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We present a comparative theoretical study of magnetic resonance within the polaron pair recombination
(PPR) and the triplet exciton-polaron quenching (TPQ) models. Both models have been invoked to interpret the
photoluminescence detected magnetic resonance (PLDMR) results in π -conjugated materials and devices. We
show that resonance line shapes calculated within the two models differ dramatically in several regards. First,
in the PPR model, the line shape exhibits unusual behavior upon increasing the microwave power: it evolves
from fully positive at weak power to fully negative at strong power. In contrast, in the TPQ model, the PLDMR
is completely positive, showing a monotonic saturation. Second, the two models predict different dependencies
of the resonance signal on the photoexcitation power, PL. At low PL, the resonance amplitude �I/I is ∝PL

within the PPR model, while it is ∝P 2
L crossing over to P 3

L within the TPQ model. On the physical level, the
differences stem from different underlying spin dynamics. Most prominently, a negative resonance within the
PPR model has its origin in the microwave-induced spin-Dicke effect, leading to the resonant quenching of
photoluminescence. The spin-Dicke effect results from the spin-selective recombination, leading to a highly
correlated precession of the on-resonance pair partners under the strong microwave power. This effect is not
relevant for TPQ mechanism, where the strong zero-field splitting renders the majority of triplets off resonance.
On the technical level, the analytical evaluation of the line shapes for the two models is enabled by the fact that
these shapes can be expressed via the eigenvalues of a complex Hamiltonian. This bypasses the necessity of
solving the much larger complex linear system of the stochastic Liouville equations. Our findings pave the way
towards a reliable discrimination between the two mechanisms via cw PLDMR.
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I. INTRODUCTION

Over the years, optically detected magnetic resonance
(ODMR) has proven to be a powerful tool for the study of spin-
dependent recombination and dissociation processes, both
in inorganic [1–3] and in organic [4] semiconductors. High
sensitivity, exceeding the sensitivity of conventional electron
spin resonance by about 6 orders of magnitude, renders ODMR
the tool of choice when it comes to π -conjugated polymers [4],
where the density of spin carriers is small. Photoluminescence
detected magnetic resonance (PLDMR), being a subset of
ODMR, has an advantage as it provides the most straight-
forward probe of the radiative singlet exciton population and
quantum yield of the material [4–7]. Besides, this method is
suitable for probing the bulk of a photoluminescent material
without the necessity of device fabrication.

Two different models have been employed to explain
PLDMR results in π -conjugated materials. The double-
modulation PLDMR experiment [6] advocated the quenching
model based on the spin-dependent reaction between triplet ex-
citons and polarons. On the other hand, the experimental study
of the frequency dependence of the in-phase component of
PLDMR [7] employed the polaron pair recombination model.
Subsequent publications invoked both the quenching model
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[8,9] and the recombination model [10] for the interpretation
of results obtained for the same material, polymer MEH-PPV.

In order to distinguish between the two models, pulsed
PLDMR experiments were conducted [11] in which Rabi
beats of PLDMR in MEH-PPV and its deuterated variant were
explored. The results appear to reveal the fingerprints of both
the recombination and the quenching mechanisms. Hence,
for conclusive discrimination, additional continuous-wave
PLDMR measurements revealing the nature of the underlying
spin-dependent processes are desirable. Equally, theoretical
predictions of the differences in the PLDMR within the two
models are highly desirable. That is the goal of the present
paper. To achieve this goal, we employ the stochastic Liouville
equations for the density matrix to calculate analytically the
resonance line shapes and saturation within the recombination
and quenching models. We show how the difference in the
underlying spin dynamics translates into very different depen-
dencies of the PLDMR on the optical excitation intensity. Also,
within the recombination model, the line shape is predicted to
be very peculiar, with a peak precisely at the resonant frequency
evolving into a minimum at higher microwave power.

Our results on the dynamics of the spin pairs within
the polaron recombination model agree with the predictions
based on the analysis of eigenmodes for the calculation of
transport [12,13] and with a direct analytical solution of the
Liouville equations [14,15]. At the same time, Refs. [12,13]
do not employ the density matrix formalism at all. Instead, the
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spin-dependent recombination is incorporated into the equa-
tion of motion for the amplitude of the singlet. Refer-
ences [14,15] study the dynamics of electron- and hole-polaron
spins with different g factors and do not consider the random
local hyperfine fields at all. This makes the polaron pair spin
dynamics very different from that considered in the present
work, where the electron and hole g factors are practically
indistinguishable, and the singlet-triplet interconversion is
governed by the local hyperfine fields.

We consider the regime relevant to fluorescent π -
conjugated polymers. According to experiments, this regime is
characterized by very close electron- and hole-polaron g fac-
tors [10,16], relatively strong hyperfine interaction [11,16,17],
relatively slow recombination from the singlet polaron pair
state [7,17], relatively slow annihilation of triplet excitons
from doublet triplet-polaron state [6,8], relatively long spin
coherence times [16,17], weak exchange [18], and weak
dipolar interaction between polaron pair or exciton-polaron
spins [6,9,18], etc.

Our analytical results can be directly generalized to include
a broader class of ODMR techniques, as well as other detection
methods, e.g., electrical, reaction yield, and capacitance mea-
surements. In this connection, notice the similarity between
our results for the polaron pair recombination model and those
observed in recent transport [19] and dielectric polarizability
[20] studies.

The established substantial differences between the predic-
tions of the polaron pair recombination and triplet exciton-
polaron quenching models can enable the differentiation of the
two mechanisms in interpretation of continuous-wave PLDMR
results.

II. THE POLARON PAIR RECOMBINATION MODEL

A. Qualitative picture

The PPR model is illustrated in Fig. 1. The processes in-
volved are the generation of weakly coupled polaron pairs (PP)
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FIG. 1. Schematics of the processes underlying the PPR model.
The black arrows indicate the PP generation; out of g PPs per second,
g

4 are singlets and 3g

4 are triplets. The brown and green arrows
respectively indicate the dissociation and recombination, Eq. (10).
The orange arrows represent the singlet-triplet beating, induced by
the hyperfine coupling and resonance microwave, Eq. (9), and the
spin-lattice relaxation, Eq. (11). The yellow background outlines the
components of the stochastic Liouville equation (8).

at rate g, their dissociation with at rate kd , and recombination
from the singlet pair state at rate kr [21]. The latter process
constitutes the reaction

Pe + Ph → S (1)

between the electron and hole polarons, Pe and Ph, respectively,
yielding a singlet exciton, S. Thus, the spin-selective recombi-
nation is incorporated as the restriction that Eq. (1) can occur
only for singlet PPs, i.e., for triplet PPs it is forbidden.

In an applied static magnetic field, B0 = B0ẑ, the electron-
and hole-polaron spin-up (|↑〉e and |↑〉h) and spin-down
(|↓〉e and |↓〉h) states occupy the Zeeman levels, 1

2 h̄γB0 and
− 1

2 h̄γB0, respectively, where γ is the polaron gyromagnetic
ratio (we assume equal gyromagnetic ratios for the electron
and hole polarons). The triplet-singlet PP spin states,

|T+〉 = |↑〉e|↑〉h, |T−〉 = |↓〉e|↓〉h,
|T0〉 = 1√

2
(|↑〉e|↓〉h + |↓〉e|↑〉h), (2)

|S〉 = 1√
2

(|↑〉e|↓〉h − |↓〉e|↑〉h),

form a convenient basis for the discussion of magnetic-field
effects. The resonant microwaves couple the Zeeman levels of
individual spins and, correspondingly, the triplet PP levels.
On the other hand, random hyperfine fields created by the
nuclei (almost entirely hydrogen protons) at electron- and hole-
polaron sites induce interconversion between the singlet and
triplet PP levels. Characteristic magnitudes of these hyperfine
fields bhf,e and bhf,h are different in general and define two
distinct hyperfine frequencies, ωhf,μ = γ bhf,μ, μ = e, h.

If the pair spins are uncorrelated, the populations of in-
dividual Zeeman levels in the microwave drive field B1(t) =
2B1 cos(ωt)x̂ oscillate with Rabi frequencies

�μ =
√

ω2
μ + ω2

1, μ = e, h, (3)

where ω1 = γB1 is the microwave drive amplitude, and

ωμ = γ bz,μ + δ, δ = γB0 − ω, (4)

are the polaron Larmor frequencies in the rotating frame and
the detuning frequency, respectively. The z components of the
random hyperfine fields bz,μ follow a Gaussian distribution,
entailing a Gaussian distribution of Larmor frequencies:

N (ωμ) = 1√
2πωhf,μ

e−(ωμ−δ)2/2ω2
hf,μ , μ = e,h. (5)

The most important physics of the PPR model is that the
spin-selective recombination correlates the dynamics of each
of the spins in the pair. Indeed, if the recombination rate was
the same for all four spin-pair states, then the Rabi beatings of
the level populations would not affect the luminescence, and
therefor no PLDMR would be detectable.

The essence of PLDMR technique is that the intensity
of recombination shown in Fig. 1 exhibits a resonance as a
function of δ, which becomes progressively pronounced as
the microwave field amplitude ω1 exceeds ωhf,μ. The PLDMR
amplitude is directly related to the singlet exciton density nS.
Therefore, the evaluation of resonance line shapes reduces to
finding nS versus δ, ω1, and ωhf,μ. One can naturally distinguish
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two regimes: weak drive, ω1 � ωhf,μ, and strong drive, ω1 	
ωhf,μ. It might seem that at weak drive Rabi oscillations do
not occur. However, as the hyperfine fields are random, some
spins will be at resonance. Their fraction can be estimated
as [16,21,22] ∼ω1/ωhf,μ. Our main result for weak drive is
that these pairs dominate the resonance line shape, leading
to the linear dependence of the resonance amplitude on ω1.
This conclusion contrasts with the results obtained from simple
rate equations [7] and from other studies of PP spin dynamics
and recombination that exclude averaging over local hyperfine
fields [14,23].

In the strong drive regime, the physics underlying the
resonance line shape is different. In this regime, not only
are the four conventional spin-pair states not eigenstates, but
actually (|T+1〉 − |T−1〉)/

√
2 is close to an eigenstate, and it

is decoupled from |S〉. This means it is a long-lived state. We
will see that this decoupling is a consequence of the spin-Dicke
effect [12,13]. It manifests itself as a minimum in the resonance
line shape at zero detuning, which gradually takes over as
the microwave drive increases, turning the resonance to fully
negative.

More formally, under steady-state conditions, the photo-
luminescence intensity I is proportional to the steady-state
singlet density, ñS. The latter is found from the rate equation

∂tnS = GS − RSnS + α(δ,ω1), (6)

where GS is the photoexcitation rate of singlet excitons, RS

is their decay rate, and α(δ,ω1) is the rate of singlet exciton
generation due to the PPR, Eq. (1), rendering the PLDMR
within the PPR model. The normalized PLDMR is then
given by

�I(δ,ω1)

I(0)
= ñS(δ,ω1) − ñS(0)

ñS(0)
= α(δ,ω1) − α(0)

GS

, (7)

where the relation GS 	 α, common for many systems [4],
is used in the last equality, and zero arguments correspond to
ω1 = 0, implying the absence of microwave drive; α(δ,ω1) is
governed by the spin dynamics of polaron pairs, to which we
turn next.

B. Spin dynamics of weakly coupled
electron-hole pair ensemble

The spin dynamics of a PP ensemble is analyzed by solving
the stochastic Liouville equation for the spin density matrix ρ,

dρ

dt
= i[ρ,H ] + g

4
1 + Rdr{ρ} + Rsl{ρ}, (8)

where the first term describes the spin dynamics due to the
magnetic interactions governed by the spin Hamiltonian H ,
g is the PP generation rate, 1 is the identity operator, Rdr

represents the pair dissociation and recombination, and Rsl

the spin-lattice relaxation processes. [For the discussion of the
relation between Eq. (8) and a more general Lindblad equation
see Appendix A.]

For simplicity, we neglect the spin exchange and dipolar
interactions. (Generalization for the nonzero spin exchange
and dipolar interactions will be discussed later.) In the rotating
frame, the spin Hamiltonian is given by

H = ωeS
z
e + ωhS

z
h + ω1

(
Sx

e + Sx
h

)
, (9)

where ωe and ωh are local electron and hole detunings, see
Eq. (4). They are different due to the different on-site hyperfine
fields. Se,h stands for the electron- and hole-polaron spin
operators (we set h̄ = 1).

Conventionally, the spin-dependent recombination pro-
cesses are described within the singlet-triplet basis of PP. We
assume that the pair dissociation occurs at the equal rate kd

from all spin states. In terms of the matrix elements we have

Rdr{ρ}αβ = −kdραβ − kr

2
(δαS + δSβ)ραβ, (10)

where α,β = +1, −1, 0, and S enumerate the singlet and triplet
spin states |T+1〉, |T−1〉, |T0〉, and |S〉, respectively.

For the spin-lattice relaxation we take the form [14]

Rsl{ρ}αβ = −(1/Tsl)[ραβ − δαβ tr(ρ/4)]. (11)

This relaxation tends to equalize the state populations, with the
rate 1/Tsl.

As an important step, we introduce the complex Hamilto-
nian,

H = H − i(wd/2)1 − i(kr/2)�S, (12)

where wd = kd + 1/Tsl and �S = |S〉〈S| is the projection
operator onto the singlet state. In terms of the complex
Hamiltonian, Eq. (8) for the density matrix takes the form

dρ

dt
= i(ρH∗ − Hρ) + 1

4

(
g + T −1

sl trρ
)
1. (13)

The observable quantities are described by the steady-state
density matrix ρ̃, satisfying

i(ρ̃H∗ − Hρ̃) + 1
4

(
g + T −1

sl trρ̃
)
1 = 0. (14)

We write the formal solution of Eq. (14) as

ρ̃ = 1

4

(
g + T −1

sl trρ̃
)
U, U =

∫ ∞

0
dt e−iHt eiH∗t . (15)

Thus, the matrix structure of ρ̃ is posed by U . Another useful
relation is found by taking the trace of the right-hand side of
Eq. (14):

g − kd trρ̃ − kr ρ̃SS = 0, (16)

where ρ̃SS = 〈S|ρ̃|S〉 is the singlet polaron pair population.
Equation (16) is the balance equation between the generation
of PPs and their destruction, taking place from the triplet and
singlet states with the rates kd and kd + kr , respectively. From
Eqs. (15) and (16) we find

kr ρ̃SS = gL(δ,ω1), L = 1 − (wd/4)trU (δ,ω1)

1 − (1/4Tsl)trU (δ,ω1)
. (17)

As will be seen shortly, Eqs. (15) and (17) are sufficient
for the calculation of α(δ,ω1), which is the resonance line
shape. Most importantly, we will need only the eigenvalues
of 4×4 complex Hamiltonian H. This bypasses the necessity
of solving effectively a 10×10 complex system of linear
equations (14).

The calculation of resonance line shape, α(δ,ω1), involves
also the averaging over the Gaussian distribution of hyperfine
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FIG. 2. Sketch of the function L(0,ω1) defining the PLDMR
amplitude at zero detuning [see Eq. (19)] in units of L0, Eq. (38).
The constant C, Eq. (41), is the saturation value of L(0,ω1)/L0. The
inset zooms into the region indicated in the main panel with a dashed
rectangle.

Larmor frequencies, Eq. (5):

α(δ,ω1) = kr〈ρ̃SS〉hf = g〈L(δ,ω1)〉hf. (18)

Furthermore, for the PP generation rate one has g ∝ ñ2
P, where

ñP is the steady-state density of polarons. Thus, from Eqs. (7)
and (18) we write

�I
I = λP ñ2

P

GS

L(δ,ω1), L = 〈L(δ,ω1) − L(0)〉hf, (19)

where the constant λP is determined by the PP formation cross
section, proportional to the polaron mobility.

From now on we focus on the regime of weak recombina-
tion, kr � ωhf. Still, before going into the details of analytical
calculation, in Fig. 2 we outline the typical result obtained
by solving Eq. (14) and performing the averaging in Eq. (18)
numerically. Note that the curve in Fig. 2 is a sketch for
model parameters in the regime of weak recombination. [For
an actual plot with particular model parameters we refer to
Figs. 3 and 5(a).] The plot in Fig. 2 shows a steep increase at
weak ω1 � ωhf, a maximum followed by a moderate decrease
at ω1 � ωhf, and a very slow decrease to negative values with
saturation at the strongest drives. This picture appears to be

FIG. 3. The PLDMR amplitude at zero detuning L(ω1), found
by numerically solving the Liouville Eq. (14), is plotted in black,
together with the weak-driving asymptote, Eq. (39) [green], and the
strong-driving asymptote, Eq. (44) [magenta]. The parameters are
set to wd ≡ kd + 1/Tsl = 30 kHz, kr = 230 kHz, and ωhf/2π = 16.8
MHz, corresponding to the hyperfine field of 6 Gauss. Inset: Plots of
the universal functions, Eqs. (42) and (43).

quite general for a wide range of model parameters. In addition,
in the limits of weak and strong drive the curve can be described
analytically. This is accomplished in the next section.

C. Perturbation with respect to small kr

In the limit of slow recombination, kr � ωhf, the perturba-
tive approach applies. The unperturbed eigenstates of H are
the eigenvectors of the Hamiltonian (9):

H |ϕα〉 = εα|ϕα〉, α = 1, . . . ,4. (20)

In the absence of recombination the pair partners are indepen-
dent, so that the eigenvalues are given by

ε1 = −ε4 = 1
2 (�e + �h), ε2 = −ε3 = 1

2 (�e − �h), (21)

where �e,h are defined by Eq. (3).
In the presence of recombination, the eigenvectors are

perturbed by the operator V = −i(kr/2)�S , which is re-
sponsible for this process. The matrix form of this operator,
Vαβ = 〈ϕα|V |ϕβ〉, is found in Appendix B. It is conveniently
parameterized by the angles,

tan 2φμ = ω1

ωμ

, μ = e,h. (22)

The explicit form of the matrix reads

V = −i
kr

4

1

1 + ξ 2

⎛
⎜⎝

ξ 2 ξ −ξ ξ 2

ξ 1 −1 ξ

−ξ −1 1 −ξ

ξ 2 ξ −ξ ξ 2

⎞
⎟⎠, (23)

where

ξ = tan(φeh), φeh = φe − φh. (24)

The leading recombination-induced corrections to the eigen-
values Eq. (21) are given by the diagonal elements,

ε
(1)
1,4 = −i

kr

4
sin2 φeh, ε

(1)
2,3 = −i

kr

4
cos2 φeh. (25)

According to the standard perturbation theory [24], the
eigenstates of H are close to |ϕα〉, when |εα − εβ | 	 kr for
α �= β. Here we make a crucial observation that for certain
pairs for which �e and �h are anomalously close, this
condition is violated. Such a “softening” of modes manifests
the degeneracy in the perturbation theory. As a result, the
eigenstates of H strongly deviate from |ϕ2〉 and |ϕ3〉, and are
determined by the small V .

The condition of softening is progressively satisfied as the
drive increases. This is because |�e − �h| ≈ |ω2

e − ω2
h|/2ω1

decreases with drive. As a result, |ϕ2〉 and |ϕ3〉 are close to

1
2 (|T+1〉 − |T−1〉 ±

√
2|S〉), (26)

whereas the corresponding eigenstates of H are close to

1√
2

(|T+1〉 − |T−1〉) and |S〉. (27)

This in turn suppresses the overall recombination. It is impor-
tant to emphasize that the strong modification of eigenstates
and the entailing lifetime anomaly is the consequence of
the backaction of recombination on the quantum dynamics
of PP spins. As pointed out in Refs. [12,13], there is a
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close analogy between the long-living states and the subra-
diant modes in the Dicke effect [25]. In previous studies of
spin-dependent recombination this backaction is neglected
(see, e.g., Ref. [26]).

The region of strong drive, where |�e − �h| � kr , is
difficult to access because of the degeneracy. The difficulty
is circumvented in the following way. Neglecting all the
off-diagonal elements of Eq. (23), except for V23 and V32,
induces an error in eigenstates and eigenvalues only of the
order of kr/�μ and k2

r /�μ, respectively, whereas the result for
tr U remains correct to the leading order. (This is analogous
to the secular approximation widely used in the theory of
magnetic resonance [27].) Therefore we proceed by replacing
V = −i(kr/2)�S in Eq. (12) with

Ṽ = −i
kr

4

1

1 + ξ 2

⎛
⎜⎝

ξ 2 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 ξ 2

⎞
⎟⎠. (28)

This replacement retains all the eigenvalues and eigenvectors
of H to the leading order and allows the direct evaluation of
the operator U from Eq. (15). We find

tr U (δ,ω1)

= 4(4wd + kr )

4w2
d + 2wdkr + (

k2
r

/
4
)

sin2(2φeh)

+ k2
r cos4(φeh)

[kr cos2(φeh) + 2wd ]
[
4ε2

2 + wd (kr cos2(φeh) + wd )
] .

(29)

[As shown in Appendix B, the replacement of V by Ṽ amounts
to ∼(kr/�μ)2 order terms, so that Eq. (29) is highly accurate.]
Notably, the δ and ω1 dependence of tr U enters in Eq. (29)
via the angles φeh and the energy ε2. The analytical expression
Eq. (29) is the main result of this section. We emphasize again
that it is derived without solving the 10×10 equation (14).

The microscopic origin of the two terms in Eq. (29) is easy to
trace back. The first term comes from the diagonals of V and
describes the interplay of spin dynamics and recombination
far from the degeneracy. This term is dominant at weak and
moderate drive, ω1 � ωhf. The second term originates from the
off-diagonal elements, V23 and V32, and becomes important
with the onset of degeneracy. It quantifies the microwave-
induced Dicke effect, prevailing at strong drive, ω1 > ωhf.

The first term in Eq. (29) is monotonically decreasing
function of sin2 2φeh. At the same time, the second term in
Eq. (29) is monotonically increasing function of cos2 φeh. This
observation yields the estimate

16

4wd + kr

� tr U � 4wd + 3kr

wd (wd + kr )
, (30)

for the upper and lower bounds of tr U . For kr � wd , the left
and right sides of Eq. (30) are both close to 4/wd , while they
are quite different in the opposite limit, kr 	 wd . This means
that, in the first case, magnetic resonance can induce only
weak relative variations of tr U , and therefore of α, whereas a
considerable relative change in α is possible in the latter limit.

D. Averaging over the random hyperfine fields
for slow spin-lattice relaxation

We defer the discussion of finite spin relaxation to the end
of this section and proceed with the case of long coherence
time, Tsl 	 k−1

d ,k−1
r . From Eq. (30) it follows that in this case

(1/4Tsl) trU � 1, so that the denominator of Eq. (17) can be
treated perturbatively, yielding

L = 1 − (kd/4)trU. (31)

Thus, finding the hyperfine average, 〈L〉hf, reduces to aver-
aging of Eq. (29) over the Gaussian distribution of Larmor
frequencies:

〈trU 〉hf =
∫

dωedωhN (ωe)N (ωh) trU (δ,ω1). (32)

(For simplicity we assume that the mean square deviations of
the Gaussian distributions are the same, ωhf,e = ωhf,h = ωhf,
unless it is stated otherwise.)

1. Zero detuning

For zero detuning, δ = 0, the random variables x = (ωe +
ωh)/2ω1 and y = (ωe − ωh)/2ω1 have the same Gaussian
distribution,

P(x) = 1√
πβ0

exp
(−x2

/
β2

0

)
, β0 = ωhf

ω1
. (33)

Relevant quantities entering in Eq. (29) are given by

sin2(2φeh) = 4y2

(1 + x2 − y2)2 + 4y2
(34)

and

ε2 = ω1

2
(
√

1 + (x + y)2 −
√

1 + (x − y)2). (35)

Below, the averaging is performed analytically, in the limits of
weak and strong drive.

2. Weak resonant drive, ω1 � ωhf

In the limit of weak drive the second term of Eq. (29) is neg-
ligible, because the PP realizations with 4ε2

2 � wdkr , for which
this term is appreciable, have the probability ∼√

wdkr/ωhf �
1. Therefore, in this limit we neglect the second term of
Eq. (29). For typical pairs under a weak resonant microwave
one has |x|,|y| 	 1, so the approximate relation,

sin2(2φeh) ≈ 4y2

(x2 − y2)2 + 4y2
, (36)

can be used with the first term of Eq. (29), leading to

L(ω1) = L0

∫
dxdyP(x)P(y)

y2

a2(x2 − y2)2 + y2
, (37)

where

L0 = kdk
2
r

2wd (2wd + kr )(4wd + kr )
, a =

√
2wd (2wd + kr )

4wd + kr

.

(38)
For aβ0 > 1 (ω1 < aωhf) the integral (37) further simplifies, as
in this case it is dominated by the narrow region, ||x| − |y|| �
1/a < β0. Due to the latter relation, the distribution of |x| − |y|
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can be replaced by the constant, 1/
√

2πβ0, and the resulting
integral can be calculated. This gives

L(ω1)

L0
=

√
π/2

aβ0
=

√
π

2a2

ω1

ωhf
. (39)

The linear dependence equation Eq. (39) of PLDMR amplitude
on ω1 corresponds to ∝√

Pmw dependence on the microwave
power, Pmw. This result agrees well with that of Ref. [13] and
differs from the earlier predictions of∝Pmw dependence [7,23].

3. Strong resonant drive, ω1 � ωhf

In the case of strong drive the second term of Eq. (29) is
also important. In this case one typically has |x|,|y| � 1, and
therefore the approximations

sin2(2φeh) ≈ 4y2, ε2 ≈ ω1xy, (40)

can be used in the first and second terms of Eq. (29), respec-
tively. Also, exploiting 2ω1x 	 √

wdkr (ωhf 	 √
wdkr ), in the

second term we replace cos2(φeh) by 1, neglecting a term ∼y2.
In terms of the constants,

b =
√

2wd (2wd + kr )

kr

, c =
√

wd (wd + kr )

ωhf
,

B = (4wd + kr )2

k2
r

, C = 4wd + kr

2(wd + kr )
, (41)

and the universal functions

f1(z) = z2
∫ ∞

−∞

dρ√
π

e−ρ2

ρ2 + z2
= √

πz exp(z2)erfc(z), (42)

f2(z) = z

∫ ∞

0
dρ

e−ρ√
ρ2 + z2

= π

2
z[H0(z) − Y0(z)], (43)

where erfc(z) is the complementary error function, and H0(z),
Y0(z) are the zero-order Struve and Bessel functions, respec-
tively, our result reads

L(ω1)

L0
= B[1 − f1(b ω1/ωhf)] − Cf2(c ω1/ωhf). (44)

Considering the simple properties of f1(z) and f2(z), plotted
in the Fig. 3 inset, this equation explains the decrease ofL(ω1),
Fig. 2, in simple terms. First we note that b � 1, c � 1, and
B ≈ C ≈ 1. Thus, the domain ω1 � ωhf, next to the peak of L,
is dominated by the first term of Eq. (44). The last Dicke term
of Eq. (44) becomes relevant for ω1 	 ωhf, where the first term
vanishes. Finally, C gives the saturation value of L(ω1)/L0.

The peak of L(ω1) occurs between the curves given by
Eqs. (39) and (44). For wd � kr , entailing small a � 1, this
domain is very narrow and the position of the peak, ωmax

1 ,
is very close to the intersection of the two curves. From this
argument one finds ωmax

1 � ωhfa
√

2/π . The frequency ω0
1 at

which L becomes 0 can be estimated from the condition that
f1 in Eq. (44) is nearly 1. A good estimate for f1(z) � 1 is
z � 5, corresponding to ω0

1 � 5ωhf/b. Thus the characteristic
values, ωmax

1 and ω0
1, are expressed via ωhf and the kinetic

parameters wd and kr . This is illustrated in Fig. 3, where we

FIG. 4. Sketch of line shapes for different microwave amplitudes.
Upon increasing the drive amplitude, the line (red) broadens and
grows (green), and subsequently evolves to fully negative (magenta).
Emergence of minimum (blue) manifests the onset of the spin-Dicke
effect. Note that the plots are intended to assist the explanation and
do not reflect any actual dependence.

plot L(ω1) found by numerically solving Eq. (14), together
with the asymptotes, Eqs. (39) and (44). In Fig. 3 we used the
parameters inferred for a semiconducting fluorescent polymer
[17], implying wd � kr .

E. Line-shape analysis

As illustrated in Fig. 4, the resonance lines can be divided
into four groups by their shapes. At weak drive, corresponding
to the region of initial linear growth in Fig. 2, the line shapes
are double Gaussian. In the region near the maximum in Fig. 4,
ω1 � ωhf, the lines deviate from double Gaussian and become
broader. The next, third group, including the lines with a
minimum at resonance and two mirroring maxima at the sides,
is found for ω1 � ωhf, and the fourth type of lines, showing
completely negative resonance, appear at the strongest drives,
ω1 	 ωhf. As discussed shortly, the two latter line shapes are
clear fingerprints of the spin-Dicke effect.

The analytical forms of line shapes can be found from
Eqs. (29) and (32), where the local Larmor frequencies are
distributed by Eq. (5), with the nonzero detuning δ. At weak
drive and for the general case of unequal electron and hole
hyperfine coupling strengths, Eq. (37) is valid with a modifi-
cation of the product, P(x)P(y). The result of the asymptotic
evaluation of the corresponding integral,

L(δ,ω1)

L0
= πω1

2a

⎛
⎜⎝ e

− δ2

2ω2
hf,e

√
2πωhf,e

+ e
− δ2

2ω2
hf,h

√
2πωhf,h

⎞
⎟⎠, (45)

is the generalization of Eq. (39) for ωhf,e �= ωhf,h. The red curve
in Fig. 4 represents such a double Gaussian. Experimentally,
this is the most easily accessible domain of drive. For stronger
microwave strength, while the line shapes are still accurately
described by Eqs. (29) and (32), only a qualitative analysis will
follow.

The green curve in Fig. 4 is the line with the largest
amplitude, occurring at ω1 = ωmax

1 < ωhf. It is broader than
the double Gaussian Eq. (45). Both the red and green curves in
Fig. 4 are well described by the first term of Eq. (29), meaning
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that the Dicke subradiant state is not efficient at this microwave
strength.

With the further increase of microwave strength over ωhf,
the line amplitudes decrease and central dips appear, as seen
for the blue and cyan lines in Fig. 4. This signifies the onset
of the subradiant mode, whose contribution is negative. The
contribution of this mode overruns the regular term, which in
turn becomes progressively smaller, at yet stronger microwave
fields. In Fig. 4, the cyan line shows the situation where the
signal is zero exactly at the resonance, and the magenta line
depicts a fully negative resonance line. The latter represents
the form at which the lines saturate at the strongest drives.

F. Finite spin-lattice relaxation

From Eqs. (12) and (15) it is easy to see that the operator
U depends on the spin relaxation and the nonradiative decay
only through the combination, wd = kd + 1/Tsl. At slow spin
relaxation the approximation Eq. (31) is valid, and therefore,
up to an inessential overall factor, L also depends on wd rather
than on kd or Tsl. Thus, in the limit 1/Tsl � kd , we encounter
the conventional property of the additive inverse lifetimes.

To scrutinize the regime of intermediate spin relaxation,
1/Tsl � kd , we perform numerical simulations based on the
exact formula Eq. (17). The results of our numerical analysis
show that besides the additive feature of inverse lifetimes, the
main effect of the spin relaxation is the overall reduction of the
amplitude ofL. However, the latter effect is inessential because
of the overall normalization uncertainty in real experimental
conditions.

Figure 5 compares the finite spin relaxation results from the
hyperfine averaged exact equation (17) with the outcome of the
approximation Eq. (31). The parameters in Fig. 5 are borrowed
from Ref. [17], where 1/Tsl � 5kd is inferred experimentally.
The solid lines in Fig. 5 are normalized to ensure the maximal
value of 1 for the function,L(δ,ω1), which occurs at ω1 = ωmax

1
and δ = 0, both for the exact and the approximate solutions.

The plots in Figs. 5(a) and 5(b) clearly indicate very close
results from the exact Eq. (17) and the approximation Eq. (31),
thus confirming the additive character of spin relaxation and
nonradiative decay rates for ω1 � ωmax

1 and moderate spin
relaxation, 1/Tsl � kd . Deviations between the exact and
approximate lines are noticeable in the domain of strong
drive ω1 > ωmax

1 , Fig. 5(c). Apparently, this could mean that
the effect of spin relaxation can be resolved from that of
the nonradiative recombination in the limit of strong drive.
However, the approximate lines can be made very close to
the exact ones upon applying different normalization factors
for different ω1 values, see Fig. 5(c). Therefore, in order to
resolve the spin-relaxation effects, multiple resonance lines at
different strong drive fields are necessary.

III. THE TRIPLET EXCITON-POLARON
QUENCHING MODEL

Various schemes employing the triplet polaron quenching
(TPQ) mechanism have been invoked in the literature to
date [6,28–30]. Although different in many aspects, all these
schemes stem from the spin-dependent reaction between a

FIG. 5. Illustration of the role of spin-lattice relaxation in PPR
model. Simulation results are shown for Tsl = 40 μs, kd = 5 kHz, and
kr = 230 kHz (Ref. [17]). (a) The signal at resonant driving is plotted
from the exact Eq. (17) with orange and from the approximate Eq. (31)
with black. The plots are normalized to reach the maximum value of
1. (b, c) Line shapes for different microwave strengths are plotted in
colors from Eq. (17), together with the corresponding plots from the
approximate Eq. (31) (black lines). The normalization is the same as in
(a). In the domain ω1 � ωmax

1 , shown in (b), the approximate lines are
very accurate, reflecting the additive character of spin relaxation and
nonradiative decay. For ω1 > ωmax

1 , illustrated in (c), the approximate
curves deviate form the exact ones substantially. Still, approximate
lines can be made very close to the exact ones with individual
normalization for each ω1 (black dots).

triplet exciton, TE, and a polaron, P:

TE + P ↔ P∗ + S0, (46)

where S0 stands for a singlet ground state and ∗ denotes a
possibly excited state. While the right-hand side of Eq. (46) is
spin doublet, the triplet exciton-polaron complex (TEP) in the
left-hand side can form two different spin multiplets, a quartet
and a doublet. Hence the spin dependence of the reaction (46),
which can occur only from the doublet state of the initial
complex. Furthermore, under magnetic resonance conditions,
the TEP spin multiplicity, and therefore the reaction yield of
Eq. (46), can be altered by a microwave drive.

The reaction (46) does not involve singlet excitons (SE),
and the SE density, nS, becomes sensitive to the reaction yield
because of a quenching of SEs by TEs and polarons. Ulti-
mately, this quenching facilitates the optical detection of the
microwave-induced reaction yield of Eq. (46). For simplicity,
we will consider the quenching by TEs only, described by
the rate equation

∂tnS = GS − RSnS − RST nSnT, (47)

where the SE generation and decay rates, GS and RS , respec-
tively, are the same as in Eq. (6), whereas RST is the SE-TE
quenching rate. For the TE density nT one has

∂tnT = GT − RT nT − RST nTnS − β(δ,ω1)nT, (48)
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where GT and RT are, respectively, the TE generation and
decay rates, and β(δ,ω1) is the rate of the TE population
decline due to the reaction (46), which depends also on the
polaron density nP.

Under typical conditions, the nonlinear terms in Eqs. (47)
and (48) are small perturbations, and the steady-state densities
are quite accurately given by the first two terms in the rate
equation right-hand sides:

ñS ≈ GS/RS, ñT ≈ GT /RT . (49)

Note that the description Eqs. (47)–(49) is valid for not very
strong photoexcitation power PL, ensuring a linear regime with
ñS ∝ PL (GS ∝ PL).

In order to describe the magnetic-field effects, higher-order
corrections to Eq. (49) must be considered. From Eqs. (47) and
(48) we find

ñS =
√(

RT + β

2RST

+ GT − GS

2RS

)2

+ GS(RT + β)

RSRST

−
(

RT + β

2RST

+ GT − GS

2RS

)
. (50)

The microwave-induced change of population, �ñS =
ñS(ω1) − ñS(0), is found from Eq. (50) to be

�ñS = ñSñTRST

RSRT

[β(δ,ω1) − β(0)], (51)

where we have used the leading-order results, Eq. (49), and the
relation GS 	 GT .

We derive β(δ,ω1) in Appendix C from the stochastic
Liouville approach by assuming that the steady-state TEP
generation rate is given by the product λ ñPñT, where λ is
a constant determined by the TEP formation cross section.
We get

β(δ,ω1) = λ ñP�(δ,ω1), (52)

where �(δ,ω1) is governed by the TEP spin dynamics and re-
combination. Thus the (normalized) optically detected signal,
�I/I = �ñS/ñS, is given by

�I(δ,ω1)

I = ñPñT
λ RST

RSRT

[ �(δ,ω1) − �(0)]. (53)

For the following discussion we present the zero-detuning
result for �(ω1) ≡ �(0,ω1), established in the limit of weak
dissociation and recombination, and negligible coupling be-
tween the polaron and TE spins (see Appendix C). Figure 6
depicts the processes underlying the TPQ model. It includes
the TEP generation rate g, the dissociation rate qd , and the
rate of the reaction Eq. (46) from the doublet manifold qr . Not
shown in Fig. 6 are the TEP spin-lattice relaxation time Tsl and
the polaron hyperfine coupling magnitude ωhf. In the limit of
long spin coherence times, Tsl > 1/qd , and slow dissociation
and recombination, qd , qr � ωhf, we find �(ω1) − �(0) =
�0f1(ω1/ωs), and therefore

�I(ω1)

I = ñPñT
λ RST �0

RSRT

f1(ω1/ωs), (54)

doublet TEP quartet TEP

eTE

free polaron state

free TE state

eTE eTE
hyperfine

microwave

spin-la�ce

FIG. 6. Schematics of the processes involved in the TPQ model.
The specifics of TPQ is that the microwave drive, together with the
hyperfine coupling and spin-lattice relaxation, couples the TEP spin
levels. The color code coincides with that in Fig. 1. The arrangement
of the states is of no importance.

where

�0 = 2 qd q2
r

3vd (3vd + qr )(3vd + 2qr )
,

ωs = ωhf

√
6vd (3vd + 2qr )

3vd + qr

, vd = qd + 1/Tsl (55)

are constants. The function f1(z) appeared earlier in PPR
model, see Eq. (42). It is plotted in Fig. 3 inset. It grows from
zero linearly and saturates to unity at z > 1. This translates
into the initially linear growth of �I/I and saturation to
ñPñT�0(λ RST /RSRT ) at ω1 > ωs .

Note that Eq. (54) represents the contribution from only
one species of polarons. To account for the other, charge-
conjugated species, a term similar to that in the right-hand side
of Eq. (54) must be included, with the corresponding values of
λ, �0, RST , RS , RT , and ωs .

IV. DISCUSSION AND SUMMARY

The present study of the magnetic resonance-induced
variation of singlet exciton recombination is based on the
description of spin dynamics and recombination by means of
stochastic Liouville equations. For the PPR model, we have
demonstrated a solution method yielding the answer in terms
of the eigenvalues of 4×4 complex Hamiltonian instead of
the solution of effectively 10×10 complex linear system of
stochastic Liouville equations. Analytical results supported by
the direct numerical solution of stochastic Liouville equations
are found in the limit of weak singlet recombination. The
microwave-induced spin-Dicke effect, stemming from the
backaction of recombination on the quantum dynamics of spin
pairs, is identified and described quantitatively.

We have considered a spin-lattice relaxation, uniform with
respect to the spin multiplicity. If the relaxation time is not
too short, the main effect of this relaxation is additive to that of
the dissociation and nonradiative recombination of the polaron
pairs. We have shown that it can influence the resonance lines
only at strong drive, whereas at weak drive it leads to the
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overall scaling of resonance amplitudes. Note in passing that
our approach naturally takes into account the dominant T2

processes originating from the random hyperfine interaction.
Our analysis excludes the exchange and dipolar interactions

between the spin pairs, although these interactions can be
readily included in the presented perturbative scheme. This
is done for the sake of simplicity, since our direct numerical
simulations show that the effect of these interactions is minor,
given that they do not exceed the average hyperfine coupling
strength [18].

The TPQ model is treated along the same lines. However,
calculations in this case are greatly simplified due to the
presence of relatively strong zero-field splitting of triplets,
making these states off resonance.

Concurring results are found from the PPR and TPQ models
at weak drive. Namely, if the TPQ reaction Eq. (46) is equally
probable for the electron and hole polarons, the line shapes
from the two models are the same for ω1 � ωhf and are given
by the sum of two Gaussians, Eq. (45).

More importantly, we uncover two substantial differences
in the predictions of the PPR and the TPQ models. First and
foremost, the dissimilar dependence of the microwave-induced
signal on the steady-state densities,

�I ∝ ñ2
P (PPR), �I ∝ ñSñPñT (TPQ), (56)

cf. Eqs. (19) and (54), respectively, leads to the remarkably
different results for the dependence of �I/I on the pho-
toexcitation power, PL. Far from saturation at high PL it is
reasonable to expect that ñS ∝ PL, ñP ∝ PL, and ñT ∝ PL

crossing over to ñT ∝ P 2
L. (The position of crossover depends

on the efficiency of the intersystem crossing from SE to TE and
the TE generation from nongeminate polaron pairs [31].) For
the TPQ model, this results in �I/I ∝ P 2

L to P 3
L, in contrast

to the PPR prediction, �I/I ∝ PL.
The second important difference between the predictions

of the two models comes from the fact that at the polaron
spin-1/2 resonance, TEs are mainly off resonance because of a
relatively strong zero-field splitting. As a result, the line shapes
and the saturation behavior from the two models are different at
strong drive. Specifically, the TPQ leads to the resonance lines
featuring a single maximum and relatively fast saturation of
�I/I to positive values at ω1 ≈ ωhf, much like in the ordinary
electron spin resonance. In contrast, the PPR model predicts
resonance lines with two maxima around the central dip at
ω1 � ωhf, evolving into the completely negative resonance
at ω1 	 ωhf, where �I/I saturates to negative values (see
Figs. 2 and 4). These differences are of relevance for resolving
the contributions of the two mechanisms experimentally via
continuous-wave PLDMR measurements.

Finally, we note that this study did not address the pre-
dictions for the observables which are measured using the
double-modulation (DM) PLDMR technique [6,8]. In this
technique the laser excitation power is modulated at certain
frequency fL, and a lock-in amplifier filters out the delayed
photoluminescence that is slower than fL. Therefore, by the
design, the DM-PLDMR measures only the prompt component
of the photoluminescence. The results obtained using the
DM-PLDMR [6,8] are independent of fL up to 100 kHz. In this
regard, we would like to note that our Eq. (56) offers a certain
prediction for DM-PLDMR. Namely, the proportionality of

�I to ñS renders the interpretation of the DM-PLDMR results
[4,6,8] in favor of the TPQ model. Further theoretical studies
aimed at more quantitative predictions for DM-PLDMR are
underway.
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APPENDIX A

In this Appendix we discuss the relation between the
stochastic Liouville equation (8) and an underlying Lindblad
equation, as well as elaborate on the rotating-frame transfor-
mation of Eq. (8).

1. Lindblad formulation of the PPR model

The most general Markovian quantum dynamics of an open
system can be described by a Lindblad equation [32]. In our
subsequent consideration of this formalism we will closely
follow Ref. [33]. In addition to the four spin-pair states T1,
T0, T−1, S, the full Lindblad description of the PPR would
require the introduction of the radiative singlet exciton and
free polaron states, Xrs and Xfp, respectively. The Lindblad
equation for the corresponding (6×6) full density matrix of
the system � is given by [33]

d�

dt
= i[�,H ] +

Nc∑
j=1

(
cj�c

†
j − 1

2
c
†
j cj� − 1

2
�c

†
j cj

)
, (A1)

with Nc system operators, cj . Here, the spin relaxation pro-
cesses involve 16 system operators, cαβ = (4Tsl)−1/2|α〉〈β|,
where α, β = T1, T0, T−1, S. Furthermore, according to the def-
inition of PPR model, Fig. 1, the recombination, dissociation,
and generation processes involve nine system operators: one
associated with the recombination, cr,S = √

kr |Xrs〉〈S|, four
with the dissociation, cd,α = √

kd |Xfp〉〈α|, and four more as-
sociated with the polaron pair generation, cg,α = √

g0|α〉〈Xfp|.
Now it is straightforward to check that the action of the first

16 system operators leads to the spin-lattice relaxation term
Eq. (11) of the reduced PP spin density matrix ραβ = 〈α|�|β〉:

〈α|
∑

j=α′β ′

(
cj�c

†
j − 1

2
c
†
j cj�− 1

2
�c

†
j cj

)
|β〉 = Rsl{ρ}αβ. (A2)

For the nine remaining system operators we have

〈α|
∑

k

(
ck�c

†
k − 1

2
c
†
kck� − 1

2
�c

†
kck

)
|β〉

= Rdr{ρ}αβ + g0〈Xfp|�|Xfp〉δαβ, (A3)
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where the summation runs over k = (r,S), (d,α), and (g,α).
Thus, the stochastic Liouville equation Eq. (8) emerges from
Eq. (A1) as the result of a physically transparent assumption
that the free polaron population is time-independent, and the
polaron pair generation rate, g = 4g0〈Xfp|�|Xfp〉, is constant.

2. Rotating-frame transformation of Eq. (8)

The rotating-frame transformation applied while going
from Eq. (8) to Eq. (9) implies the time-dependent unitary
transformation with the operator, U = exp[iωt(Sz

e + Sz
h)]. In

particular, for the density matrix we have ρ = UρLU †, where
ρ is the rotating-frame density matrix used throughout the
text and ρL is the laboratory-frame density matrix. For the
dissipative terms in the laboratory frame we have

Rdr{ρL} = −kdρL − kr

2
{�S,ρL},

Rsl{ρL} = − 1

Tsl
[ρL − tr(ρL/4)1],

where �S is the projection operator onto the singlet state and
{·,·} means the anticommutation. Applying the rotating-frame
transformation to Rsl{ρL} gives

URsl{ρL}U † = − 1

Tsl
[ρ − tr(ρ/4)1], (A4)

where we have used ρ = UρLU † and the invariance of the
trace, tr(ρL) = tr(ρ). In the case of Rdr{ρL} we get

URdr{ρL}U † = −kdρ − kr

2
{U�SU

†,ρ}

= −kdρ − kr

2
{�S,ρ}, (A5)

the last relation following from the invariance of projection
operator, U�SU

† = �S . The latter invariance means that the
rotating-frame transformation does not alter the spin multi-
plicity. This, in turn, can be seen by writing �S = 1/4 − SeSh

and using the vanishing commutator, [(Sz
e + Sz

h),SeSh] = 0,
leading to [U,�S] = 0.

Equations (A4) and (A5) establish the invariance of the
dissipative terms with respect to the rotating-frame transfor-
mation.

APPENDIX B

In this Appendix we investigate the steady-state Liouville
equation for the PPR model, Eq. (14). Because of the non-
Hermitian character of the Hamiltonian H, Eq. (12), the
calculation of tr U is specific. We introduce the eigenvectors
and eigenvalues, H|ψα〉 = εα|ψα〉, α = 1,..,4. As the non-
Hermitian Hamiltonian H is symmetric, the conjugated equa-
tion 〈ψα|H = εα〈ψα| holds for 〈ψα| = |ψα〉ᵀ, where the super-
script ᵀ means the transpose without a complex conjugation.
We normalize the eigenvectors with respect to this conjugation,
so that 〈ψα||ψα〉 = 1. It is also easy to check that the eigen-
vectors are orthogonal; 〈ψα||ψβ〉 ≡ ∑4

n=1 ψα(n)ψβ(n) = 0, if
εα �= εβ , whereas the degenerate case can be handled in the
standard way by choosing orthogonal vectors in the degenerate
subspace. Thus {|ψα〉}4

α=1 can be made a complete orthonormal
set. This ensures the partition of unity,

∑4
α=1 |ψα〉〈ψα| =

1, yielding tr U = ∑4
α=1〈ψα|U |ψα〉. The complex conjugate

vectors, |ψ∗
α〉 ≡ |ψα〉∗, obeying H∗|ψ∗

α〉 = ε∗
α|ψ∗

α〉, form an-
other orthonormal set, in general different from {|ψα〉}4

α=1.
With these conventions, from Eq. (15) we write

tr U =
4∑

α,β=1

〈ψα||ψ∗
β〉〈ψ∗

β ||ψα〉
i(εα − ε∗

β)
. (B1)

Treating the recombination term of the Hamiltonian (12), V =
−i(kr/2)�S , as a perturbation, we get

〈ψα||ψ∗
β〉〈ψ∗

β ||ψα〉 = δαβ + O(kr/�e,h)2 (B2)

and

εα = εα − i(wd/2) + Vαα + O
(
k2
r

/
�e,h

)
, (B3)

where εα are the eigenvalues of the Hamiltonian H , Eq. (9).
By observing that the ∼k2

r /�e,h correction in εα is real, from
Eqs. (B1)–(B3) we infer that omitting the inexplicit terms in
Eqs. (B2), (B3) induces only ∼(kr/�e,h)2tr U error in tr U .
Therefore, rather accurate results can be found by completely
neglecting the eigenvector corrections and keeping only the
leading corrections to εα . This is as much as we get from
Eq. (B1), because the degeneracy of H makes the simple
perturbation calculation inefficient.

Still, the explicit form of the unperturbed eigenstates of
H, |ϕα〉, which are the eigenvectors of H , is needed. In the
absence of the exchange and dipolar interactions, the individual
electron (μ = e) and hole (μ = h) polaron eigenstates are

|⇑〉μ = cos φμ|↑〉μ + sin φμ|↓〉μ,

|⇓〉μ = sin φμ|↑〉μ − cos φμ|↓〉μ, (B4)

where |↑〉μ, |↓〉μ are the electron- and hole-polaron spin-up and
-down states with the quantization axes along ẑ, and tan 2φμ =
ω1/ωμ is introduced. Then we have

|ϕ1〉 = |⇑〉e|⇑〉h, |ϕ2〉 = |⇑〉e|⇓〉h,
|ϕ3〉 = |⇓〉e|⇑〉h, |ϕ4〉 = |⇓〉e|⇓〉h. (B5)

The matrixVαβ = 〈ϕα|V |ϕβ〉, Eq. (23) in the main text, is found
by calculating the scalar products of |ϕα〉 with |S〉.

The degeneracy of H , controlling the strong drive regime,
corresponds to φμ ≈ π/4. Then Eqs. (2), (B4), and (B5) give

|ϕ1〉 ≈ 1
2 (|T+1〉 + |T−1〉 +

√
2 |T0〉),

|ϕ2〉 ≈ 1
2 (|T+1〉 + |T−1〉 −

√
2 |S〉),

|ϕ3〉 ≈ 1
2 (|T+1〉 + |T−1〉 +

√
2 |S〉),

|ϕ4〉 ≈ 1
2 (|T+1〉 + |T−1〉 −

√
2 |T0〉). (B6)

The vectors |ϕ1〉 and |ϕ4〉 are always the eigenstates ofH to the
leading order, whereas |ϕ2〉 and |ϕ3〉 are not such in the vicinity
of the degeneracy of H . On the other hand, the eigenvectors
of H̃ = H − i(wd/2)1 + Ṽ , where Ṽ is given by Eq. (28) in
the main text, are always the leading order eigenstates of H. In
addition, H and H̃ have the same eigenvalues within the first
subleading order. Thus, by virtue of the arguments presented
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after Eq. (B3), one can replace H by H̃ in Eq. (15) of the main
text and calculate tr U with a satisfactory precision, regardless
of the degeneracy. The calculation of tr U is facilitated by
fact that H̃ is diagonal in the (ϕ1,ϕ4) subspace, whereas the
contribution of the (ϕ2,ϕ3) subspace can be found by using the

formula

ei(xσx+yσz) = cos r + i(xσx + yσz) sin r/r, (B7)

where σx,z are the Pauli matrices, and r =
√

x2 + y2. This
gives

tr U = 4

kr sin2(φeh) + 2wd

+ 4

kr cos2(φeh) + 2wd

+ k2
r cos4(φeh)

[kr cos2(φeh) + 2wd ]
[
4ε2

2 + wd (kr cos2(φeh) + wd )
] , (B8)

where the first term comes from the (ϕ1,ϕ4), and the last two
terms from the (ϕ2,ϕ3) manifolds. Combining the first two
terms gives Eq. (29) of the main text.

APPENDIX C

In this Appendix we derive the rate β(δ,ω1), introduced in
Eq. (48) of the main text, in the limit of negligible exchange
and dipolar coupling between the TE and polaron spins, and
weak dissociation and recombination.

The basis spin states of a TEP complex can be given through
the direct product of a triplet and doublet states, as well as
through the direct sum of a quartet and doublet multiplets, via
the Clebsch-Gordan coefficients. In terms of the components,
T0, T±1, representing triplet excitons with spin projection 0 and
±1, respectively, and ↑, ↓ for polaron spin ±1/2, we have

|T+1↑〉 = Q3/2,

|T+1↓〉 =
√

1/3 Q1/2 +
√

2/3 D1/2,

|T0↑〉 =
√

2/3 Q1/2 −
√

1/3 D1/2,

|T0↓〉 =
√

2/3 Q−1/2 +
√

1/3 D−1/2,

|T−1↑〉 =
√

1/3 Q−1/2 −
√

2/3 D−1/2,

|T−1↓〉 = Q−3/2, (C1)

where Qk and Dk are the quartet and doublet states with the
spin projection k.

The 6×6 spin density matrix of an ensemble of TEP
complexes � can be treated by a stochastic Liouville equation.
Formally, the Liouville equation for � is found by rewriting
Eq. (8) with the following modifications:

(i) The rotating-frame spin Hamiltonian H is given by

H = ωPSz + H0,T + ω1(Ix + Sx), (C2)

where ωP is the polaron Larmor frequency, S = 1/2 and I = 1
are the polaron and TE spin operators, and

H0,T = ωT Iz + D
[
I 2
z − I (I + 1)

/
3
]

(C3)

is the free TE spin Hamiltonian with the TE Larmor frequency,
ωT = γT h̄(B0 + bz

T ) − ω, and the axial zero-field splitting
parameter D. (The transverse zero-field splitting is neglected
in the secular approximation.) We take equal gyromagnetic
ratios [4] of TEs and polarons; γT = γe,h.

(ii) The generation rate, second term in Eq. (8), is replaced
by (g/6)1, implying equal probability of the TEP generation
in six different spin states. Similarly, the factors of 1/4 in the
last terms of Eqs. (11) and (13) are replaced by 1/6.

(iii) The dissociation-recombination rates are denoted, re-
spectively, by qd and qr , so that Eq. (10) goes into

Rdr{�}αβ = −qd�αβ − qr

2

∑
σ=± 1

2

(δαDσ
+ δDσ β)�αβ, (C4)

implying a recombination from the doublet TEP states.
(iv) The second term in Eq. (12) is written as −i(vd/2)1,

where vd = qd + 1/Tsl, and, more importantly, the operator
�S is replaced by the projection operator onto the doublet,

�D = |D1/2〉〈D1/2| + |D−1/2〉〈D−1/2|. (C5)

We further assume that the TEP generation rate is propor-
tional to nT and nP, g = λnTnP, and that after dissociation
of a TEP complex, the constituent TE returns into the state
described by nT (see Fig. 6). The latter assumption allows us
to write the TEP counterpart of Eq. (16), βñT = g − qd tr�̃,
where g gives the rate of the decrease of nT due to the
generation of TEP, and the last term reflects the increase of
nT because of dissociation. By virtue of the full analogy with
PPR model, see Eq. (17), we write

β(δ,ω1) = λñP�(δ,ω1), � =
〈

1 − vd

6 trŪ

1 − 1
6Tsl

trŪ

〉
hf

, (C6)

where Ū is given by the TPQ counterpart of Eq. (15).
Despite that the TE and polaron gyromagnetic ratios are

taken to be the same [4], the majority of TE spins are off
resonance because of the relatively strong zero-field splitting.
In Eq. (C2) we have D = D0(3 cos2 θ − 1)/2, where θ is the
angle between the zero-field tensor principal z axis and ẑ, and
D0 � 500 G is measured for several polymer PPV derivatives
[4]. The portion of near-resonance TEs is ∼ω1/D0, and most
of these TEs are still off resonance because of the nonzero
TE hyperfine coupling. Therefore, we calculate trŪ to the
leading order in ω1/D0 and ωhf/D0, corresponding to the
perturbation

V̄ = −i(qr/2)�D + ω1(Ix + Sx). (C7)

The left-hand side states in Eq. (C1) are then the unperturbed
eigenstates. Because of the ∼D0 energy splitting between
|T+1↑,↓〉 and |T0↑,↓〉, and between |T−1↑,↓〉 and |T0↑,↓〉,
the matrix elements of V̄ , relevant to the leading order, are
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those between the same Ti states, explicitly given by

V̄ �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ω1
2 · · · ·

ω1
2 − iqr

3 · · · ·
· · − iqr

6
ω1
2 · ·

· · ω1
2 − iqr

6 · ·
· · · · − iqr

3
ω1
2

· · · · ω1
2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (C8)

The structure of the matrix (C7) indicates that the system
reduces to three two-level subsystems, which are decoupled in
the leading order. Further calculation of trŪ is done by using

Eq. (B7) for each of the three subsystems, yielding

trŪ = 2

vdr

+ 2vdr

[
v2

dr + ω2
P + ω2

1

]
[
v2

dr + ω2
P

][
v2

dr − q2
r

/
9
] + v2

drω
2
1

, (C9)

where vdr = vd + qr/3. The hyperfine average in Eq. (C6) is
over the Gaussian distribution of ωP, given by Eq. (5). By
expanding the denominator in Eq. (C6) over the small trŪ/Tsl

and using Eq. (C9) we get

�(ω1) − �(0) = �0

(
ω1

ωs

)2∫ ∞

−∞

dz√
π

exp(−z2)

z2 + (ω1/ωs)2
, (C10)

found by neglecting v2
dr/2ω2

hf � 1 in the denominator. This
integral happens to coincide with Eq. (42) for f1(z), leading to
the result, Eq. (54).
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