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Intersubband surface plasmon polaritons in all-semiconductor planar plasmonic resonators
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We theoretically discuss properties of intersubband surface plasmon polaritons (ISPPs) supported by the
system consisting of a multiple quantum well (MQW) slab embedded into planar resonator with highly doped
semiconducting claddings playing the role of cavity mirrors. Symmetric structures, where the MQW slab occupies
the whole space between the claddings and asymmetric structures, where the MQW occupy only half of the
space between mirrors, are considered. We focus mainly on the nearly degenerate structures where intersubband
frequency is close to frequency of the surface plasmon of the mirrors. The ISPP characteristics are calculated
numerically using a semiclassical approach based on the transfer matrix formalism and the effective-medium
approximation. The claddings are described by the lossless Drude model. The possibility of engineering the
dispersion of the ISPP branches is demonstrated. In particular, for certain parameters of the asymmetric structures
we observe the formation of the multimode ISPP branches with two zero group velocity points. We show that
the properties of the ISPP branches are reasonably well interpreted employing quasiparticle picture provided that
the concept of the mode overlap factor is generalized, taking into account the dispersive character of the mirrors.
In addition to this, we demonstrate that the lossless dispersion characteristics of the ISPP branches obtained
in the paper are consistent with the angle-resolved reflection-absorption spectra of the GaAlAs-based realistic
plasmonic resonators.

DOI: 10.1103/PhysRevB.97.035308

I. INTRODUCTION

Strong coupling between collective intersubband excitation
in a multiple quantum well (MQW) structure and the ground
photonic mode of the semiconductor microcavity (MC) leads
to the formation of coherent mixed modes termed intersubband
cavity polaritons. Such types of mode, named an upper polari-
ton branch and lower polariton branch, were first observed in
2003 as a double-peak structure in the angle-resolved mid-
IR absorption spectra of semiconductor MC with embedded
MQW [1].

The intersubband cavity polaritons have attracted great
attention of the research community. It is mainly due to the fact
that intersubband optoelectronic devices operating in a strong
coupling regime, i.e., when the coherent coupling overwhelms
the dissipative processes, have potential for applications. For
example, quantum cascade structures embedded in MC have
been used to demonstrate electrically pumped light-emitting
polaritonic devices in the mid-IR [2]. A road map for the
development of intersubband polariton LED and laser has
recently been suggested [3].

While the majority of work on the intersubband cavity
polaritons has explored all dielectric, hybrid metal-dielectric,
or double-metal [4–7] MCs, attention has also been paid to the
resonators in whichn-doped semiconductor layers play the role
of mirrors (see, e.g., [8–10]). It is mainly connected with the
fact that the presence of free carriers in semiconductor mirrors
leads to the reduction of their dielectric function. Owing to that,
such plasmonic mirrors can be substantially thinner compared
to purely dielectric mirrors. Additionally, they allow for the
electrical pumping of the intersubband polaritonic devices.

However, the presence of free electrons in the claddings
leads to the formation of a new type transverse magnetic (TM)
polarized surface plasmon polariton (SPP) modes. In the case

of the resonator with identical semi-infinite metallic/plasmonic
mirrors, theory predicts the formation of one symmetric
SPP mode SSPP(≡TM0) and one antisymmetric SPP mode
ASPP(≡TM1) [10–17]. We adopt the convention that the SSPP

and ASPP modes are referred to as plasmonic-type modes while
the higher TM modes supported by the resonator are treated as
the photonic-type modes.

The essential difference between the photonic- and
plasmonic-type modes is that plasmonic modes go asymptot-
ically (always from a low-frequency side [18]) towards the
surface plasmon frequency (ωsurf

p,mirr) of the isolated interface as
the in-plane wave vector k‖ approaches infinity. Moreover, the
ASPP mode, in contrast with the SSPP mode, has nonzero cutoff
frequency (ωcutoff

A ), i.e., the frequency at k‖ = 0. This frequency
increases, up to the mirror plasma frequency (ωp,mirr), with the
decreasing mirror separation (LMC).

Owing to the above-mentioned flexibility of the ASPP dis-
persion, Shin et al. [19] were able to design a metal-dielectric-
metal MC whose resonance frequency was practically inde-
pendent of the angle incidence of light and consequently of
k‖. Omnidirectional light emission via the ASPP mode has also
been reported [20,21].

It is obvious that when LMC is small enough then ωcutoff
A >

ωsurf
p,mirr. It means that the formation of the backward (with the

negative group velocity) and forward (with the positive group
velocity) antisymmetric SPP branches becomes possible. Such
branches have been observed experimentally in metallic [22]
and all-semiconductor [23] structures. Moreover, Law et al.
[24] have demonstrated all-semiconductor mid-IR plasmonic
absorbers based on the resonant excitation of the negative
group velocity branch. Recently, this branch has also been em-
ployed for frequency doubling of light in metallic waveguides
[25].
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In the lossless limit, the formation of the backward and for-
ward propagating branches is associated with the appearance
of the stopped-light mode, i.e., the mode with the zero group
velocity (ZGV) [26,27]. However, Reza et al. [28] have shown,
employing the complex-wave-vector picture, that the presence
of intrinsic loss in plasmonic claddings dramatically changes
the dispersion curves near slow-light regions. Fortunately, the
problems associated with the losses can be partially overcome
using, in contrast to the usual continuous-wave light, optical
pulses whose duration is shorter than the surface plasmon
decay [29,30]. In this way, the effects of losses can be loaded
not into spatial domain but into the time domain. Simulations
show that in the case of temporal losses, unlike the case of
the spatial losses, the formation of the ZGV points (in the
Re ω-k‖ plane) is possible even in the presence of the realistic
levels of dissipative loss [31]. It means that incident pulses,
with a central frequency near the ZGV point, can be stopped
in the sense that the center of the envelope does not drift
over time [32]. It is worth stressing that the presence of the
ZGV points provides a cavity-free feedback mechanism and,
furthermore, has the potential to confine lasing modes on
deeply subwavelength scale when gain is incorporated between
plasmonic claddings [32,33].

As mentioned, properties of the ASPP mode can be tuned
to a large extent by changing LMC or/and ωp,mirr. Thus, the
dispersion characteristics of the polariton branches, originating
from the coupling of the ASPP mode with electronic excitation,
should be also substantially modified by changing the above-
mentioned parameters. This suggestion is consistent with
the results reported in Refs. [18,34–36] where the metallic
resonators, uniformly filled with dielectric (cubic) material
possessing an electronic resonance, are studied theoretically
and experimentally, respectively. In particular, the authors of
[18] show that the formation of the ZGV point (more precisely
the minimum), in the dispersion curve of the exciton surface
plasmon polariton branches originating from the ASPP mode,
is possible. Such a minimum may serve as an effective trap for
exciton-polariton population at high nonresonant excitation of
the structure.

In light of the above discussion, it is apparent that the possi-
bility of the engineering of the dispersion of the intersubband-
SPP (ISPP) branches, in plasmonic resonators, seems to
be attractive from the viewpoint of intersubband polariton
optoelectronics but also because of the inherent interest of
their physical properties. However, in typical subwavelength
double-metallic resonators with embedded MQW (see, e.g.,
[4,6]) mirror plasma frequency ωp,mirr (and consequently the
surface plasmon frequency ωsurf

p,mirr) is much larger than ωIT

(= the frequency of the collective intersubband excitation
supported by isolated QW). Then, the resonant coupling of the
intersubband excitation with the SSPP mode is only possible
in such structures. On the other hand, in the systems studied
experimentally by Dupont et al. [8,9], the n-doped semicon-
ductor layers (with ωp,mirr � ωIT) play the role of the mirrors.
Consequently, intersubband excitation couples resonantly not
with the plasmonic-type modes but only with the photonic-
type modes located far above ωp,mirr [37,38]. Nevertheless,
it is reasonable to expect that the systems with n+-doped
semiconductor mirrors can be designed so as to achieve an
interesting situation when ωIT = ωsurf

p,mirr ≈ ωcutoff
A . It is obvi-

FIG. 1. Diagram illustrating schematically the geometry of the
structures discussed in the paper: (a) the three-layer structure and
(b) the four-layer structure.

ous that in degenerate structures (ωIT = ωsurf
p,mirr = ωcutoff

A ) the
strong (near) resonant coupling of the intersubband excitation
with the antisymmetric (for arbitrary k‖) and symmetric (but for
sufficiently large k‖) plasmonic-type modes should be possible.

The above suggestion is consistent with the theoretical study
reported in Ref. [39]. The authors of this paper predicted strong
coupling interactions between the intersubband excitation and
the high-k‖ plasmonic-type modes [17] of realistic hyperbolic
metamaterials consisting of n+-doped InGaAs layers and
embedded (GaAlAs) MQW slabs. It is also worth noting
that a strong coupling between intersubband excitation and
the plasmonic-type modes (or more precisely the so-called
“epsilon-near-zero” mode [40]) supported by thin n+-doped
semiconductor layer has also been recently reported [41].

This paper provides a detailed theoretical analysis of the
properties of the ISPPs branches originated from the SSPP

or/and ASPP modes in (nearly degenerate) all-semiconductor
plasmonic resonators. We want to stress that in contrast with the
earlier papers discussing the resonant coupling between elec-
tronic excitation and surface plasmon polariton modes (see,
e.g., [18,34]), we do not restrict our discussion to the simplest
three-layer geometry, where (cubic) optically active material
occupies the whole space between the mirrors. To demonstrate
an important role of the symmetry of the resonators in the
formation of the multimode ISPP branches (i.e., the branches
containing more than one resonator mode [38]), the case of
the (asymmetric) four-layer structure shown in Fig. 1(b) is
additionally discussed. In this structure, only half of the space
between the mirrors is occupied by an active material.

As in our previous papers [37,38], the semiclassical ap-
proach based on the transfer matrix formalism and the
effective-medium approximation will be employed. The
claddings are described by the Drude model. For convenience,
calculating the semiclassical dispersion characteristics of the
ISPP we neglect, as in Ref. [18], the effects connected with
Ohmic losses. Moreover, to get a deeper insight into considered
in this work problems we additionally interpret the ISPP
characteristics with the help of a simplified quasiparticle
(polaritonic) model.

Employing both approaches, we demonstrate, for example,
that due to the strong anisotropy of the intersubband excitation,
the main conclusions of Ref. [18] are not valid in the case
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of the ISPP branches supported by the three-layer structure.
We also demonstrate that the dispersion characteristics of
the ISPP branches supported by the asymmetric four-layer
structures are dramatically affected by the formation of the
multimode branches (with a comparable admixture of the
two resonator modes). It is worth noting that the similar-type
multimode excitonic polaritons have been measured in coupled
semiconductor planar MCs [42,43]. Results reported in these
papers (see also [44,45]) indicate that physics of multimode
polariton branches should be substantially richer than polariton
branches occurring due to the single-mode coupling, i.e., the
coupling of a single cavity mode with a single electronic
excitation.

As mentioned, calculating the dispersion characteristics we
neglect losses. It is well known that the omission of the losses
does not affect substantially the cavity-polariton characteristics
when the coupling mechanism dominates competing loss
mechanism. It practically corresponds to the strong coupling
regime. We illustrate the usefulness of the lossless characteris-
tics discussed in this paper showing that, to a large extent, they
are consistent with the angle-resolved reflection-absorption
spectra of the GaAlAs-based realistic structures. We show also
that, in the case of the asymmetric structures, the relative height
of absorption peaks is strongly sensitive to the location of the
MQW slab with respect to the coupling mirror. The effect is
qualitatively similar to that observed in coupled semiconductor
MCs with a QW located in one of the MCs [42,43,46].

The above findings indicate that it is reasonable to expect
that the results reported in this paper will be useful for the
analysis of the spectral response and temporal characteristics of
the ISPP branches supported by plasmonic resonators. We also
suppose that even in the case when spatial damping plays an
essential role, the lossless characteristics can be of significance
as a fundamental reference.

The paper is organized as follows. Section II presents the
description of two types of structures studied in this work.
The theoretical framework is given in Secs. III and IV. The
characteristics of the electromagnetic modes supported by
the passive (i.e., without intersubband excitation) and active
structures are presented in Secs. V and VI, respectively. Finally,
in Sec. VII we conclude our findings. Appendices A–C contain
intermediate analytical results employed in Secs. V and VI. The
manifestation of the ISPP branches in the reflection-absorption
spectra of the three- and four-layer realistic structures is
presented and discussed in Appendix D.

II. DESCRIPTION OF THE STRUCTURES

All-semiconductor resonators considered in this paper are
modeled by three- and four-layer (to be more specific, three-
and four-media) structures. They are presented in Fig. 1. In
both types of structures, the semi-infinite regions |z| > LMC/2
are occupied by n+-doped semiconductor claddings playing
the role of mirrors.

In the three-layer (symmetric) structure, the whole space
between mirrors is occupied by the MQW slab. In the four-layer
(asymmetric) structure, the space between mirrors is occupied
by two different layers: the spacer slab and the MQW slab.
They have the same thickness (LMC/2). The dielectric slab

forming the spacer layer is described by an isotropic relative
dielectric constant εspac.

The MQW slab is modeled by a uniaxial uniform effec-
tive medium characterized by the diagonal dielectric tensor
with frequency-dependent components εMQW,xx = εMQW,yy

and εMQW,zz. As mentioned, we omit dissipation. For conve-
nience, we also neglect an intrasubband excitation as well as a
small dielectric mismatch between the spacer, the barrier, and
well materials. In this limit we get [47]

εMQW,xx = εw = εspac, (1)

εMQW,zz = εw

(
ω2 − ω2

IT

)/(
ω2 − ω∗2

IT

)
, (2)

where ω∗2
IT = ω2

IT − � 2
p,MQW, � 2

p,MQW = fITω2
p,MQW,

ω2
p,MQW = Nse

2/dMQWm∗
wε0εw, fIT is the oscillator strength

connected with the intersubband transition, dMQW (LMQW) is
the period (thickness) of the MQW, ε0 (εw) is the vacuum
(the well material) dielectric constant, m∗

w is the electron
effective mass in the well material, and Ns is the surface
electron concentration in the QW. (We work in the two-subband
approximation and assume that only the ground subband is
occupied.) Moreover, the frequency ωIT corresponds to the
frequency of the intersubband Coulomb modes supported by
an isolated QW while the frequency ω∗

IT coincides with the
frequency of the intersubband plasmon propagating along x

axes of the infinite MQW [37].
The cladding (mirror) material will be described by a Drude-

type dielectric function

εmirr(ω) = εc

(
1 − ω2

p,mirr/ω
2
)
, (3)

where ωp,mirr = (NDe2/m∗
cε0εc)1/2 is the plasma frequency of

the cladding, εc (m∗
c ) is the background dielectric constant

(electron effective mass) of the claddings, and ND is the doping
density of the cladding material.

In order to minimize the number of relevant parameters,
we concentrate on single-material plasmonic resonators where
relations εc = εw and m∗

c = m∗
w are approximately valid. In

such systems, the ratio ωsurf
p,mirr/ωp,mirr takes the value of 1/

√
2.

(In the general case, i.e., for εc �= εw we have ωsurf
p,mirr/ωp,mirr =

1/
√

1 + εw/εc.) Single-material resonators can be grown us-
ing molecular beam epitaxy which is a natural technique for
growing high-quality plasmonic resonators with embedded
QWs [48].

The simplifications described above are approximately
fulfilled, for example, in GaAs-based resonators (see, e.g.,
[10]). In such structures, the expression for ωp,mirr can be
written (taking εw = 10.9 and m∗

w = 0.066 m0, where m0 is
the free-electron mass) as

ωp,mirr(meV) ∼= 43.8 × N
1/2
D (1018 cm−3). (4)

For the largest attainable doping level (ND = 5.5 ×
1018 cm−3) in GaAs [49], we get ωp,mirr

∼= 102.7 meV/h̄ and
ωsurf

p,mirr
∼= 72.62 meV/h̄ (for single-material resonators). The

experimentally obtained value of the plasma frequency, for the
above-mentioned value of ND , is slightly smaller ωp,mirr

∼=
96.8 meV/h̄ (ωsurf

p,mirr
∼= 68.4 meV/h̄) [50]. This difference is

due to the fact that writing Eq. (4), for simplicity, we have
neglected the energy dependence of the (optical) effective
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mass in GaAs [51]. A larger value of the mirror plasma
frequency can be obtained, for example, replacing GaAs
by InGaAs, InAsSb [24,39,41,48,51,52], indium tin oxide
(ITO) [33], or ZnO [23]. It is worth also noting that fabri-
cation of n+InAsSb-GaSb-n+InAsSb plasmonic resonators,
with ωp,mirr

∼= 230 meV/h̄, has recently been reported [53].
Larger than 5 × 1018 cm−3 electron concentration in GaAs
can be also achieved employing ultrafast optical excitation of
photocarriers [54].

III. SEMICLASSICAL APPROACH

A. Transfer matrix formalism

The resonators described in the previous section can be,
in general, considered layered structures located between
semi-infinite lower (substrate, j = 0) and upper (ambient,
j = m + 1) media with the relative dielectric constant εj=0 =
εs and εm+1 = εa , respectively, where m = 1,2,3 . . . counts
the layers of the structures with thickness Lj .

The electric (E) and magnetic (H) fields of the radiation are
taken in the form

E(x,z,t) = [Ex(z),0,Ez(z)]ei(kxx−ωt), (5)

H(x,z,t) = [0,Hy(z),0]ei(kxx−ωt), (6)

where kx(≡k‖) is the in-plane wave vector. We assume that kx

is a real quantity.
The complex amplitudes of the magnetic field correspond-

ing to the waves traveling in the positive (+) and negative (−)
z directions are denoted by H

(j )
σ+ and H

(j )
σ−, respectively, with

σ = l,u. The subscript l (u) indicates that the amplitude is
taken with respect to the plane separating the media j and
j + 1 (j − 1 and j ). The relation between amplitudes of
the magnetic field in the j = 0 (substrate) and j = m + 1
(ambient) media may be written as [47][

H
(0)
l+

H
(0)
l−

]
= T

[
H

(m+1)
u+

H
(m+1)
u−

]
, (7)

where T = I0,1L1I1,2 . . . LmIm,m+1 is the transfer matrix of the
structure. Matrix Iκ,j ≡ I(rκ,j ), accounting for the interface
between the media (layers) κ and j (=κ + 1), is given by

I(rκ,j ) = I−1(rj,κ ) ≡ 1

tκ,j

[
1 rκ,j

rκ,j 1

]
, (8)

where rj,κ (tκ,j ) is the Fresnel reflection (transmission) coeffi-
cient.

Matrix Lj , describing the propagation through the j th layer,
is given by

Lj =
[
e−ikj,zLj 0

0 eikj,zLj

]
, (9)

where kj,z is the normal component of the wave vector in the
j th medium. In the approximation used here we get [10,37,47]

kν,z =

⎧⎪⎪⎨
⎪⎪⎩

√
εw

(
K2 − k2

x/εMQW,z

)
, ν = MQW√

εmirrK2 − k2
x, ν = mirr√

εwK2 − k2
x, ν = spac

(10)

where K = ω/c and c is the speed of light in the vacuum. In
further discussion the quantity kν,z, defined by Eq. (10), will
be represented as iαν .

B. Characteristic equations

The characteristic equation for electromagnetic modes sup-
ported by the multilayer structure can be obtained from the
requirement that no light incidents on the MC from outside.
Employing this requirement, we get T11 = 0 [37,38]. It implies
the following eigenequation for the four-layer structure [55][

1 + tanh

(
αspac

LMC

2

)
αspacεmirr

εspacαmirr

]

×
[

1 + tanh

(
αMQW

LMC

2

)
αmirrεspac

εmirrαMQW

]

+
[

1 + tanh

(
αspac

LMC

2

)
αmirrεspac

εmirrαspac

]

×
[

1 + tanh

(
αMQW

LMC

2

)
εmirrαMQW

αmirrεspac

]
= 0. (11)

When we replace the spacer layer by the MQW slab, then
the above equation transforms into the eigenequation for the
three-layer structure:

tanh

(
αMQW

LMC

2

)
= −

(
αmirrεspac

εmirrαMQW

)±1

. (12)

The ± signs, in Eq. (12), correspond to the symmetric and
antisymmetric modes, respectively. [The symmetry is defined
with respect to the z component of the electric field Ez(z).]

Let us assume that, like in the structure discussed in
Appendix D, the transmission through one of the mirrors (the
coupling mirror) can be taken as nonzero. Then, the absorp-
tance (equal to the fraction of the incident energy absorbed)
of the structure is given by A = 1 − |r|2 where r = T21/T11 is
the complex reflection coefficient of the structure [37,47].

To make our results as general as possible, we introduce,
following [10,17], dimensionless (normalized) quantities

z̄ = zk⊥, k̄x = kx/k⊥, ᾱν = αν/k⊥, ω̄ = ω/ω⊥,

ω̄IT = ωIT/ω⊥, ω̄p,mirr/MQW = ωp,mirr/MQW/ω⊥, (13)

where k⊥ = π/LMC and ω⊥ = πc/LMC
√

εw. The normaliza-
tion frequency ω⊥, appearing in Eq. (13), coincides with the
cutoff frequency of the TM1 mode supported by the MC with
perfect mirrors [see Eq. (B15)].

One finds that in the case of a single-material resonator, the
following useful relations are valid:

ᾱ2
spac = k̄2

x − ω̄2, (14)

ᾱ2
mirr = ᾱ2

spac + ω̄2
p,mirr, (15)

ᾱ2
MQW = ᾱ2

spac + k̄2
x�̄

2
p,MQW/

(
ω̄2 − ω̄2

IT

)
, (16)

εmirr = εw

(
1 − ω̄2

p,mirr/ω̄
2
)
. (17)

Moreover, in the case of GaAs-based resonators we get

ω⊥(meV) ∼= 187.8 × L−1
MC (μm), (18)

ω̄p,mirr
∼= 0.23 × N

1/2
D (1018 cm−3)LMC (μm). (19)
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IV. ANALYTIC MODEL

In addition to the numerical study, based on the dispersion
equations (11) and (12), we will give a simplified analytical
description of the ISPP branches. It is based on the quasiparticle
picture and employs the concept of the generalized mode
overlap factor. The single and multimode couplings will be dis-
cussed. The latter case corresponds to the situation where two
or more resonator modes are simultaneously involved in the
formation of the ISPP branches [38].

A. Strong coupling between cavity mode and intersubband
excitation: Microscopic approach

It is well known that a rigorous description of strong
coupling requires a quantum-mechanical model not only for
the intersubband excitation, but also for the resonator modes.
Such a fully quantum-mechanical approach has been used in
Ref. [5] (see also [56]) for the discussion of the intersubband
cavity polariton supported by semiconductor MCs. Results
reported in Ref. [5] indicate that, due to the collective nature
of the intersubband excitation, the dipole representation of the
Coulomb gauge is particularly suitable to describe such an
excitation. One of its advantages is that the interwell coupling
is mediated entirely by the cavity photons.

In what follows, we employ the fact that when we work in
the above-mentioned gauge, the coupling strength of the col-
lective intersubband excitation and the nth photonic mode sup-
ported by the semiconductor MC can be treated as proportional
to the spatial overlap integral

∫
MQW(ε0εw)−1Dn,zPMQW,zdz

[5,57]. Here, PMQW is the microscopical average intersubband
polarization density of the MQW slab and Dn the displacement
field corresponding to the nth photonic mode. Since the
intersubband transitions are associated with a dipole oscillation
along the growth direction z, only the components Dn,z and
PMQW,z appear in the overlap integral.

The phenomenon of the vacuum Rabi splitting comes from
interaction of the vacuum field of the resonator with electronic
excitation. It means that calculating the above-mentioned
overlap integral we should correctly normalize the function
Dn,z. Namely, the total electromagnetic field energy (per unit
area) of the nth mode (U total

n ) should coincide with h̄ωn/2. In
other words, |Dn,z|2 should be divided by the normalization
factor αn given by [5,58]

αn = 1

h̄ωn

∫ ∞

−∞
dz{[ε0ε(z)]−1|Dn(z)|2 + μ0|Hn(z)|2}

= 2

h̄ωn

∫ ∞

−∞
dz{[ε0ε(z)]−1|Dn(z)|2}, (20)

where Hn is the magnetic field of the nth mode, μ0 is the mag-
netic constant of the vacuum, and ε(z) is the spatial-dependent
dielectric function of the resonator. (Note that having Dn,z

we can calculate Dn,x and Hn,y employing relations given in
Appendix B.)

Below, we generalize the above normalization procedure on
the case of the plasmonic-type modes. In Sec. IV we present
numerical results showing that, obtained in this way, ISPP
characteristics are consistent with the characteristics predicted
by the semiclassical approach described in Sec. III.

B. Single-mode coupling: Basic concepts

In this section we focus on the three-layer (symmetric)
structures assuming that the physics devoted to the formation
of the ISPP branches is well captured by the single-mode
cavity approximation. It means that each resonator mode
originates only two (upper and lower) ISPP branches. Below,
we derive secular equation describing the properties of the
above-mentioned branches.

1. Bright and dark intersubband excitations

Discussing the strong coupling between the cavity modes
and intersubband excitations supported by the QWs embedded
into the resonator, it is convenient to introduce a useful concept
of the bright and dark intersubband excitations. A simplified
formulation of this concept has been discussed in our previous
paper [38] (see also [59]). Such a formulation is sufficient for
our purpose. (Rigorous justification of the approach developed
in Ref. [38] can be found in Refs. [56,60].)

Let us denote the intersubband (polarization) state of the
ιth QW (located at z = zι, ι = 1,2,3 . . . NQW) by PQW

ι . For
convenience, the in-plane wave vector k̄x will be omitted. We
focus on the description of the coupling between the above-
mentioned QWs and the resonant cavity mode (nres) having
the frequency ωnres ≈ ωIT. This description simplifies greatly
when we introduce, like in Ref. [38], the following new bases
for the intersubband states supported by the whole MQW slab:

P MQW
μ,nres

=
NQW∑
ι=1

C(μ,nres)
ι PQW

ι . (21)

The quantities P MQW
μ,nres

’s (μ = 1,2,3 . . . NQW) represent the
intersubband excitations delocalized over the NQW quantum
wells according to the specific coherent linear combinations
of the original single-well states PQW

ι .
For the so-called bright excitation (μ = 1), associated with

the resonant mode, we take

C(1,nres)
ι = fnres,z(zι)

/√√√√NQW∑
ι=1

∣∣fnres,z(zι)
∣∣2, (22)

where the (dimensionless) mode function fnres,z(z) describes
the spatial variation of Dnres,z (see Appendix B).

The remaining NQW − 1 dark states P
MQW
μ′,nres

(μ′ =
2,3,4 . . . NQW ) are characterized by the NQW component
vectors C(μ′,nres) which are orthogonal to the vector C(1,nres).
It means that the dark excitations (P MQW

μ′,nres
) do not couple to the

mode nres [38,56].
The above discussion suggests that (when we work in

the single-mode cavity approximation) it is very convenient
to model the electronic system by the (effective/collective)
excitations corresponding, not to the individual QWs, but to
the (degenerate and delocalized over the whole MQW) the
bright (P MQW

1,nres
) and dark (P MQW

μ′,nres
) intersubband excitations.

In further discussion, we employ the fact that the semiclas-
sical approach discussed in Sec. III, as well as the quantum-
mechanical approach developed in Ref. [5], is based on the
long-wavelength approximation. In other words, we can as-
sume that Dz, associated with electromagnetic field interacting
with intersubband excitations, varies slowly on the period of
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the MQW slab (dMQW). Consequently, the spatial averaging
(over the MQW period) of the localized intersubband polariza-
tion supported by the wells is justified (for details, see [47]).
Employing this simplification one finds that, in the case of
the structures with large number of the wells (NQW 
 1), the
spatial variation of the (averaged) intersubband polarization,
associated with the bright excitation P1,nres , can be described
by the mode function fnres,z.

2. “Diagonal” coupling and in-gap polariton branches

Let us assume for simplicity that the MQW slab (with
NQW 
 1) occupies the whole space between a nearly perfect
metallic mirror and that the ground cavity mode is reso-
nant with intersubband transitions (nres = TEM). Then, the
(averaged) spatial variation of the bright excitation P

MQW
1,TEM

coincides with the spatial variation of the ground resonator
mode. Since mirrors are perfect, cavity modes vanish outside
the region occupied by the MQW (i.e., in the mirrors). It implies
that the (averaged) spatial variations of the dark excitations
P

MQW
μ′=2,3...NQW,TEM coincide with the spatial variations of appro-

priate higher cavity modes TMμ′=2,3...NQW . Thus (restricting for
simplicity to the RWA), one finds that the system Hamiltonian,
written in the basis P

MQW
μ,TEM, will have a block-diagonal form.

Equivalently, we can say that a separate 2 × 2 Hamiltonian
[leading to the secular equation having the same form as
Eq. (34)] is only needed for each (ground or excited) cavity
mode. It means that, in addition to the resonant coupling
between the transverse electromagnetic (TEM) mode and the
bright excitation P

MQW
1,TEM, also the nonresonant coupling of the

dark intersubband excitations P
MQW
μ′,TEM with higher photonic

modes TMμ′ has to be considered. Since the above-mentioned
couplings take place between the photonic modes and the
intersubband excitations having the same spatial variation, it is
reasonable to speak about the nonresonant “diagonal” coupling
[38]. The presence of such coupling can be associated with
the formation of weakly dispersive (higher-order) intersubband
polariton branches. They are located slightly below ωIT, i.e.,
in the polariton gap region. In the literature, these branches are
named as the in-gap polaritons [61]. They contain a very small
admixture of higher photonic modes [38,61]. (We assume that
the coupling frequency with higher modes is much smaller than
the cavity-mode separation.)

It is obvious that the penetration of the cavity mode into
the mirrors leads to the violation of the single-mode cavity
approximation. Fortunately, in the case of typical symmetric
structures, consequences resulting from the violation of the
single-mode coupling can be neglected in the first approxima-
tion (see Sec. IV C 1).

3. Secular equation and the generalized mode overlap factor

a. Nondispersive mirrors. The description of the vacuum
Rabi splitting simplifies dramatically when intersubband exci-
tation couples resonantly only with the TEM mode (i.e., nres =
TEM). It is connected with the fact that DTEM = |DTEM,z| =
const in the region occupied by the MQW and DTEM = 0
outside this region, i.e., inside the mirrors. Then, we can
speak about the perfect overlap of the (averaged) intersubband

polarization associated with the bright excitation P
MQW
1,TEM and

the TEM mode field.
The fully quantum-mechanical approach or semiclassical

approach leads to the following secular equation for the
intersubband polariton branches originating from the TEM
mode in the three-layer structure [5,37]:(

ω̄2 − ω̄2
TEM

)(
ω̄2 − ω̄2

IT

) = 4ω̄2
TEM�̄2

R,TEM, (23)

where ω̄TEM = k̄x is the (normalized) frequency of the TEM
mode [see Eq. (B15)]. For the (normalized) coupling frequency
�̄R,TEM = �R,TEM/ω⊥ we get the expression �̄R,TEM =
�̄p,MQW/2 where �̄p,MQW is defined in Sec. II. [We would
like to stress that Eq. (23) is not based on the random wave
approximation (RWA).]

In the case of the structures with realistic mirrors, the
above-mentioned overlap is not perfect. It is associated mainly
with the penetration of the cavity mode into the region occupied
by the mirrors. Moreover, we should also remember that the
relation Dn = |Dn,z| is not valid even in the case of the
ground mode. The consequences of these facts can be included
employing the concept of the mode overlap factor. The formula
for this factor was first reported heuristically in Refs. [56,59]
(see also [62]).

Taking into account the normalization procedure of the
cavity field described above [(see Eq. (20)] as well as em-
ploying the concept of the bright intersubband excitation
corresponding to the resonant photonic mode one finds that
the secular equation (23) for the TEM mode can be extended
in the case of the structure with nonperfect dielectric mirrors in
the following way. Namely, ω̄TEM should be replaced by ω̄nres

(= the normalized frequency of the resonant cavity mode).
Moreover, �̄R,TEM should be replaced by the (normalized)
coupling frequency �̄R,nres , corresponding to the resonant
mode. This frequency can be written as a product �̄R,nres =
�̄R,TEM�

1/2
nres,z where the mode overlap factor �n,z is defined

by [5,56,59,62]

�n,z ≡ U
spac
n,z

U total
n

=
∫

spac ε−1
w |Dn,z(z)|2dz∫ ∞

−∞ ε−1(z)|Dn(z)|2dz
. (24)

Here, U
spac
n,z is the electromagnetic energy contained in the z

component of the displacement Dn in the spacer layer, i.e., in
the region occupied by the MQW.

We would like to stress that the factor �n,z describes
the reduction of the coupling frequency resulting from the
penetration of the cavity mode into the mirrors as well as takes
into account the anisotropy of the intersubband excitation. It
is manifested by the fact that, compared to the normalization
factor αn [see Eq. (20)], the quantity �n,z is additionally
controlled by the spatial variation ofDn,z in the region occupied
by the MQW slab. Thus, the quantity �n,z can be called the
“projected” nth-mode overlap factor. In the idealized case of
perfect dielectric mirrors, Eq. (24) simplifies to the form

�
perf
n,z = k̄2

x/
(
k̄2
x + n2). (25)

b. Dispersive mirrors. Now we assume, motivated by the
papers [57,58,60,63–65], that the concept of the mode overlap
factor developed for the photonic-type modes can be adapted
for the plasmonic-type modes. It means that the generalized
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secular equation, corresponding to the N th plasmonic mode,
can be taken in the following form:(

ω̄2 − ω̄2
N
)(

ω̄2 − ω̄2
IT

) = 4ω̄2
N �̄2

R,N , (26)

where ω̄N is the normalized frequency of the N th plasmonic
mode. The coupling frequency �̄R,N (corresponding to the
N th mode) can also be written as a product

�̄R,N = �̄R,TEM�
1/2
N ,z. (27)

The overlap factor appearing in this equation is defined as
�N ,z = U

spac
N ,z /U total

N where U
spac
N ,z is the electromagnetic energy

contained in the z component of DN in the spacer-layer region.
U total

N is the total electromagnetic energy.
Although the formal expression for the mode overlap factor

is the same as for structures with dispersive and nondispersive
mirrors, it is essential to include the fact that Eq. (20) is not valid
for dispersive media. Following [12,63,66,67], the expression
for the energy density associated with the N th mode is taken
in the form

UN (z) = 1

2

{
1

ε0ε2(z,ωN )

∂[ω′ε(z,ω′)]
∂ω′

∣∣∣∣
ω′=ωN

|DN (z)|2

+μ0|HN (z)|2
}
, (28)

where HN is the magnetic field of the N th plasmonic mode.
The spatial-dependent dielectric function ε(z,ω) characteriz-
ing the structure is defined by Eq. (B4).

Calculating the total energy U total
N = ∫ ∞

−∞ UN (z)dz we can
eliminate |HN (z)|2 appearing in Eq. (28) employing the iden-
tity derived by Chang and Chuang [see Eq. (11) in Ref. [64]].
Performing appropriate manipulations we get

U total
N =

∫ ∞

−∞

1

ε0εg(z,ωN )
|DN |2dz, (29)

where

1

εg(z,ωN )
= 1

ε(z,ωN )
− ωN

2

∂

∂ω′
1

ε(z,ω′)

∣∣∣∣
ω′=ωN

. (30)

Substituting Eqs. (B4) and (3) into Eq. (30) we obtain

εg(z,ωN ) =
{

εw for |z| < LMC/2,

ε2
mirr(ωN )/εw for |z| > LMC/2.

(31)

If we take into account (31) and employ the fact that due
to the symmetry of the structure |DN (z)| = |DN (−z)|, the
expression for the total energy (29) simplifies to

U total
N = 2

ε0

[
1

εw

∫ LMC/2

0
|DN |2dz + εw

ε2
mirr(ωN )

∫ ∞

LMC/2
|DN |2dz

]

= 2
∫ ∞

0
ε0εw|EN |2dz. (32)

It is worth noting that the described above normalization proce-
dure is consistent with the results reported in Ref. [68] (see also
[69–71]) where a Hamiltonian formulation of electromagnetic
fields in dispersive structured media has been used.

Employing Eqs. (29)–(32), we find that the expression for
the generalized mode overlap factor �N ,z = U

spac
N ,z /U total

N can

be rewritten as

�N ,z =
∫ LMC/2

0
|EN ,z|2dz/

∫ ∞

0
|EN |2dz. (33)

c. The two-coupled-oscillator model. When the dimension-
less coupling factor gN = �̄R,N /ω̄IT is small (�0.1) and
simultaneously k̄x is close to its resonant value k̄res

N (at which
ω̄N = ω̄IT), Eq. (26) is well approximated by a secular equation

(ω̄ − ω̄N )(ω̄ − ω̄IT) = (
�̄res

R,N
)2

, (34)

predicted by the commonly used two-coupled-oscillator model
(based on the RWA). Note that in this approximation we
neglect k̄x dependence of the coupling frequency, i.e., we
replace �̄R,N by �̄res

R,N = �̄R,N (k̄N = k̄res
N ). Both equations

(26) and (34) predict the anticrossing behavior of the ISPP
branches when ω̄N is close to ω̄IT. However, it is worth
stressing that the polariton branches resulting from Eq. (26)
are slightly red-shifted with respect to the results predicted
by a simplified Eq. (34). For example, employing Eq. (26)
one finds that at k̄x = k̄res

N , the (normalized) frequency of the
upper (NU

ISPP) and lower (N L
ISPP) ISPP branches can be written

as ω̄res
NU/L

ISPP

= ω̄IT(1 ± 2gres
N )1/2 where gres

N = gN (k̄x = k̄res
N ). On

the other hand, using Eq. (34) we get ω̄res
NU/L

ISPP

= ω̄IT(1 ± gres
N ).

It means that only in the limit gN � 0.1 the frequencies ω̄res
NU/L

ISPP

are nearly symmetrically positioned with respect to ω̄IT. The
resonant branch separation 
̄res

NISPP
= ω̄res

NU
ISPP

− ω̄res
N L

ISPP
coincides

then with the double value of the resonant coupling frequency

̄res

NISPP
= 2�̄res

R,N . Moreover, Eq. (26), in contrast with simpli-
fied Eq. (34), predicts the formation of the polariton gap. For
illustration, when ω2

IT � (ωsurf
p,mirr)

2 we get a well-known result.
Namely, in the case of the ISPP branches originating from the
SSPP mode, the polariton gap is positioned between ω∗

IT and
ωIT [5,37] (see also Fig. 9).

As mentioned, writing Eq. (33) for the generalized mode
overlap factor we have considered the (symmetric) three-layer
structures. It is obvious that in the case of the (asymmetric)
four-layer structures, i.e., when only half of the space between
the mirrors is occupied by the MQW, the corresponding overlap
factor �N ,z (≡�

asymm
N ,z ) is smaller than one obtained for the

symmetric structure �N ,z (≡�
symm
N ,z ) . Employing the equality

|EN (z)| = |EN (−z)|, we find that �
asymm
N ,z = �

symm
N ,z /2.

A more general case, when QWs are arbitrarily located
between the mirrors couple with the N th mode, is briefly
discussed in Appendix A.

C. Multimode coupling in four-layer structures

So far we have assumed that the physics devoted to the
formation of the ISPP branches is well described by the
single-mode cavity approximation. It has a very good justi-
fication in the case of the three-layer systems with perfect
mirrors. In general, this approximation works well also in
the realistic systems provided that the coupling frequency
is substantially smaller than the separation between cavity
modes. We know, however, that in plasmonic resonators,
the separation between the plasmonic modes decreases with
increasing k̄x . Consequently, the condition when the resonant
coupling frequency is comparable with the plasmonic mode
separation can be relatively easily achieved at k̄x � 1. It means
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that in the case of the asymmetric plasmonic resonators, the
formation of (hybrid) multimode ISPP branches containing
simultaneous admixture of the SSPP and ASPP modes should
be also considered. In other words, we should go beyond
the single-mode approximation or more precisely beyond
“diagonal” coupling. Below, we present (employing the RWA)
a simplified description of the formation of such hybrid-type
branches in the degenerate four-layer structures.

1. “Nondiagonal” coupling

Let us assume that the spatial extent of the cavity modes
substantially exceeds the MQW thickness (LMQW). It takes
place when LMQW is substantially smaller than LMC or/and
when the cavity modes penetrate strongly into the mirrors.
In such system the bright intersubband excitation P

MQW
1,nres

associated with the resonant mode may not be treated as
orthogonal to the nonresonant cavity modes (n �= nres). Then,
it is convenient to introduce, in addition to the above dis-
cussed “diagonal” coupling, the concept of the “nondiagonal”
coupling corresponding to the coupling between the bright
intersubband excitation P

MQW
1,nres

and the nonresonant (n �= nres)
cavity modes [38].

It is obvious that in the case of the three-layer plasmonic
structures the simultaneous coupling of the two plasmonic
modes to the same bright intersubband excitation (e.g., P MQW

1,A )
is forbidden by the symmetry. It (practically) means that in
the symmetric structures the nondiagonal coupling is strongly
nonresonant. Consequently, its influence on the dispersion
characteristics of the ISPP branches supported by symmetric
systems can be neglected in the first approximation. In the case
of the asymmetric structures, the nondiagonal coupling is not
forbidden. Thus, it is reasonable to expect that in asymmetric
plasmonic resonators the formation of hybrid multimode ISPP
branches should play an important role.

2. Multimode polaritons in degenerate four-layer structures:
Three-coupled-oscillator model

To get useful analytical results, we focus on the degenerate
(ω̄IT = ω̄p,mirr = ω̄cutoff

A ) four-layer structures. In such struc-
tures, two plasmonic modes, one with the strong dispersion
(i.e., the SSPP mode) and the other one quasidispersionless (i.e.,
the ASPP mode), can simultaneously interact with the same
intersubband excitation (e.g., the bright excitation P

MQW
1,A ). At

this point, it is worth noting that a very similar situation has re-
cently been studied theoretically and experimentally by Zhang
et al. [72]. The authors demonstrate the hybrid coupling among
molecular excitons, surface plasmon polariton, and Fabry-
Perot mode in a nanostructured metallic cavity. (Mentioned
in the Introduction, paper [45], in contrast with [42–44,72]
and this paper, discusses the strong coupling between a single-
cavity mode and many nondegenerate electronic excitations.)

Now, we show that, within the RWA, the main polaritonic
properties of the degenerate four-layer structures are (as in the
systems studied in Ref. [72]) reasonably well captured by the
three-coupled-oscillator model.

The coupling of the nearly resonant mode ASPP with the
bright intersubband excitation P

MQW
1,A is quantified by the k̄x-

dependent frequency �̄R,A. This coupling leads to the

formation of the branches AU
ISPP and AL

ISPP which are a linear
combination of the ASPP mode and the P

MQW
1,A excitation.

They can be modeled by two effective oscillators. The fre-
quencies of these oscillators are given by the (simplified)
secular equation (34). Since the structure here considered
is asymmetric, the nondiagonal coupling of the SSPP mode
with the bright intersubband excitation P

MQW
1,A is possible.

It means that both effective oscillators, modeling branches
AU

ISPP and AL
ISPP, couple with the oscillator modeling the SSPP

mode. Such a hybrid coupling is approximately described by
a three-coupled-oscillator model expressed as∣∣∣∣∣∣∣

ω̄S − ω̄ �̄S,AU
ISPP

�̄S,AL
ISPP

�̄S,AU
ISPP

ω̄AU
ISPP

− ω̄ 0

�̄S,AL
ISPP

0 ω̄AL
ISPP

− ω̄

∣∣∣∣∣∣∣ = 0, (35)

where �̄S,AU
ISPP

(�̄S,AL
ISPP

) is the normalized coupling frequency
between theSSPP mode and theAU

ISPP (AL
ISPP) branch. The above

coupling frequencies can be written in terms of the appropriate
Hopfield coefficients of the branches AU

ISPP and AL
ISPP [72] and

the frequency �̄S,Abright quantifying the coupling of the SSPP

mode with the intersubband bright excitation P
MQW
1,A . (Note

that in contrast with the structures studied by Zhang et al.
[72], only one of the effective oscillators, corresponding to the
AL

ISPP branch, can couple resonantly with the SSPP oscillator.
Moreover, due to the strong anisotropy of the intersubband
excitation, the frequency separation between the “effective”
oscillators AL

ISPP and AU
ISPP depends on k̄x .)

It is obvious that the spatial variation of the antisymmetric
bright excitation P

MQW
1,A does not coincide with the spatial

variation of the symmetric bright excitation P
MQW
1,S . It means

that the coupling frequency �̄S,Abright is, in general, smaller
than the coupling frequency �̄R,S defined by Eqs. (27) and
(33). Nevertheless, we can expect that this difference is not
substantial. It is connected with the fact that, at small k̄x , the
coupling of SSPP mode with branches AU

ISPP and AL
ISPP has a

strongly nonresonant character. Consequently, this coupling
rather weakly affects the characteristics of ISPP branches
(located near and above ω̄IT). On the other hand, when k̄x

increases, the difference between the spatial variation of the
plasmonic mode functions fA,z and fS,z (in the region occupied
by the MQW slab) decreases. It leads to the substantial reduc-
tion of the difference between coupling frequencies �̄S,Abright

and �̄R,S . Thus, in the first approximation, we can neglect this
difference.

Equation (35) predicts the origination, from the SSPP and
ASPP modes, of not four but only three multimode polariton
branches denoted by MU

ISPP, MC
ISPP, and ML

ISPP. Their frequen-
cies can be obtained solving the appropriate qubic equation
resulting from (35) [72]. Unfortunately, the expressions for
the frequencies of the above-mentioned branches are complex
in general.

In further discussion, we employ the fact that in the consid-
ered now degenerate structures (ω̄cutoff

A = ω̄surf
p,mirr = ω̄IT), ω̄A

is very close to ω̄IT for arbitrary value of k̄x . It means that
effective oscillators associated with the branches AU

ISPP and
AL

ISPP have a nearly identical admixture of the plasmonic and
intersubband components. In other words, we can take for
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estimation �̄S,AL
ISPP

∼= �̄S,AU
ISPP

∼= �̄R,A/
√

2. Moreover, we can
employ the fact that when k̄x is sufficiently large (�2), then the
difference between ω̄S and ω̄A can be omitted. In this limit, the
expression for the frequencies of the hybrid branches simplifies
to the form

ω̄
M

U/L

ISPP
= ω̄IT ±

√
2�̄R,A, ω̄MC

ISPP
= ω̄IT. (36)

Thus, in the limit of large k̄x , the half of frequency split-
ting between branches MU

ISPP and ML
ISPP, supported by the

degenerate structures, approaches
√

2�̄R,A. The frequency of
the central branch MC

ISPP is then close to the intersubband
frequency ω̄IT. It is worth to stress that Eq. (36) is consistent
with the following general relation predicted by Eq. (35):
ω̄MU

ISPP
+ ω̄MC

ISPP
+ ω̄ML

ISPP
= ω̄AU

ISPP
+ ω̄AL

ISPP
+ ω̄S .

However, we should remember that the above conclusions
are valid when the effects connected with the presence of the
dark excitations (P MQW

μ′,A ) are not considered. We know that the
nonresonant coupling of the above dark excitations with higher
(confined and nonconfined) resonator modes is responsible
for the formation of the in-gap polariton branches. We know
also that in the presently considered asymmetric structures, the
single-mode approximation is violated. Thus, it is reasonable
to expect that the behavior of the central branch MC

ISPP should
be additionally affected by its (resonant) coupling with the
in-gap polaritons. Numerical results presented in Sec. VI are
consistent with our suggestions.

V. MODE STRUCTURE OF PASSIVE RESONATORS

A. General considerations

The properties of the TM modes supported by passive
(i.e., in the absence of the electronic excitation) plasmonic
resonators have been extensively researched by many authors
(see, e.g., [10–17,26,27]) in many different contexts. For
example, in Refs. [13,15,16] the normal modes of lossless
metal-dielectric-metal structures are studied in the context of
the Casimir forces between metallic plates. On the other hand,
many groups (see e.g., [14] and references therein) studied the
mode structure of the subwavelength metal-dielectric-metal
structures in the context of the application of the mode-
matching technique to the analysis of metallic waveguides
networks. It should be mentioned that in the latter case, the
authors concentrate on propagation effects. For this reason, in
[14], unlike in this paper and papers devoted to Casimir effect,
modes with complex kx are additionally considered.

As mentioned in the Introduction, in this paper we focus on
the resonant coupling between the intersubband excitation and
the (confined) plasmonic-type modes. Nevertheless, as already
mentioned, the modal spectrum of the plasmonic resonators
contains, in addition to the confined modes, also the continuous
spectrum located above the boundary curve defined by Eq. (37).
(This region is dark gray shaded in Figs. 2 and 3, where
the eigenmodes of the passive resonators are displayed.) The
continuous spectrum corresponds to the quantum-mechanical
scattering states. The fields associated with such modes are
finite at infinity. They are normalized by using the Dirac delta
function. These modes play an essential role in the formation of
in-gap polariton branches in plasmonic resonators. Numerical
results reported in Sec. VI suggest that they are also responsible

FIG. 2. The normalized frequencies of the modes SSPP, ASPP, ISPP

and TM2 as a function of k̄x (solid curves). For comparison, we also
present results predicted by simplified Eq. (42) (black dotted line). The
short-dotted (dashed-dotted) line corresponds to the spacer light line
(the normalized surface plasma frequency ω̄surf

p,mirr). The area located
above the boundary curve ᾱmirr = 0 is shaded. The inset displays k̄x

dependence of the parameters ᾱmirr/spac,N corresponding to the modes
SSPP (N = S), ASPP (N = A) and ISPP (N = I ). The dotted curves
in the inset correspond to Im (ᾱspac,A), ω̄surf

p,mirr = 0.5.

for a non-negligible red-shift of the exact ISPP branches with
respect to the results predicted by the single-mode secular
equation (26). (We refer to [16] for detailed description of
the properties of the continuous modes of the metal-dielectric-
metal structure.)

To keep the discussion as self-contained as possible, in
this section we summarize the essential information devoted
to the dispersion characteristics of the SSPP and ASPP modes
presented in the literature. Only the nondissipative charac-
teristics are considered. We study also the behavior of the
corresponding mode overlap factors �S,z and �A,z. The above
information will be employed in the next section for quasiparti-
cle interpretation of the semiclassical dispersion characteristics
predicted by Eqs. (12) and (11).

FIG. 3. Same as in Fig. 2, except that now ω̄surf
p,mirr = 0.25.
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We focus on the thin (subwavelength) resonators with
ω̄p,mirr � ω̄crit

p,mirr
∼= 0.84 or, equivalently, with ω̄surf

p,mirr � 0.6. It
is motivated by the fact that only in such structures the negative
dispersion of the ASPP mode can be observed. Numerical
calculations have been performed for the two types of lossless
structures: with ω̄surf

p,mirr = 0.5 (system I) and with ω̄surf
p,mirr =

0.25 (system II). For convenience, it is assumed that (non-
normalized) mirror plasma frequency ωp,mirr is the same in
both systems. It means that the separation between mirrors in
the system II is two times smaller than in the system I.

B. Surface- and oscillatory-type modes

The confined modes supported by the considered resonators
are located (on the ω̄-k̄x plane) below the boundary curve [13–
16]

ω̄bound(k̄x) = (
ω̄2

p,mirr + k̄2
x

)1/2
, (37)

resulting from the condition ᾱmirr(ω̄,k̄x) = 0. Only such modes
have evanescent tails (ᾱmirr is real) within the plasmonic
claddings.

We divide the area under the boundary curve (37) into
two regions denoted by Wspac and Sspac. The region Wspac

(Sspac) is positioned within (outside) the spacer light cone
defined by the spacer light line ω̄ = k̄x . In the region Wspac

(Sspac) the quantity ᾱspac is imaginary (real). It means that the
eigenmodes located in the region Sspac are surface-type modes
while the eigenmodes located in the regionWspac are (ordinary)
waveguide/oscillatory-type modes.

C. Characteristics of single-interface SPP mode

At first, we briefly discuss the properties of single-interface
surface plasmon polariton mode denoted by ISPP. This mode
obeys the following dispersion equation:

ᾱmirr/ᾱspac = −εmirr/εw. (38)

This equation results from Eq. (12) when the separation
between mirrors is sufficiently large or, more precisely, when
the coupling between the single-interface modes is small. Such
situation takes place when the condition αspac,ILMC < 1 is
fulfilled (see below). The above condition can be equiva-
lently written as ᾱspac,I > ᾱ∗ = 1/π ∼= 0.32 where ᾱspac,I ≡
ᾱspac(ωI ).

The normalized frequency ω̄I (=ωI/ω⊥) of the ISPP mode,
predicted by Eq. (38), is given by [15,73]

ω̄I (k̄x) =
√(

ω̄surf
p,mirr

)2 + k̄2
x −

√(
ω̄surf

p,mirr

)4 + k̄4
x. (39)

The k̄x dependence of ω̄I is presented in Figs. 2 and 3
by thin solid curves. As one can expect, the ISPP mode is
located in the Sspac region, i.e., it has a surface character.
It starts linearly [ω̄I (k̄x) ∼= k̄x] at (ω̄ = 0, k̄x = 0) and goes
asymptotically towards ω̄surf

p,mirr as k̄x → ∞.

D. Characteristics of coupled SPP modes

When the coupling between single-interface SPP modes is
small, then it is reasonable to expect that, like in the case of
the coupled semiconductor resonators [42], the two-coupled-

oscillator model can be employed. It means that the frequencies
of the symmetric and antisymmetric plasmonic modes can be
approximated by

ω̄A/S = ω̄I (1 ± κI ). (40)

The expression for the k̄x-dependent coupling factor κI can
be obtained employing a formalism developed in Ref. [71].
This formalism is similar to the tight-binding method in solid-
state physics. As one can expect, obtained in this way the
coupling factor is proportional to (exp − αspac,ILMC). (Details
will be presented in a future paper.) The described above
simplification will be an important point in a subsequent
discussion in Appendix D concerning the interpretation of
the polariton-induced optical asymmetry observed in the four-
layer structures.

Making in Eq. (12) the replacement αMQW → αspac one
finds that the characteristic equation describing the TM modes
supported by the passive resonator (with arbitrary thickness)
can be written in the following dimensionless form:

tanh(ᾱspacπ/2) = −(ᾱmirrεw/εmirrᾱspac)±1. (41)

The number of bound modes (nbound) resulting from this equa-
tion depends on the dimensionless plasma frequency: nbound =
[ω̄p,mirr/2] + [(ω̄p,mirr + 1)/2] + 3 (see Refs. [10,16]). (The
brackets indicate the integer part of the number.) Thus, sub-
wavelength resonators with ω̄p,mirr = √

2 × 0.5 ∼= 0.71 (the
system I) and ω̄p,mirr = √

2 × 0.25 ∼= 0.35 (the system II)
considered in this paper support only three modes: two
plasmonic-type modes (SSPP and ASPP) and one photonic-type
mode (TM2). The dispersion characteristics of the modes
supported by the systems I and II are displayed in Figs. 2
and 3, respectively. These figures show that the photonic TM2

mode starts at the frequency slightly smaller than ω̄p,mirr and is
located (for all values of k̄x) in the Wspac region, slightly below
the boundary curve. The properties of this oscillatory-type
mode are not discussed in this paper. Some details on its
behavior can be found in Refs. [10,33]. In this section we focus
on the SSPP and ASPP modes.

1. The SSPP mode

The SSPP mode is located below the ISPP mode in the region
Sspac for all values of k̄x . Like the ISPP mode, it starts at
(k̄x = 0, ω̄ = 0) and goes asymptotically towards ω̄surf

p,mirr when
k̄x → ∞. At small k̄x one gets the linear dispersion [13]

ω̄S(k̄x) = k̄x/
√

1 + 2/(πω̄p,mirr). (42)

The k̄x dependence of the SSPP mode predicted by Eqs. (41)
and (42) is represented in Figs. 2 and 3 by black solid and
black dotted curves, respectively. We find that in the case
of the structure with ω̄surf

p,mirr = 0.5 (ω̄surf
p,mirr = 0.25), Eq. (42)

works very well at k̄x � 0.4 (k̄x � 0.25). We find also that
the difference between the modes ISPP and SSPP increases
with decreasing ω̄surf

p,mirr and, in the considered structures, is
noticeable for k̄x � 1.

2. The ASPP mode

The behavior of the dispersion curve ω̄A of the ASPP mode
is more complex than the SSPP and ISPP modes. Namely, the
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FIG. 4. The ω̄p,mirr dependence of the normalized cutoff fre-
quency ω̄cutoff

A (thick solid line) and the normalized crossing frequency
ω̄cross

A (thin solid line). The dashed line corresponds to the normalized
surface plasmon frequency ω̄surf

p,mirr .

ASPP mode, in contrast with the above-mentioned modes,
starts at (k̄x = 0, ω̄ = ω̄cutoff

A �= 0), i.e., in the region Wspac,
as an oscillatory-type mode (see dark gray curves in Figs. 2
and 3). From Eqs. (41) and (17), one finds that the normalized
cutoff frequency ω̄cutoff

A ≡ ω̄A(k̄x = 0) satisfies the following
relation:

ω̄cutoff
A = 2

π
arctan

{[(
ω̄p,mirr/ω̄

cutoff
A

)2 − 1
]1/2}

. (43)

The results predicted by this equation are presented in Fig. 4
as a thick solid curve. This figure illustrates our previous state-
ment that ω̄cutoff

A > ω̄surf
p,mirr (ω̄cutoff

A < ω̄surf
p,mirr) when ω̄surf

p,mirr >

0.5 (ω̄surf
p,mirr < 0.5).

Employing appropriate expansions (see [19,74]) one can
check that at k̄x � 1, the dispersion curve ω̄A(k̄x) is a parabola
with vertex at k̄x = 0. Thus, we can speak about the formation
of ZGV point at k̄x = 0. Depending on the value of ω̄p,mirr,
the parabola is upwardly or downwardly concave. The critical
value of the mirror plasma frequency (ω̄crit

p,mirr) at which the
dispersion curvature of ω̄A(k̄x) changes its sign obeys the
following relation [74]:(

ω̄crit
p,mirr

)2 = (
ω̄cutoff

A

)2 + (2/π )2. (44)

Substituting (44) into (43) we get an equation for ω̄crit
p,mirr.

The numerical solution of this equation gives ω̄crit
p,mirr

∼= 0.854.
We have obtained a slightly smaller value of ω̄crit

p,mirr(∼=0.840)
solving numerically Eq. (41) for different values of ω̄p,mirr . The
latter result coincides with the result reported in Ref. [10].

The dispersion curve ω̄A(k̄x) crosses the spacer light line at
ω̄ = ω̄cross

A given by [10,13,15,74]

ω̄cross
A = ω̄p,mirr/

√
1 + ω̄p,mirrπ/2. (45)

It is obvious that at the crossing point (k̄x = k̄cross
A , ω̄ = ω̄cross

A )
the antisymmetric mode changes its character from the oscilla-
tory type into the surface type. Near this point, the ASPP mode
is linearly dispersive and the normal component of the electric
field connected with the above mode changes linearly with z

(i.e., EA,z ∼ z) [74].
The dependence of ω̄cross

A on ω̄p,mirr, predicted by Eq. (45),
is displayed in Fig. 4 as a thin solid line. We find that at

FIG. 5. The normalized frequencies of the ASPP mode and the
AU

ISPP polariton branch supported by the three-layer structures, with
different values of ω̄surf

p,mirr = ω̄IT, as a function of k̄x . The short-dotted
(dashed-dotted) line corresponds to the light line (the normalized
frequency ω̄surf

p,mirr = ω̄IT). �̄p,MQW = 0.3 × ω̄IT.

ω̄p,mirr
∼= 0.81 (or equivalently at ω̄surf

p,mirr
∼= 0.573) the crossing

frequency coincides with cutoff frequency (ω̄cross
A = ω̄cutoff

A
∼=

0.54). It means that in the structures with ω̄p,mirr close to 0.81
the antisymmetric mode can be treated (at k̄x � k̄cross

A
∼= 0.54)

as effectively quasi-dispersionless. This situation is illustrated
in Fig. 5(a). It is consistent with the experimental results
reported in Ref. [19].

As mentioned, at k̄x → ∞ the ASPP mode goes asymp-
totically, always from a low-frequency side, towards ω̄surf

p,mirr
[18]. It means that in sufficiently thin resonators (ω̄p,mirr �
ω̄crit

p,mirr
∼= 0.840) the formation, at finite k̄x (=k̄min

A ), of a shal-
low minimum in the dispersion curve ω̄A takes place [10,18].
The normalized depth of the above-mentioned minimum
δ̄depth = [ω̄surf

p,mirr − ω̄A(k̄min
A )]/ω̄surf

p,mirr takes the largest value
(∼=0.032) when ω̄surf

p,mirr = 0.5. It is located at k̄x = k̄min
A

∼= 0.8.
For comparison, in the thinner structures (ω̄surf

p,mirr = 0.25) the
minimum of the curve ω̄A(k̄x) is shifted to k̄min

A ≈ 2 and its
normalized depth δ̄depth reduces to the negligibly small value
of 0.004. The inspection of the numerical results displayed
in Figs. 2 and 3 (see also Fig. 5) clearly shows that when the
difference |ω̄surf

p,mirr − 0.5| increases, then δ̄depth decreases while
k̄min
x increases. (As mentioned, the minimum in the curve ω̄A

appears only when ω̄p,mirr < ω̄crit
p,mirr

∼= 0.84.)

3. Penetration depth inside mirror and spacer regions

The z component of the electric field connected with the
N th mode (EN,z) takes the maximal value at the εmirr|εspac

interfaces (see Appendix B). Thus, the quantities α−1
υ,N ≡
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FIG. 6. The thick (thin) solid curves present the k̄x dependence
of the overlap factors corresponding to the modes SSPP and ASPP

supported by resonator with ω̄surf
p,mirr = 0.5 (ω̄surf

p,mirr = 0.25). For com-
parison, we present also the k̄x dependence of the overlap factors
corresponding to the modes TM0 ≡ TEM and TM1 supported by the
resonators with perfect metallic mirrors (the dotted curves).

α−1
υ (ωN ), defined by Eqs. (14) and (15), can be considered

as penetration depth inside the υ = mirr,spac region of the
SSPP (N = S), ASPP (N = A), or ISPP (N = I ) mode.

The k̄x variation of the normalized penetration depth ᾱυ,N ,
for the systems I and II present the insets in Figs. 2 and 3,
respectively. For convenience, in the range of small k̄x , where
ᾱspac,A is imaginary, we display the behavior of Im(ᾱspac,A).

As mentioned, the coupling between the single-interface
modes is small when ᾱspac,I is larger than ᾱ∗ (∼=0.32). The
inspection of Figs. 2 and 3 shows that in our structures, the
above condition is fulfilled only at relatively large values of
k̄x (�0.5). Moreover, as one can expect, at large k̄x (�1) the
dependence of ᾱυ,N on the mode index N is rather weak.

E. Plasmonic mode overlap factors

Now, we discuss the behavior of the mode overlap factors
�S,z and �A,z defined by Eq. (33). The factor �N ,z controls the
coupling strength of the N th plasmonic mode with the inter-
subband bright excitation P

MQW
1,N . The explicit expressions for

the above factors are given in Appendix C [see Eqs. (C1)–(C6)].
Unfortunately, the presence of the hyperbolic functions in
these equations makes their analysis by analytic methods rather
impossible. That is why we performed numerical calculations.
Figure 6 displays the results of these calculations for the sys-
tems studied in Figs. 2 and 3. For comparison, we also display
the k̄x dependence of the overlap factors �TEM,z (�TM1,z)
corresponding to the TEM = TM0 (TM1) modes supported
by the structures with perfect metallic mirrors [see Eq. (25)].

We observe that the behavior of the overlap factors strongly
depends on the mode index. In the idealized case of perfect
metallic mirrors, the factor �TEM,z is constant (�TEM,z =
1) while the factor �TM1,z increases with k̄x from 0 to its
asymptotic value of 1 according to Eq. (25). The above
dependence is a consequence of the strong anisotropy of the
intersubband excitations. The replacement of perfect metal
boundary conditions by realistic ones introduces a substantial
modification in the behavior of the overlap factors. It is easy

to see that now, in contrast with the idealized case, both
factors �S,z and �A,z are the monotonous functions of k̄x .
However, the factor �S,z decreases from its maximal value
of 1 at kx = 0 to the asymptotic value of 1

2 in the limiting
case of large k̄x (�2). It is worth stressing that, when the
structure is not too thin (more precisely when ω̄p,mirr � 1),
then the penetration of the SSPP mode into the mirrors very
weakly affects the mode factor �S,z in the range of the small
k̄x . Equivalently, we can say that in the above-mentioned limit,
the replacement of the perfect mirrors by realistic plasmonic
mirrors affects practically only the mode frequency ω̄S . (This
finding is consistent with suggestion reported in Ref. [5].) The
behavior of the factor �A,z is different. It increases from its
minimal value of 0 at k̄x = 0 to the asymptotic value of 1

2 . Note,
however, that in contrast with the factors �S,z and �TEM,z, the
difference between the factors �A,z and �TM1,z is negative at
large k̄x but positive (and non-negligible) at small k̄x .

The fact that the factors �S,z and �A,z approach the same
asymptotic value of 1

2 can be explained in the following
way. At large k̄x (�2) the modes SSPP and ASPP practically
transform into the (symmetric and antisymmetric) combi-
nation of the single-interface modes. Simultaneously, their
frequencies approach ω̄surf

p,mirr. At ω̄ close to ω̄surf
p,mirr, the ratio

−εmirr/εspac is close to unity and the relation ᾱmirr/spac,N ∼= k̄x

is approximately valid. From the former relation we find
that, not only |EN ,x |2 but also |EN ,z|2 appearing in Eq. (33)
for the mode overlap factor can be treated as continuous
across the interfaces εmirr|εspac. Simultaneously, the relation
ᾱmirr/spac,N ∼= k̄x implies that |EN ,z|2 ∼= |EN ,x |2 in the mirrors
as well as in the spacer layer (see Appendix B). Taking into
account the above simplifications, one finds from Eq. (33) that
�S,z

∼= �A,z
∼= 1/2 at k̄x � 2.

VI. MODE CHARACTERISTICS OF RESONATORS
WITH EMBEDDED MQW

Now, we turn our attention to the main subject of this paper:
the discussion of the properties of the ISPP branches supported
by the three- and four-layer structures. Only confined elec-
tromagnetic modes, i.e., the modes located below the mirror
boundary curve [see Eq. (37)] will be considered. Moreover,
similarly to the previous section, we completely neglect dissi-
pative losses. It is well known that such simplification works
well when the structure exhibits a strong coupling regime, i.e.,
when �R,N > γIT,γN , where γIT (γN ) is the decay rate of the
intersubband excitation (the N th plasmonic mode). We have
validated this approximation showing in Appendix D that, to a
large extent, the lossless characteristics of the ISPP branches
are consistent with the angle-resolved reflection-absorption
spectra of the GaAlAs-based realistic structures. Additionally,
we demonstrate that the dispersion characteristics of the ISPPs
resulting from the semiclassical equations (12) and (11) are
consistent with the quasiparticle picture. The possibility of the
engineering of these characteristics (mainly in the context of
the slow/stopped light effects) will be also discussed.

To facilitate the comparison of the characteristics of the
three- and four-layer structures, we assume that the period
(dMQW) of the MQW slab, located in the four-layer structure,
is two times smaller than the period of the MQW slab located
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FIG. 7. The normalized frequencies of the ISPP branches sup-
ported by the three-layer structure as a function of k̄x (the thick solid
curves). For illustration, the normalized frequencies of the plasmonic
modes supported by the passive structure are also displayed (the
thin solid curves). The short-dotted (dashed-dotted) line corresponds
to the light line (the normalized intersubband frequency ω̄IT and
surface plasma frequency ω̄surf

p,mirr). The interpretation of the black
and gray horizontal arrows is given in the main text. The area where
in-gap intersubband polariton branches are located is hatched. The
regions SU

MQW and SL
MQW where the intersubband polariton branches

have surface character are light gray shaded. ω̄surf
p,mirr = ω̄IT = 0.5 and

�̄p,MQW = 0.3 × ω̄IT.

in the three-layer structure (d three-layer
MQW = 2d

four-layer
MQW ). Other pa-

rameters of the MQWs and the cladding materials are identical.
Moreover, performing the numerical calculations we assume
that in the case of the three-layer structure �̄p,MQW = 0.3 ×
ω̄IT. The above-mentioned assumptions imply that in the four-
layer structure �̄p,MQW = √

2 × (0.3 × ω̄IT). As mentioned,
we focus mainly on the degenerate structures (ω̄IT = ω̄surf

p,mirr =
ω̄cutoff

A ). It is connected with the fact that in such structures the
ASPP mode is nearly resonant with intersubband transitions for
arbitrary k̄x while the SSPP mode becomes nearly resonant only
at large value of k̄x (�1).

A. Three-layer structures

We start from the discussion of the three-layer (symmetric)
structures. The ISPP branches resulting from the characteristic
equation (12) have the surface or oscillating character depend-
ing on the sign of ᾱ2

MQW defined by Eq. (16). Let us denote
by ᾱU

MQW (ᾱL
MQW) the upper (lower) solution of the equation

ᾱMQW(ω̄,k̄x) = 0. Numerical simulations show (see Figs. 7
and 8) that the lower solution ᾱL

MQW starts linearly at (k̄x = 0,

ω̄ = 0) and goes asymptotically towards ω̄∗
IT as k̄x → ∞.

The upper solution ᾱU
MQW starts at (k̄x = 0, ω̄ = ω̄IT ) and

approaches asymptotically the spacer light line ᾱspac(ω) = 0
as k̄x → ∞.

For further discussion, it is convenient to divide the k̄x-ω̄
plane, located below the mirror boundary curve [defined

FIG. 8. Same as in Fig. 7, except that now ω̄surf
p,mirr = ω̄IT = 0.25.

Moreover, for illustration we present additionally the dispersion of the
branches AU

ISPP and AL
ISPP obtained employing Eq. (26) (open circles).

Eq. (37)] into four regions denoted byWU
MQW, SU

MQW, WL
MQW,

and SL
MQW. The region WU

MQW (SL
MQW) is positioned above

(below) the branch ᾱU
MQW (ᾱL

MQW) while the region SU
MQW

(WL
MQW) is located between horizontal line ω̄ = ω̄IT and

branch ᾱU
MQW (ᾱL

MQW). (In Figs. 7 and 8, the regions SU
MQW

and SL
MQW are light gray shaded.) Inside the regions SU

MQW

and SL
MQW (WU

MQW and WL
MQW) the quantity ᾱMQW is real

(imaginary). It means that the polariton branches located inside
(outside) regions SU

MQW and SL
MQW can be treated as surface

(waveguide/oscillating-) type modes.

1. Nondegenerate structures

It is instructive to start discussion from typical nondegener-
ate structures with metallic mirrors (see, e.g., [4]) where ω̄IT is
substantially smaller than ω̄surf

p,mirr. In such structures, only the
SSPP mode couples resonantly with intersubband transitions
(nres = S). Figure 9 presents the anticrossing behavior of
the SU

ISPP and SL
ISPP branches at k̄x close to the resonant

value k̄res
S (at which ω̄S = ω̄IT). Results displayed in Fig. 9(a)

[9(b)] are obtained for the structure with ω̄surf
p,mirr = 0.5 and

�̄p,MQW = 0.3 × ω̄IT, taking ω̄IT = 0.1 (ω̄IT = 0.4). The thick
solid curves represent the exact results predicted by Eq. (12).
The open circles are obtained employing the generalized
secular equation [see Eqs. (26) and (27)] based on the single-
mode cavity approximation. As one can expect, when the
ratio ω̄IT/ω̄surf

p,mirr is small (�0.2), then Eqs. (26) and (27)
very well reproduce the exact results even if we take �S,z =
�TEM,z = 1 (results are not presented). However, when, like
in Fig. 9(b), the ratio ω̄IT/ω̄surf

p,mirr is close to unity (=0.8), the
k̄x dependence of the factor �S,z (see Fig. 6) starts to play
an important role. For example, taking �S,z = 1 we get the
overestimated (by about 16%) value of the polariton branch
splitting (at k̄x = k̄res

S ) in the case of the structure discussed in
Fig. 9(b).
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FIG. 9. The normalized frequencies of the branches SU
ISPP and

SL
ISPP supported by the nondegenerate structures as a function of

k̄x . Thick solid curves represent exact results predicted by Eq. (12).
Open circles are obtained employing the generalized secular equa-
tion (26) based on the single-mode cavity approximation. Thin
solid (dashed) curves represent k̄x dependence of the SSPP (TEM)
mode. Calculations have been performed taking (a) ω̄IT = 0.1 and
(b) ω̄IT = 0.4. ω̄surf

p,mirr = 0.5 and �̄p,MQW = 0.3 × ω̄IT.

It is worth stressing that even if we include the k̄x depen-
dence of the factor �S,z we are not able to reproduce precisely
the exact results predicted by Eq. (12). A small, but non-
negligible red-shift of the exact results (mainly lower branch)
with respect to the results predicted by the single-mode cavity
approximation (26) appears at k̄x � 1. A similar effect has been
predicted in our previous paper [37] for the semiconductor
MC-QW structure. We will return to this problem at the end
of this section.

2. Degenerate structures

Now, we discuss the characteristics of the ISPP branches
supported by the degenerate structure (ω̄IT = ω̄surf

p,mirr = 0.5)
and nearly degenerate structure (ω̄IT = ω̄surf

p,mirr = 0.25). (We
remind that only in the case of the degenerate structure the
condition ω̄IT = ω̄surf

p,mirr = ω̄cutoff
p,mirr is fulfilled.) The dispersion

characteristics of the above mentioned structures are displayed
in Figs. 7 and 8. In agreement with the quasiparticle picture,
aside from the S

U/L

ISPP and A
U/L

ISPP branches, originating from the
SSPP and ASPP plasmonic modes, the characteristic equation
(12) predicts the formation of the in-gap intersubband polariton
branches.

a. Symmetric ISPP branches. The results displayed in
Figs. 7 and 8 show that the symmetric branches SU

ISPP and SL
ISPP

are located in the regions SL
MQW and SU

MQW, respectively. It

means that they have a surface character. The upper branch
SL

ISPP starts at k̄x = ω̄ = 0 while the lower branch SU
ISPP at

k̄x = 0, ω̄ = ω̄IT. We find that they are monotonous functions
of k̄x . However, at relatively large values of k̄x (�2), both
branches become nearly nondispersive.

We have checked (results are not presented) that as in the
structure studied in Fig. 9(b), the single-mode secular equation
(26) does not reproduce precisely the exact results obtained
employing Eq. (12). A small (depending on k̄x) red-shift of the
branches is observed. The black horizontal arrows in Figs. 7
and 8 represent the frequencies of the SU

ISPP and SL
ISPP branches,

at k̄x = 2, obtained employing Eq. (26). We find that, at large
k̄x (i.e., when ω̄S is close to ω̄surf

p,mirr = ω̄IT), the red-shifts of
both branches are do not differ substantially. It means that then
Eq. (26) slightly overestimates the frequencies of the upper and
lower branches but reproduces the resonant branch splitting
rather well. The origin of the above mentioned red-shift will
be discussed at the end of this section.

It is clear from the comparison of Figs. 7 and 8 that
the reduction of the mirror separation (or more precisely
the reduction of the normalized surface plasmon frequency
ω̄surf

p,mirr) does not affect the behavior of the branches SU
ISPP and

SL
ISPP dramatically. The situation is different in the case of the

branches originating from the antisymmetric mode ASPP.
b. Antisymmetric ISPP branches. When, as in the presently

discussed structures, ω̄cutoff
A � ω̄surf

p,mirr = ω̄IT then the upper
branch AU

ISPP starts at k̄x = 0, ω̄ = ω̄cutoff
A (i.e., in the region

WU
MQW) as an oscillating-type mode. It changes its character

into a surface type after crossing with the ᾱU
MQW branch at k̄x =

kcross
AU

ISPP
. The lower branch AL

ISPP also starts as an oscillating-type

mode, but at k̄x = 0, ω̄ = ω̄IT (i.e., in the regionWL
MQW). Then,

it crosses with the ᾱL
MQW branch at k̄x = kcross

AL
ISPP

and transforms

into a surface-type mode. As one can expect, at large k̄x (�2)
the antisymmetric branch A

U/L

ISPP practically coincides with the
symmetric branch S

U/L

ISPP.
It is worth stressing that the branches AU

ISPP, AL
ISPP and the

mode ASPP do not change their character at the same values of
k̄x . The results displayed in Figs. 7 and 8 show that k̄cross

AU
ISPP

<

k̄cross
A < k̄cross

AL
ISPP

. It means that the spatial variations of the

branches AU
ISPP and AL

ISPP are not controlled only by the mode
function fA,z. This fact is not consistent the single-mode cavity
approximation. It is reasonable to connect this inconsistency
with the presence of the nonresonant coupling of the bright
intersubband excitation P

MQW
1,A with the higher photonic modes

(continuum). The above statement seems to be consistent with
the fact that, as in the case of the symmetric branches, the
exact dispersion curves are slightly red-shifted with respect
to the dispersion curves predicted by Eq. (26) based on the
single-mode cavity approximation. For illustration of this fact,
analogously to the case of the symmetric ISPP branches, we
indicate in Figs. 7 and 8 (by the gray horizontal arrows) the
frequencies of AU

ISPP and AL
ISPP branches, at k̄x = 2, obtained

employing the single-mode equation (26). Additionally, in
Fig. 8 we display (open circles) the dispersion of the branches
AU

ISPP and AL
ISPP predicted by the above-mentioned equation.
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In Ref. [18] it has been shown that in the case of the
degenerate plasmonic resonators filled with a material pos-
sessing (isotropic) excitonic resonances, the formation of the
minimum (and consequently the ZGV point) in the ASPP mode
implies the formation of the minimum in the upper and lower
exciton surface plasmon polariton branches originating from
this mode. Moreover, the authors of [18] have demonstrated
that such a minimum may serve as a very effective trap for
exciton-polariton population at a high nonresonant excitation
of the structure. However, in the structures considered in Figs. 7
and 8, we do not observe the formation such a minimum in the
AU

ISPP and AL
ISPP branches. Below, we connect this fact with a

strong anisotropy of the intersubband excitation.
As mentioned, the above-mentioned anisotropy leads to a

strong k̄x dependence of the overlap factor �A,z (see Fig. 6).
Employing Eq. (26), one can check that during the formation
of the A

U/L

ISPP branch, in the degenerate structures, the negative
slope of the ASPP mode is dominated by the effects connected
with the positive slope of the overlap factor �A,z. Conse-
quently, the branches AU

ISPP and AL
ISPP, displayed in Fig. 7,

are, in contrast with the ASPP mode, monotonous functions
of k̄x . However, as presented in Fig. 5, decreasing ω̄p,mirr, or
more precisely increasing the difference ω̄crit

p,mirr − ω̄p,mirr, we
can enhance the dispersion (negative slope at small k̄x) of the
ASPP mode. Simulations show that it makes the formation of
the minimum in the AU

ISPP branch (at finite k̄x) possible but
only for ω̄surf

p,mirr close to ωmin
AU

ISPP
= 0.431. (For convenience,

we assume that ω̄surf
p,mirr = ω̄IT and �̄p,MQW = 0.3 × ω̄IT.)

Figure 5(c) illustrates the above-mentioned fact. Unfortu-
nately, the minimum appearing in the AU

ISPP branch is always
shallower than the minimum appearing in the ASPP mode sup-
ported by the structure with ω̄surf

p,mirr = 0.5 [see, e.g., Fig. 5(b)].
It means that, unlike the case of the isotropic electronic
excitation discussed in Ref. [18], the minimum appearing in
the AU

ISPP branch cannot be practically treated as an effective
trap for relaxing ISPPs.

Nevertheless, we have checked that in the case of the
structures with ω̄surf

p,mirr slightly larger than ωmin
AU

ISPP
an interesting

[particularly in the context of the slow- (stopped-) light effects]
situation can be achieved. Namely, assuming that ω̄surf

p,mirr =
ω̄IT and taking �̄p,MQW = 0.3 × ω̄IT, we have found that the
formation of quasidispersionless AU

ISPP branch is possible at
ω̄surf

p,mirr close to 0.45. (The results are not presented.) As one
can expect, for ω̄surf

p,mirr substantially smaller than ω̄min
AU

ISPP
(like in

Fig. 8) the upper branch AU
ISPP has a negative slope.

It is obvious that additional modification of the AU
ISPP

branch is possible by changing the location of the intersubband
frequency with respect to the surface plasmon frequency. We
do not discuss this case.

c. In-gap ISPP branches. As mentioned, an important con-
sequence of the coupling of the intersubband excitation with
the continuum modes is the formation of the (oscillating-type)
in-gap polariton branches. They are located slightly below ω̄IT.
We have hatched (in Figs. 7, 8, 10, and 11) the frequency range
where the in-gap polariton branches appear. We would like
to note that, in the nonresonant structures studied in Fig. 9,
such branches are also present but we did not plot them in
order to concentrate on the behavior of the SU

ISPP and SL
ISPP

branches.

FIG. 10. The normalized frequencies of the hybrid ISPP branches
supported by the four-layer structure as a function of k̄x (the thick
solid curves). For illustration, the normalized frequency of the
modes ASPP and SSPP, as well as the normalized frequencies of
the branches AU

ISPP and AL
ISPP supported by the three-layer structure

with �̄p,MQW = 0.3 × ω̄IT are also displayed (the thin solid curves).
The short-dotted (dashed-dotted) line corresponds to the spacer light
line (the normalized intersubband frequency ω̄IT and surface plasma
frequency ω̄surf

p,mirr). The interpretation of the scan line (dashed line) is
given in Appendix D. The hatched area indicates the ω̄ region where
the in-gap polariton branches are located. ω̄surf

p,mirr = ω̄IT = 0.5 and

�̄p,MQW = √
2 × (0.3 × ω̄IT).

Inspection of the results presented in Figs. 7 and 8 indi-
cates that the role of coupling with higher photonic modes
increases with increasing k̄x . However, we should remem-
ber that accuracy of the semiclassical approach and the
quasiparticle approach employed in this paper seems to be

FIG. 11. Same as in Fig. 10, except that now ω̄p,mirr = ω̄IT = 0.25.
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insufficient for correct description of the polariton branches
in the limit of large value of k̄x . It is connected with the fact
that the above-mentioned approaches are based on the long-
wavelength approximation. This approximation breaks down
when electromagnetic modes interacting with intersubband
excitation varies substantially in the region of the QW [73].

B. Four-layer structures

Now, we discuss the properties of the ISPP branches orig-
inating from the plasmonic modes in four-layer asymmetric
structures. In such structures, only half of the space between
mirrors is occupied by an MQW slab. The second half of the
space is occupied by a dielectric spacer layer with a dielectric
constant εspac = εw [see Fig. 1(b)].

The numerical solutions of the frequency dispersion equa-
tion (11) for such type structures are displayed in Figs. 10
and 11. As in the previous subsection, we discuss the de-
generate structure (ω̄surf

p,mirr = ω̄IT = 0.5) and the nearly de-
generate structure (ω̄surf

p,mirr = ω̄IT = 0.25). As mentioned at the
beginning of this section, for the convenience of comparison
with three-layer structures discussed in Figs. 7 and 8, we take
�̄p,MQW = √

2 × (0.3 × ω̄IT).
The inspection of Figs. 10 and 11 shows that now, unlike in

the case of symmetric structures, the ISPP branches originating
from the plasmonic modes do not form two independent
pairs of (symmetric and antisymmetric) branches. Instead, we
observe the formation of three (multimode) branches denoted
as the upper branch (MU

ISPP), the central branch (MC
ISPP), and

the lower branch (ML
ISPP). In both systems, the branches MU

ISPP
and ML

ISPP are monotonous functions of k̄x . For larger values
of k̄x (�2), they are practically nondispersive. For small
values of k̄x (�0.5), the branches MU

ISPP and MC
ISPP practically

coincide with the branchesAU
ISPP andAL

ISPP originating from the
antisymmetric mode of the three-layer structures characterized
by two times smaller values �̄ 2

p,MQW.
The behavior of the central branch MC

ISPP is more complex
(particularly in the degenerate structure discussed in Fig. 10)
than that of branches MU

ISPP and ML
ISPP. For example, we ob-

serve that in the degenerate structure, the central branch MC
ISPP

is strongly nonmonotonous. More specifically, we observe the
formation of the two ZGV points at k̄x

∼= 0.7 and k̄x
∼= 1.55.

In our opinion, the results displayed in Figs. 10 and 11
are consistent with our previous statement (see Sec. III) that
the main features of the branches MU

ISPP, ML
ISPP, and MC

ISPP
supported by the four-layer structures are rather well captured
by the three-oscillator model described by Eq. (35). For
example, the anticrossing behavior of the SSPP mode and the
AL

ISPP branch, predicted by the three-oscillator model, is well
pronounced in the degenerate structure (see Fig. 10) at k̄x ≈ 1.
We find also that, in agreement with the three-oscillator model,
half of the asymptotic separation between the branches MU

ISPP
and ML

ISPP is larger than the asymptotic coupling frequency
(corresponding to the modes SSPP and ASPP) by factor close
to

√
2. Nevertheless, some inconsistencies with the three-

oscillator model, particularly in the behavior of the central
mode, are observed. The reason for these inconsistencies is
briefly discussed below.

It is obvious that, as in the case of the symmetric structures,
also in the asymmetric structures the formation of the in-gap

polariton branches takes place. (We have hatched, in Figs. 10
and 11, areas where they are positioned.) The formation of
such branches is not included in the three-oscillator model.
The detailed inspection of the presented results suggests that,
particularly in the case of the degenerate structure studied
in Fig. 10, we can speak about a resonant interaction (or
equivalently the anticrossing) of the MC

ISPP branch with the
in-gap branches. This anticrossing is observed at k̄x ≈ 1.5. As
mentioned, its appearance can be associated with the presence
of the “nondiagonal” coupling.

The characteristics of the polariton branches presented
and discussed in this paper have been obtained neglecting
the dissipation. In Appendix D we validated this approxima-
tion, demonstrating that the lossless branches manifest in the
reflection-absorption spectra of the realistic structures based
on GaAsAl.

VII. CONCLUSIONS

The dispersion characteristics of the intersubband surface
plasmon polaritons (ISPPs) supported by all-semiconductor
three- and four-layer planar plasmonic resonators have been in-
vestigated theoretically. Manifestation of the above-mentioned
polariton branches in reflection-absorption spectra of the
realistic structures is additionally discussed. A semiclassical
approach based on the transfer matrix formalism and the
effective-medium approximation has been employed.

The results obtained indicate that the behavior of the ISPP
branches can be in large extent modified changing the normal-
ized mirror plasma frequency ω̄p,mirr. However, the character
of the modification is strongly affected by the asymmetry of
the structures and anisotropy of the intersubband excitation.
We have shown that, particularly in the case of asymmetric
structures, the dispersion characteristics of the ISPP branches
can be engineered in the context of the slow- and stopped-light
phenomena, i.e., formation of the ZGV points.

Simulations reveal that the correct quasiparticle interpre-
tation of the dispersion characteristics is possible employing
the concept of the bright and dark intersubband excitations.
However, calculating the mode overlap factors we should
take into account the dispersive character of the plasmonic
mirrors and anisotropy of the intersubband excitation. We
show also that the effects resulting from the coupling of the
bright and dark intersubband excitations with higher resonator
modes play a non-negligible role, particularly at large k̄x .
Interpretation of the results obtained for the asymmetric
structures is additionally complicated by the formation of
the multimode ISPP branches. They are responsible for the
appearance of the effect similar to the “polariton-induced
optical asymmetry” observed in the absorption spectra of the
coupled semiconductor microcavity structures containing QW
in one of the cavities [42,43,46].

It seems that it would be interesting to investigate the
dispersion characteristics of the ISPP branches supported by
resonators with different claddings or more precisely with
different plasmon frequencies. As shown in Refs. [75,76], the
differentiation of the plasma frequencies of the cladding leads
to substantial modification of the plasmonic mode behavior. It
adds another important degree of freedom in manipulation of
the ISPP branches.
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It is also reasonable to expect that, due to extraordinary
properties of the carriers in graphene (in particular the electrical
tunability of the carrier density), very interesting physics
should appear in the case of the resonators where not uniformly
doped semiconductor layers but graphene-based [77–79] (or
all-semiconductor-based [52]) hyperbolic metamaterials play
a role of the plasmonic mirrors.

Finally, we would like to stress that in this paper we have
restricted to the linear intersubband response. Results reported
in Ref. [46] for the coupled microcavities suggest that the
nonlinear intersubband response of the plasmonic resonators
should be more complex than standard semiconductor res-
onators discussed in our previous paper [80]. The case of the
nonlinear (saturated) intersubband response of the three- and
four-layer structures is planned to be presented in a later paper.

APPENDIX A: RESONATORS
WITH NONEQUISPACED QWS

The expression for the coupling frequency �R,N presented
in Sec. IV B has been derived assuming that the MQW slab
contains a large number (NQW 
 1) of equispaced QWs.
Below, we present the expression for the coupling frequency
when QWs are arbitrarily positioned inside the plasmonic
resonator.

In the simplest case when a single QW couples with the
TEM mode, the (electric dipole gauge) coupling frequency
can be written as [5,37]

�̆2
R,TEM = fITNse

2

4m∗
wε0εwLMC

. (A1)

Now, let us assume that the QWs, positioned at z =
zι, . . . ,zNQW , couple resonantly to the N th plasmonic mode
(nres ≡ N ). At this point, it is convenient to employ the concept
of the spatial dependent of the effective mode length introduced
in the literature for the systems with dielectric (see, e.g.,
[5,56,59]) and plasmonic (see, e.g., [58,60,63]) mirrors. Then,
we get the following generalized expression for the coupling
frequency between the N th plasmonic mode and the bright
excitation of the nonequispaced QWs:

�2
R,N = �̆2

R,TEMLMC/Leff
N , (A2)

where Leff
N = ∑NQW

ι=1 Leff
N ,z(zι). The quantity

Leff
N,z(z) = U total

N /ε0εw|EN,z(z)|2 (A3)

can be treated as the z-dependent effective length of the N th
mode (N = S,A,I ). The explicit expression for the dimen-
sionless parameter Leff

N,z = Leff
N,z/LMC is given in Appendix C.

The k̄x dependence of 1/Leff
N,z calculated for the differ-

ent value of the (normalized) QW mirror distance zQW =
(LMC/2 − z)/LMC presents Fig. 12. A different behavior of
Leff

S,z(k̄x,zQW) and Leff
A,z(k̄x,zQW) is connected mainly with

different spatial variation of the squared mode functions |fS,z|2
and |fA,z|2. At large value of k̄x (�2), the difference between
the above-mentioned functions practically vanishes. It implies
that the difference between Leff

S,z(k̄x,zQW) and Leff
A,z(k̄x,zQW)

also vanishes.
It is worth noting that at large k̄x the ratio Leff

N ,z(k̄x,

zQW)/Leff
I,z(k̄x,zQW) is close to 2 not 1. The appearance of

FIG. 12. The k̄x dependence of reciprocal of the normalized
effective mode length corresponding to the modes SSPP (black solid
curves), ASPP (gray solid curves), and ISPP (dotted curves) calculated
for different values of the normalized distance zQW = (LMC/2 −
z)/LMC. (a) The structure with ω̄surf

p,mirr = 0.5 and (b) the structure
with ω̄surf

p,mirr = 0.25.

the factor 2 results from the fact that at large k̄x , the plas-
monic modes SSPP/ASPP can be considered as a symmet-
ric/antisymmetric combination of the two single-interface
modes ISPP. Consequently, the spatial extent of the electro-
magnetic confinement of the single-interface mode ISPP is then
nearly two times smaller than the modes SSPP and ASPP.

It is obvious that the effective-medium approximation is
not appropriate for the systems with nonequispaced QWs.
Then, the components of the transfer matrix describing the
system can be calculated numerically modeling the quasi-two-
dimensional electron gas, in each QW, by 2D sheet positioned
at the center of the QW [47,80].

APPENDIX B: DETAILS ON THE EIGENMODE
SOLUTIONS

Substituting relations (5) and (6) into the Maxwell’s curl
equation, we arrive at the following set of coupled equations
for components Ex, Ez, and Hy in the (passive) resonator [11]:

iωμ0Hy = dEx/dz − ikxEz, (B1)

iωε0εEx = dHy/dz, (B2)

iωε0εEz = −ikxHy, (B3)
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where

ε(z,ω) =
{
εw for |z| < LMC/2,

εmirr(ω) for |z| > LMC/2
(B4)

is the z-dependent dielectric function of the passive resonator.
Using (B2) and (B3), we get an additional relation

Ex = (i/kx)dEz/dz. (B5)

Thus, the components Ex and Hy can be written in the terms
of Ez. (As already mentioned, only the z component of the
displacement field Dz = ε0εEz couples with the intersubband
excitation.) From Eqs. (B1)–(B5) one finds that the Ez satisfies
the Helmholtz equation

d2Ez/dz2 + (
εK2 − k2

x

)
Ez = 0. (B6)

According to the boundary conditions for the EM field, Dz

and Ex must be continuous at mirror surfaces. Moreover (in
the case of bound modes), Ez must vanish for z → ±∞. It
leads to the eigenmode equation (41).

Due to the symmetry of the considered structure, the z and x

components of the electric field EN associated with N th mode
obey the following relations: ES,z(z) = ES,z(−z), EA,z(z) =
−EA,z(−z) and ES,x(z) = −ES,x(−z), EA,x(z) = EA,x(−z).
Thus, the spatial variation of the above-mentioned components
can be considered only for z > 0.

In z > LMC/2,

EN ,z(z) = ANBN exp(−αmirr,N z), (B7)

EN ,x(z) = ANBN (−iαmirr,N /kx)exp(−αmirr,N z), (B8)

and in 0 < z < LMC/2,

ES,z(z) = AScosh(αspac,Sz), (B9)

ES,x(z) = AS(iαspac,S/kx)sinh(αspac,Sz), (B10)

EA,z(z) = AAsinh(αspac,Az), (B11)

EA,x(z) = AA(iαspac,A/kx)cosh(αspac,Az). (B12)

Here, AS and AA are arbitrary constants with units of electric
field that are used to normalize the modes. Moreover,

BN = exp(αmirr,NLMC/2)(εw/εmirr,N )

×
{

cosh(αspac,SLMC/2) for N = S,

sinh(αspac,ALMC/2) for N = A,
(B13)

where αspac/mirr,N = αspac/mirr(ω̄ = ω̄N ). The above equations
give information on the spatial variation of the plasmonic mode
functions fS,z and fA,z appearing in Eq. (21).

In the idealized case when cladding material can be treated
as a perfect metal (εmirr → −∞), thenth-cavity-mode function
simplifies to the form

f perf
n,z (z) =

{
cos(nπz/LMC) for n = 0,2,4 . . . ,

sin(nπz/LMC) for n = 1,3,5 . . . .
(B14)

The (normalized) mode frequency is then given by

ω̄perf
n = (

k̄2
x + n2)1/2

. (B15)

APPENDIX C: EXPRESSIONS FOR OVERLAP FACTOR
AND EFFECTIVE MODE LENGTH

Substituting Eqs. (B7)–(B13) into Eq. (33) and performing
the integrations we find that the expression for the overlap
factor �N ,z can be written in the following form:

�N ,z = u
spac
N ,z/u

total
N . (C1)

Here, utotal
N = u

spac
N ,x + u

spac
N ,z + umirr

N where

umirr
N = 2

∫ ∞

LMC/2
|EN |2dz

= |AN |2LMC|BN |2
(

1 + ᾱ2
mirr,N
k̄2
x

)
exp(−ᾱmirr,Nπ )

ᾱmirr,Nπ
,

(C2)

u
spac
S,x = 2

∫ LMC/2

0
|ES,x |2dz

= |AN |2 LMC

2

ᾱ2
spac,S

k̄2
x

[
sinh(ᾱspac,Sπ )

ᾱspac,Sπ
− 1

]
, (C3)

u
spac
S,z = 2

∫ LMC/2

0
|ES,z|2dz

= |AN |2 LMC

2

[
sinh(ᾱspac,Sπ )

ᾱspac,Sπ
+ 1

]
, (C4)

u
spac
A,x =

∫ LMC/2

0
|EA,x |2dz

= |AN |2 LMC

2

|ᾱspac,A|2
k̄2
x

⎧⎨
⎩

sin(|ᾱspac,A|π)
|ᾱspac,A|π + 1, if k̄x < k̄cross

A

sinh(ᾱspac,Aπ)
ᾱspac,Aπ

+ 1, if k̄x > k̄cross
A

(C5)

u
spac
A,z = 2

∫ LMC/2

0
|EA,z|2dz

= |AN |2 LMC

2

⎧⎨
⎩

1 − sin(|ᾱspac,A|π)
|ᾱspac,A|π , if k̄x < k̄cross

A

sinh(ᾱspac,Aπ)
ᾱspac,Aπ

− 1, if k̄x > k̄cross
A .

(C6)

Finally, we would like to stress that when, as in
Refs. [18,72], the electronic excitation is isotropic, then �N ,z

given by Eq. (C1) should be replaced by �N = (uspac
N ,x +

u
spac
N ,z)/utotal

N . Such a substitution affects particularly strongly the
k̄x dependence of the overlap factor corresponding to the an-
tisymmetric mode. More precisely, in the case of the isotropic
electronic excitation the overlap factors corresponding to the
plasmonic modes are much flatter than that displayed in Fig. 6
(results are not presented). It explains why in the case of the
isotropic excitations studied in Ref. [18], the antisymmetric
exciton surface plasmon polariton branches are nearly parallel
(in the ω-kx plane) to the ASPP mode.

For completeness, we have also calculated the (normalized)
spatial-dependent effective mode length Leff

N,z = Leff
N,z/LMC,

where Leff
N,z is defined in Appendix A. Performing appropriate
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manipulations, we get the following result:

Leff
N ,z(z̄) = utotal

N
LMC|AN |2 ×

{
|cosh(ᾱspac,S z̄)|−2 for N = S,

|sinh(ᾱspac,Az̄)|−2 for N = A,

(C7)

Leff
I,z(zQW) =

exp(2ᾱspac,I πzQW)

2ᾱmirr,I π

[
1 + ᾱ2

spac,I

k̄2
x

+
(

1 + ᾱ2
mirr,I

k̄2
x

)(
εw

εmirr,I

)2
]
, (C8)

where εmirr,I = εmirr(ω̄ = ω̄I ) and zQW = (LMC/2 − z)/LMC.
One can check that the formula (C8) gives the numerical results
equivalent to those predicted by Eq. (33) in Ref. [65] provided
that the factor π2 appearing in this equation is removed.

APPENDIX D: REFLECTION-ABSORPTION SPECTRA
AND POLARITON-INDUCED OPTICAL ASYMMETRY

Now, we discuss the optical response of the three- and four-
layer structures assuming that one of the mirrors (the coupling
mirror) has a finite thicknessdmirr. Through this mirror, external
radiation couples to the electromagnetic modes supported by
the structure. It is well known that when the open resonator
operates in the strong coupling regime, the peak positions in
the angle-resolved absorption spectra are close to the frequency
of the electromagnetic modes supported by the idealized
nondissipative structures with totally reflecting mirrors [38].
Below, we illustrate the above statement performing numerical
calculations for realistic systems.

1. Description of the GaAs/GaAsAl-based open resonators

As mentioned, we consider systems based on
GaAs/GaAsAl. For simplicity, the difference between
εGaAs(=εw) and εGaAsAl is omitted. We assume also that the
coupling mirror, with thickness dmirr > α−1

mirr,N , is backed by
the semi-infinite medium with dielectric constant εback = εw.
Moreover, in the case of the four-layer structures, we discuss
two configurations, namely, when the MQW slab is located
near the coupling mirror (the structure type C) and near the
back mirror (the structure type B).

The dielectric function of the mirrors is described by
a Drude model with a realistic value of damping rate
γmirr (= 10 meV/h̄). As in Ref. [10] we take ND = 5 ×
1018 cm−3. It corresponds to h̄ωsurf

p,mirr = 69.3 meV [see
Eq. (4)]. The rest of the parameters have been taken consistent
with structures studied in Figs. 7, 8, 10, and 11. Additionally,
to facilitate the comparison of the results obtained for the
symmetric and asymmetric structures, we have assumed (as
in Sec. VI) that the number of the QWs, the product fITNS ,
and intersubband frequency are the same in all the structures:
NQW = 26, fITNS = 1.15 × 1012 cm−2, and ωIT = ωsurf

p,mirr =
69.3 meV. In the case of the thicker (thinner) structure, we take
LMC = 13.468 μm (6.734 μm) what corresponds to ω̄surf

p,mirr =
0.5 (0.25). As mentioned at the beginning of Sec. VI, the period
(dMQW) of the MQW slab, located in the four-layer structure,
is two times smaller than the period of the MQW slab located
in the three-layer structure. It implies that in the case of the

FIG. 13. The spectral dependence of the absorptance of the
passive structure (open circles), the three-layer (black solid curves)
and four-layer (gray solid and dashed curves) structures described in
the text. The gray dashed (solid) curve corresponds to the four-layer
structure with the MQW located near the coupling (back) mirror.
The calculations have been performed taking h̄γIT = 0.5 meV and
h̄γIT = 0.005 meV (see the inset). ωsurf

p,mirr = ωIT = 69.3 meV and
LMC = 13.468 μm. It corresponds to ω̄surf

p,mirr = ω̄IT = 0.5.

three- (four-) layer structure, the relation �p,MQW = 0.3 × ωIT

[�p,MQW = √
2 × (0.3 × ωIT)] is valid. Thus, the coupling

frequencies in the symmetric and asymmetric structures co-
incide. For the convenience of presentation, the intersubband
damping rate γIT will be treated as a free parameter.

Numerical calculations have been performed assuming that
light incidents from the backed medium at the angle ϕinc = 60◦
on the coupling mirror with thickness dmirr = 20 μm. We
have checked that a further increase of the mirror thick-
ness practically does not affect the position of the peak in
the absorption-reflection spectra. The above-mentioned peaks
should be located near the crossings of the scan line k̄x =
K̄ε

1/2
w sinϕinc (represented in Figs. 10 and 11 by a thin dashed

line) with appropriate polariton branches [37,38].

2. Manifestation of the ISPP branches in absorption spectra
and polariton-induced optical asymmetry

The inspection of the numerical results displayed in Figs. 13
and 14 leads to the conclusions consistent with the theoretical
results reported in Ref. [34]. Namely, taking sufficiently small
values of parameter γIT = 0.5 meV we are able to resolve
all the peaks associated with the ISPP branches discussed in
Sec. VI. For example, in the case of the degenerate four-layer
structure discussed in Fig. 13, the peak in the solid gray
curve appearing at h̄ω ∼= 65.5 meV (h̄ω ∼= 72 meV) can be
associated with the MC

ISPP (MU
ISPP) branch represented by ap-

propriate thick curves in Fig. 10. The above-mentioned peaks
are resolved even when we take a more realistic value of the
parameter γIT, e.g., γIT = 5 meV. (Results are not presented.)
Nevertheless, we would like to stress that the relative branch
splittings extracted from Figs. 13 and 14 are slightly smaller
than those predicted by Figs. 5, 7, 8, 10, and 11. This difference
is due to the fact that solving dispersion equations (11) and
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FIG. 14. Same as in Fig. 12, except that now LMC = 6.734 μm.
It corresponds to ω̄surf

p,mirr = ω̄IT = 0.25.

(12) we have completely neglected dissipative losses. We also
find that the higher-order in-gap branches (see the insets in
Figs. 13 and 14) can be resolved only partially taking unreal-
istically small values of γIT (�10−4 × ωIT). It means that the
observation of the in-gap branches in the reflection/absorption
spectra of realistic structures seems to be extremely difficult.

The inspection of Figs. 13 and 14 also shows that in the
case of the asymmetric structures, the reflection/absorption
spectrum is sensitive to the location of the MQW slab with
respect to the coupling mirror. In other words, the spectra of
the C and B type structures differ substantially. A similar
effect has been observed by Armitage et al. [42] (see also
[43]) in the coupled semiconductor microcavity structures
containing QW in one of the cavities. (The authors named
this effect “polariton-induced optical asymmetry.”) At this
point, it worth noting that the above-mentioned difference
in the reflection-absorption spectra of the C and B type
asymmetric structures is consistent with the general constraint.
This constraint predicts the light reflection nonreciprocity
for two-side incidence when the dissipation and asymmetry
are simultaneously present in the structure [81]. Below, we
present a semiqualitative description of the above-mentioned
asymmetry in the absorption spectra of the C and B type
four-layer structures.

Let us assume that (for given value of k̄x) the coupling of
the two single-interface (ISPP) plasmonic modes, leading to the
formation the SSPP and ASPP modes, is relatively weak. From
Eq. (40), one finds that it is equivalent to the assumption that
|ωN − ωI | � ωI . In the considered systems (see Figs. 2 and
3), the above condition is fulfilled when k̄x is sufficiently large
(�0.5). Then, assuming additionally that the RWA is valid,
it is convenient to model the four-layer structure discussed
in Figs. 13 and 14 with the help of the (modified) three-
coupled-oscillator model similar to that developed in Ref. [42].
The main difference from the three-coupled-oscillator model

discussed in Sec. IV C is the following. Now, the two plasmonic
oscillators are connected, not with the modes SSPP and ASPP,
but with the single-interface surface plasmon modes IC

SPP and
IB

SPP, localized at the coupling and back mirrors, respectively.
Moreover, the intersubband oscillator is connected with the
bright intersubband excitation having the same spatial variation
as the IC

SPP (IB
SPP) mode when the MQW slab is located at the

coupling (back) mirror. It is reasonable to assume that, in the
case of the C (B) type structure, the intersubband oscillator
couples practically only to the IC

SPP (IB
SPP) plasmonic oscillator.

As already mentioned, the coupling between plasmonic oscil-
lators, i.e., between the modes IC

SPP and IB
SPP, is controlled by the

coupling factor κI . Such a modified three-coupled-oscillator
model leads to the effective Hamiltonian having the same form
as that given by Eq. (1) in Ref. [42]. Such a type Hamiltonian
predicts the formation of the three (multimode) branches de-
noted, for convenience, by MU

ISPP (upper branch), MC
ISPP (central

branch), and ML
ISPP (lower branch). These branches practically

coincide with the branches predicted by the Hamiltonian (35)
discussed in Sec. IV C, provided that the mentioned above
condition |ωI − ωN | � ωI is fulfilled and the structure is
nearly degenerate.

Employing the modified three-coupled-oscillator mode, one
finds (for details see [42]) that, in the particular case when ωI =
ωIT, the eigenvector of the branch MC

ISPP, in contrast with the
two outer branches MU

ISPP and ML
ISPP, contains practically only

one of the plasmonic components. This component coincides
with the IC

SPP (IB
SPP) mode in the case of the C (B) type structure.

It means that the visibility of the peak corresponding the MC
ISPP

branch should be much better in the case of the C type structure
than in the B type structure, even when the condition ωI = ωIT

is not well fulfilled. This prediction seems to be qualitatively
consistent with the exact numerical results (see Figs. 13 and
14) obtained employing the transfer matrix approach. Note,
however, that in our structures only the peak associated with the
MU

ISPP and MC
ISPP branches can be observed. (The ML

ISPP branch
is located below the backed/spacer medium light line.) As
mentioned, in Fig. 13 the peaks positioned at h̄ω close to 72 and
65.5 meV can be associated with the branches MU

ISPP and MC
ISPP,

supported by the degenerate structure (ω̄surf
p,mirr = ω̄IT = 0.5). It

is clearly seen that, although in the above structure the condi-
tion ω̄IT

∼= ω̄I is not fulfilled, the relative heights of the peaks
(associated with MU

ISPP and MC
ISPP branches) are different when

the MQW is located at the coupling mirror (the gray dashed
curve) and back mirror (the gray solid curve). We have checked
numerically (results are not presented) that in agreement
with the modified three-oscillator model, the above-mentioned
difference dramatically increases when ω̄IT approaches to ω̄I

(≈0.36 at k̄x
∼= 0.5). Simulation shows that, in the case of the

B type structure, the peak associated with the MC
ISPP branch

practically vanishes if h̄ωIT (ω̄IT) is close to 50 meV (0.36). It
is also worth noting that the visibility of the peak associated
with the in-gap polaritons is enhanced by the location of the
MQW near the coupling mirror. (See the behavior of the gray
solid and dashed curves in Fig. 14 at h̄ω � h̄ωIT = 69.3 meV.)
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