parameters in Eq. (91) separately are represented fully
as cos ψ = b/a, sin ψ = −2b, c = b/(a + Knt ), tan φ1 =
c sin ψ/(1 + c cos ψ), with a =

√
Knt

2

√
Knt +

√
(Knt )2 + 1,

b =
√

Knt

2

√
−Knt +

√
(Knt )2 + 1. The temporal Knudsen

number is defined as the ratio of phonon relaxation time to
the period of external cosine temperature oscillation (inverse
of its frequency): Knt = ωHτR, which characterizes the tem-
poral thermodynamic nonequilibrium effect in high-frequency
transient heat conduction. The temporal evolution of heat
flux distribution at the quasisteady state has been obtained

as [71]

q∗(X,τ ) = 1

2
√

3

√
1 − 2c cos ψ + c2 exp(−

√
3bX)

× cos(Knt τ −
√

3aX − φ2), (92)

where the dimensionless heat flux is defined as q∗(X,τ ) ≡
qx(x,t)/vgCV �T , and the parameter tan φ2 = c sin ψ/(1 −
c cos ψ). In the low-frequency limit with negligible tempo-
ral nonequilibrium effect, the Boltzmann equation solutions
Eqs. (91) and (92) reduce to the Fourier’s solution: �(X,τ ) =
exp(−√

3Knt /2X) cos(Knt τ − √
3Knt /2X) and q∗(X,τ ) =√

Knt /3 exp(−√
3Knt /2X) cos(Knt τ − √

3Knt /2X+π/4).
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FIG. 14. Spatial distribution of the amplitude of the dimension-
less temperature oscillation for the high-frequency periodic heating
of the semi-infinite surface at different frequencies. Circles repre-
sent the phonon Boltzmann transport equation (BTE) solution from
Eq. (91), whereas the solid lines and dashed lines represent the
analytical solution of the phonon hydrodynamic model and Fourier’s
law, respectively. Five different frequencies are considered: Knt =
10−4, Knt = 10−3, Knt = 10−2, Knt = 0.1, Knt = 0.3. The temporal
Knudsen number is defined as the ratio of the phonon relaxation time
to the period of external cosine temperature oscillation (inverse of its
frequency): Knt = ωH τR.

This periodic heating problem can be also described
by the present phonon hydrodynamic model, with the heat
transport equation (29) and energy balance Eq. (5) reducing
to respectively

∂q∗

∂τ
+ q∗ = −1

3

∂�

∂X
+ 4

15

∂2q∗

∂X2
, (93)

∂�

∂τ
= −∂q∗

∂X
, (94)

where the definitions of dimensionless variables are the
same as those in Eq. (91) and Eq. (92). A combination of
Eq. (93) and Eq. (94) results in the temperature differential
equation as

∂2�

∂τ 2
+ ∂�

∂τ
= 1

3

∂2�

∂X2
+ 4

15

∂3�

∂X2∂τ
. (95)

The dimensionless initial conditions for Eq. (95) are τ = 0,
� = 0, ∂�/∂τ = 0. For the boundary conditions, the temper-
ature jump ones are taken into account:

X = 0, � − 2

3

∂�

∂X
= cos(Knt τ ),

X → ∞, � = 0. (96)

Again a Laplace transform method is applied to solve Eq. (95),
with the mathematical details given in Appendix D.

We compare the results of phonon hydrodynamic model to
both the phonon Boltzmann equation solution and the Fourier’s
solution. The amplitude of periodic oscillation of dimen-
sionless temperature distribution throughout the semi-infinite
medium is shown in Fig. 14. With increasing heating frequency
of the external heat source and temporal Knudsen number, the
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FIG. 15. Heating-frequency dependence of the amplitude of the
dimensionless surface temperature oscillation for the high-frequency
periodic heating of the semi-infinite surface. The squares represent the
phonon Boltzmann transport equation (BTE) solution from Eq. (91),
whereas the solid line and dashed line represent the analytical solution
of the phonon hydrodynamic model and Fourier’s law, respectively.
The temporal Knudsen number is defined as the ratio of the phonon
relaxation time to the period of external cosine temperature oscillation
(inverse of its frequency): Knt = ωH τR.

heating-influenced region becomes smaller. Furthermore, an
appreciable surface temperature jump is obtained at a heating
frequency comparable to the inverse of phonon relaxation
time, which can no longer be described by the Fourier’s law.
This nonequilibrium phenomenon comes from the insufficient
interaction between the heat source and the medium in such
a short period of the temperature oscillation that the surface
cannot approach the temperature of the heat source. It has
a different origin but the same manifestation compared with
the usual temperature jump due to small system size, which
indicates the equivalent role of the temporal nonequilibrium
effect to the spatial one in non-Fourier heat conduction. The
amount of the surface temperature jump increases with the
temporal Knudsen number, as further demonstrated in Fig. 15.
The phonon hydrodynamic model is capable of describing
accurately these transient non-Fourier features at a temporal
Knudsen number smaller than about 0.3. A surprising good
prediction of the amplitude of the surface heat flux oscillation
at the temporal Knudsen number even as large as 10 is obtained
in Fig. 16, similar to the result (cf. Fig. 7) in steady-state cross-
plane phonon transport through a thin film in Sec. IV A 2.

3. Heat conduction in a transient thermal grating

For phonon heat conduction in transient thermal grating
(TTG) along a thin film shown in Fig. 11(c), an initial
periodic temperature distribution (thermal grating) is given as
T (x,t = 0) = Tm cos(qx) [84], with Tm the initial amplitude,
and wave number q related to the grating period L as q =
2π/L. The TTG heat conduction is an intricate process as there
exist cross-coupling thermodynamic nonequilibrium effects
from both phonon-boundary confinement due to finite film
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FIG. 16. Heating-frequency dependence of the amplitude of the
dimensionless surface heat flux oscillation for the high-frequency
periodic heating of the semi-infinite surface. The squares represent the
phonon Boltzmann transport equation (BTE) solution from Eq. (92),
whereas the solid line and dashed line represent the analytical solution
of the phonon hydrodynamic model and Fourier’s law, respectively.
The temporal Knudsen number is defined as the ratio of the phonon
relaxation time to the period of external cosine temperature oscillation
(inverse of its frequency): Knt = ωH τR.

thickness and quasiballistic transport due to finite grating
period. They are characterized by the spatial Knudsen number
Knl = �/d and inverse nondimensional grating period η =
2π�/L, respectively [84]. Thus the theoretical modeling of
TTG heat conduction is a challenging task, which involves
a complicated numerical solution of the phonon Boltzmann
equation in recent work [66,84]. In contrast, the present phonon
hydrodynamic model provides a simple and efficient avenue
to this problem, through an analytical solution of Eq. (5) and
Eq. (29) with the HFTR boundary condition. A fully diffuse
surface is assumed for the thin film [84].

It is reasonable to assume the temperature distribution along
the thin film remains periodic throughout the decay process as
shown in Fig. 11(c). Due to enhanced boundary scattering of
phonons near the film surface, the decay rate of temperature
amplitude is smaller in the vicinity of lateral boundary. The
temperature distribution along the cross-sectional direction
will become nonuniform [66]. Thus the TTG heat conduction
is a two-dimensional transient process, where the temperature
distribution evolves as T = 〈T (y,t)〉 cos(qx) with 〈T (y,t)〉
denoting the amplitude of temperature distribution. The heat
flux along the thin film is also periodic, yet with a phase delay
behind the temperature distribution: qx = −〈qx(y,t)〉 sin(qx)
with −〈qx(y,t)〉 denoting the amplitude of heat flux along
the thin film. Due to the nonuniform temperature distribution
along the cross-sectional direction, a heat flux is induced
as qy = 〈qy(y,t)〉 cos(qx) with 〈qy(y,t)〉 the amplitude of
heat flux in the cross-sectional direction. Substituting the
periodic expressions of temperature and heat flux distribu-
tions into the phonon hydrodynamic Eq. (29) and energy
balance Eq. (5), we obtain the governing equations for their

amplitudes:

∂q∗
x

∂τ
+
(

1+ 4

15
η2

)
q∗

x

= −1

3
η2θ + 1

5
Kn2

l

∂2q∗
x

∂Y2
+ 1

15
η2

∂q∗
y

∂Y
, (97)

∂q∗
y

∂τ
+
(

1 + 1

5
η2

)
q∗

y

= −1

3
Kn2

l

∂θ

∂Y
+ 4

15
Kn2

l

∂2q∗
y

∂Y2
− 1

15
Kn2

l

∂q∗
x

∂Y
, (98)

∂θ

∂τ
= q∗

x − ∂q∗
y

∂Y
, (99)

wherein the nondimensional variables are introduced as

Y = y

d
, τ = t

τR
, θ (Y,τ ) = 〈T (y,t)〉

Tm

,

q∗
x(Y,τ ) = 〈qx(y,t)〉

CV Tm/τRq
, q∗

y(Y,τ ) = 〈qy(y,t)〉
CV Tmd/τR

. (100)

The initial conditions and boundary conditions for
Eqs. (97)–(99) are respectively

τ = 0, θ = 1,
∂θ

∂τ
= 0; q∗

x = 0, q∗
y = 0, (101)

Y = 0, q∗
x = 8

15
Knl

∂q∗
x

∂Y
, q∗

y = 0,

Y = 1

2
,

∂q∗
x

∂Y
= 0, q∗

y = 0. (102)

A Laplace transform method is applied to solve Eqs. (97)–
(99), which thereafter reduce to a set of ordinary differential
equations. Furthermore, we get a fourth-order differential
equation of x-direction heat flux amplitude by eliminating the
y-direction heat flux amplitude and temperature amplitude:

d4q∗
x

dY4
+ F

d2q∗
x

dY2
+ Gq∗

x + H = 0, (103)

wherein q∗
x(Y; p) = ∫∞

0 q∗
x(Y,τ ) exp(−pτ )dτ and F =

AC − B − D, G = BD, H = DE, with the parameters fully
denoted as

A ≡
1
3η2 + 1

15pη2

1
5pKn2

l

, B ≡ p2 + p + 4
15pη2 + 1

3η2

1
5pKn2

l

,

C ≡
1
3 + 1

15p

1
3 + 4

15p
, D ≡ p2 + p + 1

5pη2

1
3 Kn2

l + 4
15pKn2

l

, E ≡
1
3η2

1
5pKn2

l

.

(104)

The boundary conditions for Eq. (103) are determined as

Y = 0, q∗
x = 8

15
Knl

dq∗
x

dY
,

d3q∗
x

dY3
+ (AC − B)

dq∗
x

dY
= 0,

Y = 1

2
,

dq∗
x

dY
= 0,

d3q∗
x

dY3
= 0. (105)

The nondimensional x-direction heat flux amplitude in the fre-
quency domain is obtained by solving Eq. (103) supplemented
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FIG. 17. Nondimensional effective in-plane thermal conductivity of the silicon thin film in the transient thermal grating (TTG) experiment at
room temperature (T = 300 K). (a) and (b) Comparison to theoretical solutions. The symbols represent the solutions of the phonon Boltzmann
transport equation (BTE) [84] whereas the solid line and dashed line denote the analytical solution of the phonon hydrodynamic model and
Fourier’s law, respectively. The spatial Knudsen number and inverse nondimensional grating period are defined respectively as Knl = �/d and
η = 2π�/L. (c) Comparison to experimental results. The symbols represent the experimental data of two thin films with thickness 400 nm from
the literature [72] whereas the solid line represents the results of the present phonon hydrodynamic model with a median-thermal-conductivity
phonon MFP �m = 441 nm [72,77]. The dashed line and solid line with the cross symbol denote the gray and spectral Monte Carlo (MC)
solutions of the phonon BTE [84], respectively.

with Eq. (105):

q∗
x = C2{exp (−mY) + exp [m(Y − 1)]} + C4{exp (−nY) + exp [n(Y − 1)]} − H

G
, (106)

wherein m ≡ {0.5[(F2 − 4G)1/2 − F]}1/2, n ≡ {−0.5[(F2 − 4G)1/2+F]}1/2, and the two coefficients are specified from the
following equations:

[
[n3 + (AC − B)n][1 − exp (−n)]

[m3 + (AC − B)m][exp (−m) − 1]

{
1 + exp (−m) + 8

15
mKnl[1 − exp (−m)]

}

+
(

1 − 8

15
nKnl

)
exp (−n) +

(
1 + 8

15
nKnl

)]
C4 = H

G
, (107)
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C2 = C4
[n3 + (AC − B)n][1 − exp (−n)]

[m3 + (AC − B)m][exp (−m) − 1]
. (108)

The nondimensional temperature distribution amplitude in the
frequency domain is related to the solution of x-direction heat
flux amplitude Eq. (106) through

θ(Y; p) =
1
5 Kn2

l

1
3η2 + 1

15pη2

d2q∗
x

dY2
− p + 1 + 1

15η2

1
3η2 + 1

15pη2
q∗

x

+
1
15η2

1
3η2 + 1

15pη2
. (109)

An inverse Laplace transform of Eq. (109) based on a Riemann-
sum approximation [83] produces the temporal evolution of the
nondimensional temperature distribution amplitude θ (Y,τ ).
The effective in-plane thermal conductivity of the thin film
is then extracted through fitting the decay of the average tem-
perature distribution amplitude along the cross-sectional di-
rection by the diffusion model:

∫ 1
0 θ (Y,τ )dY = exp(−αeffq

2t)
[66,84].

The present phonon hydrodynamic model captures well
the lateral phonon confinement effect and the in-plane qua-
siballistic effect simultaneously, as shown in Fig. 17(a). For
the case of Knl = 0.01, the film thickness is large enough
that the phonon-boundary confinement is negligibly small.
However, the effective in-plane thermal conductivity of the
thin film drops as the grating period decreases or η increases.
The recent extended Fourier’s continuum model accounting for
kinetic effects from boundary inhomogeneity is not available
for this heat conduction with internal spatial variation of
thermal grating at a characteristic dimension comparable to
the phonon MFP [39]. As the correction of the constitutive
heat transport equation is considered with additional relaxation
and nonlocal terms, the present phonon hydrodynamic model
is capable of describing such a quasiballistic effect. The result
for the other limit of large grating period is shown in Fig. 17(b),
where the present model produces the boundary suppression
effect consistent with the Fuchs-Sondheimer model. In all,
the rigorous validity of the macroscopic hydrodynamic model
is Knl < 0.3 and η < 1. By including the phonon spectral
property using the median-thermal-conductivity phonon MFP
�m in Sec. IV A 1, the phonon hydrodynamic model provides
a prediction of the effective in-plane thermal conductivity of
silicon thin film at room temperature in good agreement with
recent TTG experimental data [72], as shown in Fig. 17(c). The
agreement is encouraging because it not only verifies the idea
of employing the median-thermal-conductivity MFP for fast
analysis of size effect in Ref. [72], but also demonstrate the
power of the macroscopic heat transport model which requires
much less computational cost and presents a more clarified
physical interpretation.

V. CONCLUSIONS

To conclude, we have developed the phonon hydrodynamics
for nanoscale heat transport at ordinary temperatures. The
macroscopic model is derived from a perturbation solution to
the phonon Boltzmann equation around a nonequilibrium dis-

tribution obtained by entropy maximization. We have demon-
strated and validated the phonon hydrodynamic model through
modeling extensive extremely small and ultrafast non-Fourier
heat conduction. The serious validity of the present model lies
in that both the spatial and the temporal Knudsen numbers are
smaller than 0.3. The predictions of this model agree well with
the experimental results even in a broader range. The macro-
scopic equations not only provide clear physical interpretation
of the thermodynamics nonequilibrium effect at extreme states,
but also make feasible the thermal performance optimization
of nanosystems pending in future work. Through this work,
the phonon hydrodynamic model becomes indispensable for
description of heat transport in the sub-continuum and near-
transition regimes where Fourier’s law fails and a solution of
the phonon Boltzmann equation is too expensive. This work
represents a crucial step towards macroscopic modeling of
nanoscale heat transport, with the phonon spectral properties
to be further considered in the future.
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APPENDIX A: SOLUTION OF THE BOLTZMANN
EQUATION FOR CROSS-PLANE PHONON TRANSPORT

THROUGH A THIN FILM

The general solution of Eq. (66) by the method of charac-
teristics is

I+(η,μ) = I+(0,μ) exp

(
− η

μ

)

+
∫ η

0

I eq(η′)
μ

exp

(
η′ − η

μ

)
dη′, 0 � μ � 1,

I−(η,μ) = I−(ξ,μ) exp

(
ξ − η

μ

)

−
∫ ξ

η

I eq(η′)
μ

exp

(
η′ − η

μ

)
dη′, −1 � μ � 0,

(A1)

where I+(0,μ) and I−(ξ,μ) are determined by the boundary
conditions

y = 0, I+(0,μ) = (1 − s)I eq(Th) + sI−(0,−μ),

y = d, I−(d,μ) = (1 − s)I eq(Tc) + sI+(d,−μ). (A2)

Here we show the determination of I+(0,μ) in Eq. (A1),
where I−(ξ,μ) could be determined through similar
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procedures. From the second equation in Eq. (A1), one obtains I−(0,−μ) in the first boundary condition in Eq. (A2):

I−(0,−μ) = I−(ξ,−μ) exp

(
− ξ

μ

)
+
∫ ξ

0

I eq(η′)
μ

exp

(
−η′

μ

)
dη′. (A3)

From the second boundary condition in Eq. (A2), one could further get I−(ξ,−μ) in Eq. (A3):

I−(ξ,−μ) = (1 − s)I eq(Tc) + sI+(ξ,μ). (A4)

Substituting Eq. (A4) into Eq. (A3), we get I−(0,−μ) as below:

I−(0,−μ) = [(1 − s)I eq(Tc) + sI+(ξ,μ)] exp

(
− ξ

μ

)
+
∫ ξ

0

I eq(η′)
μ

exp

(
−η′

μ

)
dη′

= (1 − s)I eq(Tc) exp

(
− ξ

μ

)
+ sI+(ξ,μ) exp

(
− ξ

μ

)
+
∫ ξ

0

I eq(η′)
μ

exp

(
−η′

μ

)
dη′. (A5)

The I+(ξ,μ) in Eq. (A5) can be obtained from the first equation in Eq. (A1):

I+(ξ,μ) = I+(0,μ) exp

(
− ξ

μ

)
+
∫ ξ

0

I eq(η′)
μ

exp

(
η′ − ξ

μ

)
dη′. (A6)

Putting Eq. (A6) into Eq. (A5), we acquire I−(0,−μ) as

I−(0,−μ) = (1 − s)I eq(Tc) exp

(
− ξ

μ

)
+
∫ ξ

0

I eq(η′)
μ

exp

(
−η′

μ

)
dη′

+ s

[
I+(0,μ) exp

(
− ξ

μ

)
+
∫ ξ

0

I eq(η′)
μ

exp

(
η′ − ξ

μ

)
dη′
]

exp

(
− ξ

μ

)

= (1 − s)I eq(Tc) exp

(
− ξ

μ

)
+
∫ ξ

0

I eq(η′)
μ

exp

(
−η′

μ

)
dη′ + sI+(0,μ) exp

(
−2ξ

μ

)

+ s exp

(
− ξ

μ

)∫ ξ

0

I eq(η′)
μ

exp

(
η′ − ξ

μ

)
dη′. (A7)

Substituting Eq. (A7) into the first boundary condition in Eq. (A2), we obtain an equation for I+(0,μ):

I+(0,μ) = (1 − s)I eq(Th) + s(1 − s)I eq(Tc) exp

(
− ξ

μ

)
+ s

∫ ξ

0

I eq(η′)
μ

exp

(
−η′

μ

)
dη′

+ s2I+(0,μ) exp

(
−2ξ

μ

)
+ s2 exp

(
−2ξ

μ

)∫ ξ

0

I eq(η′)
μ

exp

(
η′

μ

)
dη′. (A8)

Therefore, I+(0,μ) is determined through a solution of Eq. (A8):

I+(0,μ) = (1 − s)

1 − s2 exp (−2ξ/μ)
I eq(Th) + s(1 − s)

1 − s2 exp (−2ξ/μ)
I eq(Tc) exp

(
− ξ

μ

)

+ s

1 − s2 exp (−2ξ/μ)

∫ ξ

0

I eq(η′)
μ

exp

(
−η′

μ

)
dη′ + s2 exp (−2ξ/μ)

1 − s2 exp (−2ξ/μ)

∫ ξ

0

I eq(η′)
μ

exp

(
η′

μ

)
dη′. (A9)

APPENDIX B: NUMERICAL SOLUTION OF THE ENERGY DENSITY DISTRIBUTION IN CROSS-PLANE
PHONON TRANSPORT THROUGH A THIN FILM

The integral equation for the energy density distribution is

2e∗(η) = G(η) +
∫ ξ

0
e∗(η′)

∫ 1

0
F (η′,η,μ)dμdη′. (B1)

To avoid the numerical singularity in Eq. (B1) when η = η′, the following scheme is constructed similarly to the solution for
the fully diffuse case [1]:

2e∗(η) = G(η) +
∫ ξ

0
[e∗(η′) − e∗(η)]

∫ 1

0
F
(
η′,η,μ

)
dμdη′ + e∗(η)

∫ ξ

0

∫ 1

0
F (η′,η,μ)dμdη′. (B2)
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The numerical singularity is eliminated since the first integral at the right-hand side of Eq. (B2) vanishes at η = η′. Equation (B2)
is slightly reformulated as

[2 − c(η)]e∗(η) = G(η) +
∫ ξ

0
[e∗(η′) − e∗(η)]

∫ 1

0
F (η′,η,μ)dμdη′, (B3)

with c(η) = ∫ ξ

0

∫ 1
0 F (η′,η,μ)dμdη′. The following trapezoidal integration formula is used for the integral in Eq. (B3):∫ xn

x1

f (x)dx = f (x1)
�x

2
+ �x

n−1∑
i=2

f (xi) + f (xn)
�x

2
. (B4)

Therefore the discrete form of Eq. (B3) becomes

[2 − c(ηj )]e∗(ηj ) = G(ηj ) + �η

2
[e∗(η1) − e∗(ηj )]Fint(η1,ηj ) + �η

n−1∑
i=2
i �=j

[e∗(ηi) − e∗(ηj )]Fint(ηi,ηj )

+ �η

2
[e∗(ηn) − e∗(ηj )]Fint(ηn,ηj ), (B5)

where the discrete coordinate points are ηj = (η1,η2, . . . ,ηn) with n = Nη, and a uniform integral interval is adopted: �η =
ξ/(n − 1). The integral function in Eq. (B5) is denoted fully as Fint(ηi,ηj ) = ∫ 1

0 F (ηi,ηj ,μ)dμ.
Equation (B5) is rewritten as the matrix multiplying form (Ae∗ = b) as⎡

⎢⎣2 − c(ηj ) + �η

2
Fint(η1,ηj ) + �η

n−1∑
i=2
i �=j

Fint(ηi,ηj ) + �η

2
Fint(ηn,ηj )

⎤
⎥⎦e∗(ηj )

− �η

2
Fint(η1,ηj )e∗(η1) − �η

n−1∑
i=2
i �=j

Fint(ηi,ηj )e∗(ηi) − �η

2
Fint(ηn,ηj )e∗(ηn) = G(ηj ). (B6)

A solution of Eq. (B6) by matrix inversion gives exactly the
numerical results of energy density distribution e∗(ηj ).

APPENDIX C: LAPLACE TRANSFORM SOLUTION OF
THE PHONON HYDRODYNAMIC MODEL FOR 1D

TRANSIENT PHONON TRANSPORT
ACROSS A THIN FILM

The Laplace transform of the temperature differential
Eq. (89) for 1D transient phonon transport across a thin film is

p2�̄(X; p) + p�̄(X; p)

= 1

3
Kn2

l

d2�̄(X; p)

dX2
+ 4

15
Kn2

l p
d2�̄(X; p)

dX2
. (C1)

Equation (C1) is rewritten as an ordinary differential equation
(ODE):

d2�̄(X; p)

dX2
= A2�̄(X; p), (C2)

with the parameter A fully expressed as

A ≡
√

p(p + 1)
1
3 Kn2

l + 4
15 Kn2

l p
. (C3)

The general solution of Eq. (C2) is

�̄(X; p) = C1 exp (AX) + C2 exp (−AX). (C4)

The coefficients C1 and C2 in Eq. (C4) are specified from the
Laplace transform of the boundary conditions Eq. (90):

X = 0, �̄(X; p) − 1

p
= 2

3
Knl

d�̄(X; p)

dX
,

X = 1, �̄(X; p) = −2

3
Knl

d�̄(X; p)

dX
. (C5)

Therefore, the coefficients C1 and C2 are determined as below:

C1 =
2
3 KnlA − 1(

2
3 KnlA+1

)2
exp (2A) − (

2
3 KnlA − 1

)2

1

p
, (C6)

C2 =
(

2
3 KnlA+1

)
exp (2A)(

2
3 KnlA+1

)2
exp (2A) − (

2
3 KnlA − 1

)2

1

p
. (C7)

Thus Eq. (C4) with Eqs. (C3), (C6), (C7) constitute the solu-
tion of dimensionless temperature distribution in the frequency
domain.

The solution of dimensionless heat flux distribution is
related to that of the dimensionless temperature distribution
based on the Laplace transform of Eq. (87) and Eq. (88):

pq∗(X;p) + q∗(X;p)

= −1

3
Knl

d�̄(X;p)

dX
+ 4

15
Kn2

l

d2q∗(X;p)

dX2
, (C8)

p�̄(X;p) = −Knl

dq∗(X; p)

dX
. (C9)
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From Eq. (C8) and Eq. (C9), one could derive the following
relation:

q∗(X;p) = −B
d�̄(X;p)

dX
, (C10)

where the parameter B is denoted fully as

B ≡
1
3 Knl + 4

15pKnl

1 + p
. (C11)

Substituting Eq. (C4) into Eq. (C10), we acquire the solution
of the dimensionless heat flux distribution in the frequency
domain:

q∗(X; p) = −B[C1A exp (AX) − C2A exp (−AX)]. (C12)

To get the temporal evolutions of the dimensionless tempera-
ture distribution and heat flux distribution in the real domain,
we apply an inverse Laplace transform based on the following
Riemann-sum approximation [83]:

�(X,τ )

 exp (γ τ )

τ

[
1

2
�̄(X;γ ) + Re

∞∑
n=1

�̄

(
X;γ + inπ

τ

)
(−1)n

]
,

(C13)

q∗(X,τ )

 exp (γ τ )

τ

[
1

2
q∗(X;γ ) + Re

∞∑
n=1

q∗
(

X;γ + inπ

τ

)
(−1)n

]
,

(C14)

where γ τ = 3, and “Re” denotes the real part of a complex
variable, with i the imaginary index.

APPENDIX D: LAPLACE TRANSFORM SOLUTION OF
THE PHONON HYDRODYNAMIC MODEL FOR
HIGH-FREQUENCY PERIODIC HEATING OF A

SEMI-INFINITE SURFACE

The Laplace transform of the temperature differential
Eq. (95) gives rises to an ordinary differential equation (ODE):

d2�̄(X; p)

dX2
= A2�̄(X; p), (D1)

with the parameter A fully denoted as

A ≡
√

p(p + 1)
1
3 + 4

15p
. (D2)

The general solution of Eq. (D1) is

�̄(X; p) = C1 exp (AX) + C2 exp (−AX), (D3)

where the coefficients C1 and C2 are determined from the
Laplace transform of the boundary conditions Eq. (96):

X = 0, �̄(X; p) − 2

3

d�̄(X; p)

dX
= p

p2 + (Knt )2 ,

X → ∞, �̄(X; p) = 0. (D4)

From the second boundary condition in Eq. (D4), one could
get C1 = 0. With the aid of the first boundary condition, the
other coefficient is specified as

C2 = 1

1 + 2
3 A

p

p2 + (Knt )2 . (D5)

Therefore, the dimensionless temperature distribution in the
frequency domain is obtained as

�̄(X; p) = 1

1 + 2
3 A

p

p2 + (Knt )2 exp (−AX). (D6)

Through similar procedures in Appendix C, the dimen-
sionless heat flux distribution is related to the dimensionless
temperature distribution as

q∗(X;p) = −B
d�̄(X;p)

dX
, (D7)

with the parameter B fully denoted as

B ≡
1
3 + 4

15p

1 + p
. (D8)

Putting Eq. (D6) into Eq. (D7), we get the dimensionless heat
flux distribution in the frequency domain as

q∗(X; p) = C2AB exp (−AX). (D9)

Finally, the temporal evolutions of the dimensionless tempera-
ture distribution and heat flux distribution are obtained through
an inverse Laplace transform based on the Riemann-sum
approximation Eqs. (C13) and (C14).
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