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We present a theory of optical absorption by interlayer excitons in a heterobilayer formed from transition
metal dichalcogenides. The theory accounts for the presence of small relative rotations that produce a momentum
shift between electron and hole bands located in different layers, and a moiré pattern in real space. Because of
the momentum shift, the optically active interlayer excitons are located at the moiré Brillouin zone’s corners,
instead of at its center, and would have elliptical optical selection rules if the individual layers were translationally
invariant. We show that the exciton moiré potential energy restores circular optical selection rules by coupling
excitons with different center of mass momenta. A variety of interlayer excitons with both senses of circular
optical activity, and energies that are tunable by twist angle, are present at each valley. The lowest energy exciton
states are generally localized near the exciton potential energy minima. We discuss the possibility of using the
moiré pattern to achieve scalable two-dimensional arrays of nearly identical quantum dots.
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I. INTRODUCTION

Motivated by the discovery of unprecedented optical [1]
and electronic [2,3] properties, the monolayer transition metal
dichalcogenides (TMD) class of two-dimensional materials
is currently under active study. Because of strong Coulomb
interactions between electrons and holes, the optical absorption
of monolayer TMD semiconductors like MoS2 is dominated
by excitonic features [4–7]. In TMDs excitons have two-
fold valley degeneracy because the material’s band extrema
are located at inequivalent momenta at the triangular lattice
Brillouin zone corners that are related by time-reversal sym-
metry. Valley-dependent optical selection rules enable optical
manipulation of the valley degree of freedom [8–11], providing
access to many interesting phenomena, including light-induced
Hall effects [12], a valley-selective optical Stark effect [13,14],
and a large valley-exclusive Bloch-Siegert shift [15].

Van der Waals heterobilayers composed of different mono-
layer TMDs provide an even richer platform in which new
properties can be engineered. WX2/MoX2 (X= S, Se) het-
erobilayers have been experimentally realized [16–20], and
have a type-II band alignment in which the conduction- and
valence-band edges are associated with MoX2 and WX2,
respectively. The lowest-energy excitons are therefore spatially
indirect since the constituent electrons and holes are located
primarily in different layers. The interlayer excitons have a
long lifetime and an electrically tunable energy because of
their spatially indirect nature [21], but still possess a sizable
electron-hole binding energy. These features make TMD bi-
layers a strong candidate system to realize spatially indirect
exciton condensation [22,23].

Heterobilayers of two-dimensional materials exhibit long-
period moiré patterns when they have a small lattice constant
mismatch and/or relative orientation angle. Moiré patterns
can induce dramatic changes in material properties that can

be altered by controlling the twist angle. In graphene-based
heterostructures, the moiré pattern strongly modifies the Dirac
spectrum [24–27], leads to Hofstadter-butterfly spectra in a
strong magnetic field [24,28,29], and can assist optical spec-
troscopy in the fractional quantum Hall regime [30]. In TMD
heterobilayers, the possibilities are richer because of the wider
variety of materials, and they are still relatively unexplored.
In a previous paper [31], we have shown that a moiré pattern
profoundly alters the spectrum of optical absorption due to
intralayer excitons by producing satellite excitonic peaks, and
enables the design of topological bands of intralayer excitons.
Moiré pattern in TMDs can also be used to engineer electronic
topological insulator nanodots and nanostripes [32].

A comprehensive theory of interlayer excitons in moiré
pattern is desirable for interpreting ongoing and future exper-
iments. In a pioneering theoretical paper [33] by Yu et al., it
was shown that optically active interlayer excitons are located
at the corners of the moiré Brillouin zone (MBZ) instead of
its center, and that they have elliptical optical selection rules
instead of circular. These predictions are, however, based on a
theory that omits one important ingredient, namely, the spatial
modulation of exciton energy produced by the moiré pattern.
In this paper, we present a theory of interlayer excitons in a
moiré pattern that does take account of the exciton potential
energy, which has a sizable magnitude according to our
ab initio calculations. We explain why this potential energy
plays an essential role in determining exciton properties.

Our theory predicts that the exciton potential energy has two
major effects on interlayer excitons. First, the periodic exciton
potential inevitably mixes and splits the three independent ex-
citon center-of-mass eigenstates that are otherwise degenerate
at the MBZ corners. The new exciton eigenstates respect the
rotational symmetries of the moiré pattern and for this reason
circular optical selection rules must be restored. Mixing of
center of mass eigenstates by the exciton potential energy splits

2469-9950/2018/97(3)/035306(10) 035306-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.035306&domain=pdf&date_stamp=2018-01-22
https://doi.org/10.1103/PhysRevB.97.035306


FENGCHENG WU, TIMOTHY LOVORN, AND A. H. MACDONALD PHYSICAL REVIEW B 97, 035306 (2018)

the spectral weight associated with interlayer excitons across a
variety of distinct states whose energy splittings can be tuned
by adjusting twist angles. Interlayer excitons also have a valley
degree of freedom, but the optical selection rules are not locked
to valley. In particular, different interlayer excitons at a given
valley can absorb light with different circular polarization.
This can have important experimental consequences, as we
will explain. Second, the moiré potential generally results
in localized exciton states that are confined near the poten-
tial minima. This suggests a Van der Waals heterostructure
moiré based strategy for realizing two-dimensional arrays of
nearly identical quantum dots with nanoscale. When the moiré
potential is fine tuned such that it has an enhanced sixfold
rotational symmetry, the exciton moiré band structure has
Dirac dispersion within the light cone.

Our paper is organized as follows. In Secs. II and III, we
formulate the optical matrix element for interlayer excitons.
The derivation closely follows that in Ref. [33]. In Sec. IV, the
exciton moiré potential energy is constructed. In Sec. V, we
present our main results on the optical absorption spectrum for
interlayer excitons in moiré pattern. In Sec. VI, we show the
presence of Dirac cones in the exciton band structure when the
moiré potential is fine tuned. Finally, in Sec. VII, experimental
implications of our work are discussed.

II. THEORY OF MOIRÉ HETEROBILAYER
INTERLAYER EXCITONS

We study WX2/MoX2 (X= S, Se) TMD heterobilayers
with a small relative twist angle θ . We choose heterobilayers
with a common chalcogen (X) atom, because these have small
lattice constant mismatches (δ ∼ 0.1%). The moiré periodicity
aM is given by

aM ≈ a0/
√

θ2 + δ2, (1)

where the lattice constant mismatch δ is defined as |a0 −
a′

0|/a0, and a0 and a′
0 are the lattice constants of the two layers.

At twist angles larger than ∼0.1◦, we can neglect δ. To simplify
the discussion, we set δ to be zero below. The low-energy
conduction-band states of WX2/MoX2 bilayers are localized
in MoX2, and the low-energy valence-band holes are localized
in the WX2 layers. Mixing between layers is weak because of
the Van der Waals character of the heterobilayer, and because
of the heterobilayer band alignment [34].

The bilayer has two distinct stacking orders AA and AB,
which are illustrated in Figs. 1(a) and 1(b). Both configurations
are experimentally relevant [20,35]. Our choice of stacking
convention allows us to study interlayer excitons in AA and
AB stacking systems in a unified manner.

We consider interlayer excitons composed of electrons
(holes) residing in the ±K T (±KB) valleys of a top (T)
MoX2 [bottom (B) WX2] layer. The electron-hole exchange
interaction, which couples intralayer +K and −K valley
excitons [36–39], is extremely weak for interlayer excitons
because the electrons and holes are spatially separated. We
therefore neglect the exchange interaction and study ±K valley
excitons separately. Since excitons in opposite valleys are time-
reversal partners, we focus on the +K valley excitons unless
otherwise stated. When the weak hybridization between layers
is neglected, exciton states can be labeled by center-of-mass
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FIG. 1. (a) Illustration of AA stacking with a small twist angle θ

and an in-plane displacement r0. The blue and red hexagons mark the
Wigner-Seitz cells of the two layers. (b) The corresponding illustration
of AB stacking. AA and AB stacking are distinguished by a rotation
of the top layer (MoX2) by π around the metal (Mo) axis. (c) Unit
cell of the bilayer when θ = 0. The vectors r0,n in this figure are high
symmetry points as discussed in the main text. (d) Brillouin zone and
the first shell reciprocal lattice vectors for the bilayer with θ = 0.
(e) Brillouin zones associated with the top and bottom layers in a
twisted bilayer.

momentum Q. The corresponding exciton wave function is

| Q〉 = 1√
A

∑
k

fka
†
c(K T +k+ me

M
Q)av(KB+k− mh

M
Q)|G〉, (2)

where |G〉 is the ground state of the heterobilayer, and a
†
c(K T +q)

[av(KB+q ′)] creates an electron (a hole) in the K -valley conduc-
tion (valence) band of the MoX2 (WX2) layer. The meaning
of various quantities that enter (2) is as follows: A is the
system area, k is the electron-hole relative momentum, and
Q is the electron-hole center-of-mass momentum. In making
these definitions we have adopted the usual convention of
measuring momentum from the band extrema points in each
layer. In Eq. (2), me and mh are, respectively, the electron and
hole effective masses, M = me + mh is the exciton total mass,
and fk is the electron-hole relative-motion wave function in
momentum space. We only study the lowest-energy interlayer
excitons, for which fk has s-wave symmetry, i.e., it depends
only on the magnitude of k. fk is normalized such that
〈 Q| Q〉 = 1.

When the bilayer has zero twist angle, the optically active
excitons are located at Q = 0 because light carries a vanish-
ingly small momentum. At a finite twist angle, the Brillouin
zones associated with the top and bottom layers have a relative
rotation, leading to a finite momentum displacement between
electron and hole bands [see Fig. 1(e)]. When we adopt the
standard and convenient convention of measuring momentum
in each layer from its Brillouin-zone corner band extremum,
the optically active excitons in the K valley are shifted to
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momenta [40]

Q = (KB + GB) − (K T + GT ), (3)

where GB and GT are the reciprocal lattice vectors of the
bottom and top layers, respectively. By time-reversal symme-
try, bright excitons at the −K valley are located at momenta
opposite to those in (3). We prove Eq. (3) below.

The interlayer optical matrix element between the ground
state and the exciton state is

J(θ,r0, Q) = 1√
A

〈G| ĵ | Q〉, (4)

where ĵ is the current operator. We evaluate J using a local
approximation valid for long moiré periods. Because the two
layers are weakly coupled and have separate lattice transla-
tional symmetry, the conduction-band electron and valence-
band hole creation operators at a given momentum can be
expanded in terms of their Wannier function counterparts:

av(KB+q) = 1√
N

∑
R

e−i(KB+q)·RavR,

a
†
c(K T +q ′) = 1√

N

∑
R′

ei(K T +q ′)·(R′+r0)a
†
c(R′+r0), (5)

where N is the number of unit cells in each layer, c and
v are the Wannier labels identified with the conduction and
valence bands, and R is a triangular lattice Bravais vector.
We assume a two-center approximation [33,41] for the optical
matrix element and for its dependence on a rigid displacement
by r0 of one layer with respect to the other. That is to say we
assume that

〈G| ĵa†
c(R′+r0)avR|G〉 ≈ j (R′ + r0 − R)

= 1

A
∑

p

e−i p·(R′+r0−R) j ( p), (6)

where j (r) is a function of displacement. In replacing the
first form of Eq. (6) by the second, we have assumed that
the matrix element depends only on the difference between
electron and hole positions. The third form of Eq. (6) simply
expresses j (r) in terms of its Fourier transform. The two-center
approximation preserves all symmetries of the system, and
results derived based on this approximation are compatible
with all symmetry requirements. Using (2), (5), and (6), we
can rewrite J in the form

J(θ,r0, Q) = N

A2

∑
k

∑
GB,GT

fk

× j (KB + GB + k − mh Q/M)

×δQ,(KB+GB )−(K T +GT )e
−iGT ·r0 . (7)

Equation (7) establishes the momentum-conservation law in
(3). Because of the relatively large separation between layers
in the heterobilayer system, we expect that j (r) should be a
smooth function of r on the scale of the monolayer lattice
constant, and hence that j ( p) should decline rapidly on the
scale of the monolayer reciprocal lattice vector.

It follows from Eq. (7) that the smallest excitation momenta
at which bright excitons appear are Q = q1, q2, and q3,

where q1 = KB − K T , and q2 and q3 are the threefold-rotation
counterparts of q1 as illustrated in Fig. 1(e). The contributions
to Eq. (7) from larger momenta allowed by Eq. (3) will be
much smaller because j ( p) is a decreasing function of | p|.
Below, we retain only the dominant optical response from the
qn contributions. This yields

J(θ,r0, Q) ≈
3∑

n=1

δQ,qn
Jne

−iG(n)
T ·r0 , (8)

where G(1)
T is a zero vector, and G(2,3)

T are reciprocal lattice
vectors that connect equivalent K points in the Brillouin zone
of top layer [Fig. 1(e)]. The parameters Jn are independent
of r0.

We extract numerical values for Jn by comparing with
microscopic ab initio calculations performed for the commen-
surate structures obtained by setting θ and Q to 0. In this limit,
Eq. (8) reduces to

J(r0) ≈
3∑

n=1

Jne
−iG(n)·r0 . (9)

In Eq. (9), G(n) is limθ→0 G(n)
T . Because the heterobilayer struc-

ture is commensurate in this limit, the ab initio calculations are
readily performed:

J(r0) = 1

A
∑

k

fk〈G| ĵa†
c(K+k)av(K+k)|G〉

≈ f̃ (0)D(r0), (10)

where f̃ (0) = ∑
k fk/A, and D(r0) = 〈vK |J |cK 〉. |f̃ (0)|2

is the probability that the electron and hole spatially overlap,
and J is the matrix representation of the current operator ĵ .
In Eq. (10), the final expression is justified by the fact that
fk is peaked around k = 0. For simplicity, we assume f̃ (0) is
independent of r0, since the most significant dependence on
r0 is from D(r0) as we discuss below. Not only the exciton
energy but also the strength of optical coupling to the exciton
state varies with position within the moiré pattern.

III. INTERLAYER OPTICAL MATRIX ELEMENTS

We performed ab initio calculations for aligned layers with
identical lattice constants as a function of r0, which is the in-
plane displacement shown in Fig. 1. The ab initio calculations
are performed using fully relativistic density functional theory
(DFT) under the local-density approximation as implemented
in QUANTUM ESPRESSO [42]; the details of these calculations
are the same as those described in Supplemental Material of
Ref. [31], except that we use a denser 18 × 18 × 1 k-point
sampling, which is required to reduce noise in the individual
conduction and valence-band extrema in the AB stacking case.
For each value of r0, we fit the bands to a tight-binding model
using WANNIER90 [43], and then use the tight-binding model
Hamiltonian to evaluate the matrix element of the current
operator between the semiconductor ground state and the
single exciton state using Eq. (10).

The bilayer has a Ĉ3 symmetry when r0 has one of three
high symmetry displacements: r0,n = n(a1 + a2)/3 for n =
0,1 and 2. Here a1,2 are the lattice vectors shown in Fig. 1(c).
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FIG. 2. (a) K -valley interlayer exciton optical matrix elements
for heterobilayers with zero twist angle at special high symmetry
displacements. (b) In-plane displacement dependence of the ab initio
values of |D(r0) · e∗

+| (top) and |D(r0) · e∗
−| (bottom) for aligned AA

stacking of WS2/MoS2 with zero twist angle. Values are given in
units of the corresponding intralayer optical response parameter D.
|D(r0) · e∗

−| at r0,1 is small but nonzero. (c) Same plot as (b) but for
AB stacking. (d) Leading harmonic approximation for |D(r0) · e∗

±|
explained in the text.

At r0,0 = 0, the metal atoms in the two layers are vertically
aligned. At r0,1 (r0,2), Mo atoms in the top MoX2 layer are
above the chalcogen (empty) sites of the bottom WX2 layer.
The Ĉ3 symmetry puts strong constraints on D(r0,n). For
both AA and AB stackings, the main character of the valence
(conduction) band at the K valley is the W (Mo) d orbital
with magnetic quantum number +2 (0). The optical selection
rule is determined not only by the atomic magnetic quantum
numbers, but also by the change in the Bloch phase factor under
Ĉ3 operations. The Bloch phase shift is different for different
r0,n, leading to different optical selection rules. Based on these
considerations, we find that the transition at K satisfies the
following circular polarization selection rules:

D(r0,0) = D+e+,D(r0,1) = D−e−,D(r0,2) = 0, (11)

where e± = (1, ± i)/
√

2. Equation (11) is valid for both
AA and AB stacking. Note that the valley-dependent optical
selection rule is opposite for r = r0,0 and r = r0,1, and that
the in-plane transition dipole moment is zero for r0 = r0,2.
Figure 2(a) summarizes these optical selection rules schemat-
ically.

Using Eqs. (9)–(11), we can express Jn in the form

Jn = 1
3 [J+e+ + eiG(n)·r0,1J−e−], (12)

where J± = f̃ (0)D±. Because Jn has both e+ and e− com-
ponents, it follows that the optically active exciton states at
excitation wave vector qn have elliptical optical selection rules,
instead of circular [33]. However, as we show below, the
exciton potential energy produced by the moiré pattern will
mix the three states located at qn (n = 1, 2, 3). The resulting

eigenstates states are coherent superposition of the |qn〉 states
for which circular optical selection rules are restored. Substi-
tuting Eq. (12) back into Eq. (9), we can parametrize D(r0) in
terms of D±:

D(r0) ≈
[

D+
3

3∑
n=1

e−iG(n)·r0

]
e+

+
[

D−
3

3∑
n=1

e−iG(n)·(r0−r0,1)

]
e−. (13)

Equation (13) can be tested numerically. The DFT values of
|D(r0) · e∗

±| are presented in Figs. 2(b) and 2(c), respectively
for AA and AB stacking of the WS2/MoS2 bilayer. In Fig. 2(d),
we also plot |D(r0) · e∗

±|, as calculated from Eq. (13). The
good agreement between analytical and numerical results
provides strong justification for Eq. (13). From the ab initio
results we estimate that (|D+|,|D−|) is (0.17,0.04)D for AA
stacking and (0.04,0.10)D for AB stacking, where D is the
matrix element for MoS2 intralayer excitations in AA stacking
with zero twist angle and zero displacement. D is defined as
|〈vK |J |cK 〉|, where both the conduction and valence states
are located in MoS2 layer. The numerical value of h̄D/e is
about 5.22 eV Å, where h̄ is the reduced Planck constant and
e is the electron charge. Numerical results of WSe2/MoSe2

bilayer are presented in Ref. [44].

IV. INTERLAYER EXCITON POTENTIAL ENERGY

The interlayer twist generates not only a relative shift in
momentum space [Fig. 1(e)], but also a moiré pattern in real
space [Fig. 3(a)]. The moiré pattern leads to spatial modulation
of the exciton energy. The potential energy for the interlayer
excitons is Eg − Eb, where Eg is the band gap between the
WX2 valence band and the MoX2 conduction band at the
K point, and Eb is the exciton binding energy. We neglect
the variation of Eb in the moiré pattern, since it is typically
smaller than the variation of Eg . We use a local approximation
[31,45,46] to estimate the exciton moiré potential. First, we

,

,

,

,

(a) (b)

FIG. 3. (a) The small red and blue dots represent Bravais lattices
of the two layers with a relative rotation. The dashed lines mark
the moiré unit cell. The big dots indicate regions where the local
displacement between the two layers is r0,n. Each r0,1 region has
three r0,2 neighbors and each r0,2 region has three r0,1 neighbors.
(b) Moiré Brillouin zone and the first-shell moiré reciprocal lattice
vectors.
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FIG. 4. Results for a WS2/MoS2 heterobilayer with AA stacking. (a) Variation of the interlayer band gap as a function of r0 when the
twist angle is zero. (b) Variation of the band gap in real space when the twist angle is finite. (c) Exciton moiré band structure for θ = 1◦.
(d) Optical spectrum of K -valley interlayer excitons for a series of twist angles. The red and blue curves respectively show ReσK ,+/�+ and
ReσK ,−/�−. �+/�− is about 18. The broadening parameter η is taken to be 0.5 meV. Curves for different θ are shifted vertically. (e) The
real-space probability function |χ (r)|2 of the interlayer excitons responsible for the first three absorption peaks at θ = 1◦.

obtain Eg as a function of relative displacement r0 at zero twist
angle from the DFT band structure. The spatial variation of Eg

is shown in Figs. 4(a) and 5(a). Note that the exciton potential
energy has its minimum at the r0,1 point for AA stacking and at
the r0,0 point for AB stacking. Since the potential is a smooth
periodic function of r0 in both cases, we can approximate it by
the lowest-order harmonic expansion:

	0(r0) ≡ Eg(r0) − 〈Eg〉 ≈
6∑

j=1

Vj exp(iGj · r0), (14)

where 〈Eg〉 is the average of Eg over r0, and the Gj are the
first-shell reciprocal lattice vectors shown in Fig. 3(c). Because
each layer separately has Ĉ3 symmetry, 	0 is invariant under
120◦ rotations of r0. This symmetry implies that

V1 = V3 = V5,V2 = V4 = V6. (15)

Because 	0 is always real, V1 = V ∗
4 is also required. As a

result, all six Vj are determined by V1 = V exp(iψ). We find
that for MoS2/WS2 heterobilayers (V,ψ) is (12.4 meV, 81.5◦)
for AA stacking and (1.8 meV, 154.5◦) for AB stacking. The
variation of the band gap predicted by DFT has been found
to agree reasonably well with scanning tunneling microscopy
measurement [47].

When the two layers have a relative twist angle θ , the lattice
sites associated with top and bottom layers are related by RT =
R(θ )RB + r0, where R(θ ) is the rotation matrix. The local
displacement of the top layer relative to the bottom layer near
position RT is given by

d(RT ) = T̂B(RT ) = T̂B(RT − RB)

≈ T̂B[θ ẑ × (RT − r0) + r0], (16)

where the operator T̂B reduces a vector to the Wigner-Seitz
cell of the RB lattice. When θ is small, the displacement varies
smoothly in real space and gives rise to the moiré pattern. We
assume that the variation of the band gap locally follows the
variation of the displacement:

	(r) = 	0[d(r)] ≈
6∑

j=1

Vj exp[iGB,j · d(r)]

≈
6∑

j=1

Vj exp[ibj · (r + r0 × ẑ/θ − r0/2)], (17)

where GB,j is the first-shell reciprocal lattice vectors asso-
ciated with the bottom layer. bj = θGj × ẑ is the reciprocal
lattice vector of the moiré pattern, illustrated in Fig. 3(b). The
moiré periodicity is inversely proportional to the twist angle:
aM ≈ a0/θ . The last expression in (17) implies that the global
displacement r0 just leads to a spatial translation of the 	(r)
potential when θ is finite. Without loss of generality, we take
r0 to be zero for the twisted bilayer in the following.

Including both kinetic and potential energy contributions
the exciton Hamiltonian is

H = h̄�0 + h̄2 Q2

2M
+ 	(r), (18)

where h̄�0 is a constant, h̄2 Q2/(2M) is the exciton center-of-
mass kinetic energy. The periodic potential 	(r) is plotted
in Figs. 4(b) and 5(b). We have numerically diagonalized
this Hamiltonian using a plane-wave expansion. The exciton
band structure in the MBZ is shown in Figs. 4(c) and 5(c),
respectively, for AA and AB stackings with a 1◦ twist angle.
The moiré potential mixes excitons with different momenta,
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FIG. 5. Same plots as those in Fig. 4 but for the WS2/MoS2 heterobilayer in AB stacking. In (d), �+/�− is about 6.

leading to a dramatic change in the interlayer absorption
spectrum as we explain in the next section.

V. INTERLAYER EXCITON OPTICAL
ABSORPTION SPECTRUM

To study the effects of the moiré potential on the optical
response, it is instructive to first consider the weak potential
limit and use perturbation theory. As shown in Eq. (8), there are
three optically active exciton states, which are at momentum
qn, i.e., at the corners of the MBZ [Fig 3(b)]. These three
states have the same kinetic energy, and would be energetically
degenerate if there were no moiré potential energy. However,
the three states are coupled by the moiré potential because their
momenta differ by moiré reciprocal lattice vectors. Therefore
the potential lifts the degeneracy. In degenerate perturbation
theory, the potential projected to the |qn〉 has the matrix form

V =

⎛
⎜⎝

0 V5 V6

V2 0 V1

V3 V4 0

⎞
⎟⎠. (19)

The eigenstates of V have the form

|�λ〉 = 1√
3

(|q1〉 + ei2λπ/3|q2〉 + e−i2λπ/3|q3〉), (20)

where λ takes the values 0 and ±1. The corresponding
eigenvalue is 2V cos(ψ + 2λπ/3). As a result, different |�λ〉
generally have different energies unless ψ is fine tuned to
multiples of π/3. The optical matrix element for |�λ〉 is
given by

1√
A

〈G| ĵ |�λ〉 = 1√
3

( J1 + ei2λπ/3 J2 + e−i2λπ/3 J3), (21)

which is J+e+/
√

3 for λ = 0, J−e−/
√

3 for λ = +1, and van-
ishes for λ = −1. Since we have set the global displacement
r0 to be zero, the Jn in (21) are the optical matrix elements for

|qn〉. We see from Eq. (21) that circular optical selection rules
are restored by scattering off the moiré potential. In particular,
the exciton states |�0〉 and |�+1〉 couple, respectively, to σ+
and σ− circularly polarized light, while |�−1〉 is optically
dark. When ψ is fine tuned to 2π/3, |�0〉 and |�+1〉 becomes
energetically degenerate, which gives rise to Dirac cone in the
exciton band structure near κ point. We will discuss this special
situation in the next section.

The above analysis assumes that the potential is weak. We
now argue that circular optical selection rules are generally
expected for the twisted bilayer. When r0 = 0, the bilayer
with any twist angle θ has a Ĉ3 symmetry. Exciton states
can be classified by the symmetry: Ĉ3|χ〉 = exp[i2πlχ/3]|χ〉,
where integer łχ is 0 or ±1. Due to the Ĉ3 symmetry, the
excitation from ground state to exciton |χ〉 is coupled to σ±
circularly polarized light if lχ = ±1, and optically forbidden
under normal incident light if lχ = 0. In Appendix B, we
explicitly show that the finite r0 and zero r0 problems are
related by a unitary transformation.

Our ab initio results indicate that the amplitude of the moiré
potential can be as large as 110 meV, which is not weak at all.
Due to the moiré potential, the |qn〉 are redistributed to different
exciton states |χα〉 at the κ point. We assume that only the |qn〉
components in |χα〉 contribute to the optical response. The
optical conductivity can then be expressed as follows:

ReσK ,±(ω) = 1

ωA
∑

α

|〈χα| j · e±|G〉|2�1(ω − ωα)

≈ 1

ω

∑
α

∣∣∣∣∣
3∑

n=1

〈qn|χα〉Jn · e∗
±

∣∣∣∣∣
2

�1(ω − ωα)

≈ �±
∑

α

∣∣∣∣∣1

3

3∑
n=1

eiφ
(n)
± 〈qn|χα〉

∣∣∣∣∣
2

�2(ω − ωα), (22)
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where �m(ω − ωα) = ηm/[h̄2(ω − ωα)2 + η2], h̄ωα is the en-
ergy of state |χα〉, and η is a broadening parameter. In (22),
�± = |J±|2/(η�0), and the phases are, respectively, φ

(n)
+ = 0

and φ
(n)
− = G(n) · r0,1. ReσK ,±(ω) measures the optical absorp-

tion by K -valley excitons in response to σ± polarized light at
frequency ω. The optical response from −K valley can be
obtained by time-reversal symmetry: Reσ−K ,∓ = ReσK ,±.

Theoretical optical conductivities calculated for small twist
angles are shown in Figs. 4(d) and 5(d). The optical spectrum
has the following features. (i) both ReσK ,+ and ReσK ,− have
peaks around energy h̄�0, but their peaks are located at distinct
energies. This is a manifestation of the circular optical selection
rule. For example, the K -valley exciton state in peak (1) of
Fig. 4(d) can be excited by σ− polarized light, but not by σ+
polarized light. (ii) There are a series of peaks instead of a
single peak in ReσK ,+ (ReσK ,−) near energy h̄�0. Umklapp
scattering off the moiré potential makes finite-momentum
excitons optically active. (iii) The optical spectrum has a strong
dependence on the twist angle because it tunes the moiré
periodicity in real space and the MBZ in momentum space,
leading to changes in the exciton moiré band structure and
optical response.

To gain a deeper insight, we study the exciton center-of-
mass wave function χα(r), which is defined in real space as
follows:

χα(r) =
∑

Q

〈 Q|χα〉ei Q·r . (23)

Figure 4(e) [Fig. 5(e)] plots |χα(r)|2 for excitons in the first
three peaks of Fig. 4(d) [Fig. 5(d)]. The amplitude of the moiré
potential is about 110 meV for AA stacking. In such a strong
potential, the exciton wave function is composed of Wannier
states that are strongly confined to the potential minimum
positions, as shown in Fig. 4(e). The energy dispersion of the
first few exciton bands is almost flat [Fig. 4(c)], indicating that
tunneling between neighboring Wannier states is negligibly
weak. For AB stacking, the moiré potential is weaker, but
a similar confinement is found for excitons in peak (1) [see
Fig. 5(e)].

To characterize the localization length of low-energy exci-
tons, we define a parameter ac as

ac =
√∫

d r|δr|2|χα(r)|2/
∫

d r|χα(r)|2, (24)

where the spatial integral is restricted to one moiré Wigner-
Seitz cell centered at a potential minimum position, and |δr| is
the distance relative to the center. For the exciton state in peak
(1) of Fig. 4(d), ac is 2.8 nm at θ = 0.6◦, and decreases to 2.3
nm at θ = 1.0◦. For comparison, the moiré periodicity aM is
about 30.5 and 18.3 nm, respectively, for θ = 0.6◦ and 1.0◦.
Values of ac for other exciton states are listed in Figs. 4(e) and
5(e). Here, ac of the localized exciton states is not significantly
larger than the exciton internal radius aX(aX is about 1.3 nm
as estimated in Appendix A). The relative motion between
electron and hole will be affected by the moiré potential. This
effect is neglected in our theory. A more accurate approach is
to solve the exciton problem for a supercell structure. Such a
theory will still lead to localized exciton states due to the moiré

potential, so we expect that the qualitative picture of our theory
remains valid.

The localized Wannier states can be understood using a
model of particles in a two-dimensional parabolic potential.
Near its minima, the moiré potentials can be approximated as
parabolic: β(δr/aM )2/2, where β is a constant independent of
aM . A particle with mass M in the parabolic potential has ener-

gies
√

βh̄2/(Ma2
M )(nx + ny + 1), where nx,y are non-negative

integers. The quantized energy levels explain why peaks (1),
(2), and (3) in Fig. 4(e) have nearly equal energy spacing.
Wave function �00 of the lowest-energy level is proportional
to exp[−δr2/(2�2)], where � = [h̄2a2

M/(βM)]1/4. �00 has an
s-wave symmetry and provides a good approximation for
the exciton in peak (1) of both AA and AB stackings. The
localization length ac estimated based on �00 is equal to �,
which captures the dependence of ac on the moiré periodicity
aM . The exciton in peak (2) of AA stacking corresponds to a
chiral p-wave state of the first excited level in the parabolic
potential, while the exciton in peak (3) mimics a zero-angular-
momentum state associated with the second excited level [see
Fig. 4(e)].

Finally, we reinterpret the optical response in terms of the
real-space wave function. The optical matrix element of state
|χα〉 is

1√
A

〈G| ĵ |χα〉 =
3∑

n=1

Jn〈qn|χα〉

= 1

A

∫
d r

(
3∑

n=1

Jne
−iqn·r

)
χα(r)

= 1

A

∫
d r J̃(r)uα(r), (25)

where J̃(r) represents J1 + J2 exp(−ib2 · r) +
J3 exp(−ib3 · r), and uα(r), the periodic part of χα , is equal
to exp(−iq1 · r)χα(r). Both the magnitude and polarization
of J̃(r) change in real space. The variation follows that of
the local displacement, because J̃(r) is equivalent to J[d(r)],
where functions J(r0) and d(r) are respectively defined in (9)
and (16). J̃(r) generally has both e+ and e− components, but
becomes fully circularly polarized at high-symmetry positions
where the local displacement d(r) is r0,0 or r0,1.

Equation (25) indicates that the optical response is an
average of J̃ over space weighted by the exciton center-of-
mass wave function uα(r). Different forms of uα(r) give rise
to distinct responses. For example, excitons in both peak (1)
and (2) [Fig. 4(d)] are localized around the potential minimum
positions. However, they couple to light with different circu-
lar polarization, because their localized Wannier states have
respectively s and p wave symmetries. Equation (25) can be
generalized to the case where a heterobilayer has a finite system
size.

VI. DIRAC CONES IN EXCITON BAND STRUCTURE

As mentioned above, there is a degeneracy between the
two lowest energy states at κ point when ψ is fine tuned to
2π/3. At ψ = 2π/3, the exciton potential 	(r) has an addi-
tional two-fold rotational symmetry besides the Ĉ3 symmetry,
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FIG. 6. (a) Exciton potential with ψ = 2π/3. A and B are potential minimum positions that form a honeycomb lattice. (b)Exciton band
structure when ψ = 2π/3. The red circles highlight the Dirac cones. (c) Optical spectrum for ψ below, at, and above 2π/3. The red and blue
curves, respectively, show ReσK ,+/�+ and ReσK ,−/�−. Curves for different ψ are shifted vertically. In (b) and (c), the twist angle is 1◦. Other
parameters take their values in AB stacked WS2/MoS2 bilayers.

and creates an effective honeycomb lattice for excitons, as
illustrated in Fig. 6(a). It is well known from the study of
graphene that a honeycomb lattice harbors Dirac cones in band
structure. By explicit calculation using our continuum model,
we do find Dirac cones located around κ and κ ′ points [see
Fig. 6(b)].

The two sublattices of the honeycomb lattice are located
at positions A and B [Fig. 6(a)]. When ψ = 2π/3, A and B

positions are related by the two-fold rotational symmetry, and
thus have the same potential energy 	A = 	B . On the other
hand, the local optical selection rules are opposite for A and B

[see Eq. (25)]. Because of the additional twofold rotational
symmetry, ReσK ,+/�+ and ReσK ,−/�− have energetically
degenerate response peaks, as shown in Fig. 6(c).

When ψ is away from 2π/3, the twofold rotational sym-
metry is broken, leading to difference between 	A and 	B .
The staggered potential (	AB = 	A − 	B) gaps out the Dirac
cone. The sign of 	AB is controlled by the parameter ψ . For ψ

slightly below (above) 2π/3, 	AB is positive (negative). The
optical spectrum can have a strong variation when ψ crosses
2π/3, as indicated in Fig. 6(c).

We emphasize again that optically active excitons of valley
K (−K ) are located at κ (κ ′) point in our convention. Therefore
the Dirac cones, if present, are directly relevant to optical
responses. The Dirac cones are generally gapped out, which
can still lead to interesting effects. For example, a domain
wall, which separates two domains with opposite potential
difference 	AB , will host excitonic valley-momentum locked
helical states. We leave a detailed study of the helical state to
future work.

VII. DISCUSSION

Our theory applies to small twist angle in the range between
0.5◦ and 2◦, where moiré pattern has a strong influence on
electronic and optical properties. The twist angle can be
controlled to 0.1◦ accuracy in the case of bilayer graphene
using a technique developed in Ref. [29]. Similar controlled
technique could be generalized to TMD bilayers. We hope our
work can stimulate systematic experimental study of TMD
bilayers with small twist angle.

We briefly discuss some experimental implications of our
work. One of our important findings is that interlayer excitons
have optical selection rules that are not locked to valleys,
as illustrated in Figs. 4(d) and 5(d). To demonstrate the

experimental consequences, we consider AA stacking for
definiteness. In AA stacking, the intralayer A excitons of both
MoX2 and WX2 layers at the K valley are coupled to σ+
circularly polarized light. In a photoluminescence experiment,
σ+ circularly polarized light in resonance with MoS2 A exciton
will excite the intralayer excitons at the K valley. The A exciton
will then relax to form interlayer excitons through hole transfer
across the MoS2/WS2 bilayers. In the transfer process, the
carrier spin and valley indices are expected to be conserved
[48]. Therefore interlayer excitons are formed predominantly
in valley K . Reversed circular polarization emission occurs for
certain interlayer excitons. For example, the interlayer exciton
in peak (1) of Fig. 4(d) will emit σ− circularly polarized light,
which is opposite to the polarization of the excitation light. The
physics of the processes that control the steady state probability
distribution of interlayer excitons under continuous intralayer
excitation is clearly extremely rich, and this will ultimately
control the polarization distribution of the outgoing light.
Because many of the moiré bands have minima away from
the optically active moiré Brillouin-zone corners, the moiré
pattern may cause more excitons to accumulate in optically
dark states.

The moiré potential can lead to localized exciton states that
are confined to the potential minimum positions, as illustrated
in Figs. 4(e) and 5(e). This opens the door to scalable engineer-
ing of a two-dimensional array of quantum dots using twisted
TMD heterobilayers. The effective radius of the quantum dot
can be estimated in terms of the parameter ac, while the interdot
separation is given by aM . Both ac and aM are tunable by twist
angle. As discussed in Sec. V, ac and aM are, respectively,
about 3 and 30 nm for AA stacking with θ = 0.6◦. The
nanoscale quantum dots could be studied using single molecule
localization microscopy, which has a nanometer resolution
[49]. When fine tuned, the moiré potential gives rise to Dirac
excitons, which could be utilized to design one-dimensional
excitonic channels. The twisted heterobilayers provide a new
platform to study excitons, polaritons, and their condensate in
a triangular lattice, where the Bose-Hubbard model physics
can be explored [50].

Scanning tunneling microscopy measurement [47] has iden-
tified a spatial modulation with an amplitude of 150 meV in the
local band gap of a MoS2/WSe2 heterobilayer with rotational
alignment and lattice mismatch. Our theory can be generalized
to this case, and similar properties of interlayer excitons are
expected.
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In conclusion, optical absorption by interlayer excitons in
TMDs is split into subfeatures with both senses of circular
selectivity in a given valley. The overall spectrum and its
optical selectivity are both sensitive to spatial variation of
the exciton potential energy and the local absorption strength.
Photoluminescence and absorption studies of these systems
are expected to provide a rich characterization of twisted
heterobilayers.

Note added. When finalizing the manuscript, we became
aware of a related work by Yu et al. [51]. While a different
approach was taken in that paper, our results appear to agree
where they overlap. We have explicitly worked out the optical
absorption spectrum in this manuscript.
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APPENDIX A: ELECTRON-HOLE RELATIVE
MOTION WAVE FUNCTION

The electron and hole in one exciton are bound by the attrac-
tive Coulomb interaction. In a parabolic band approximation,
which is accurate when the binding energy is small compared to
the band gap, the electron-hole relative motion wave function
f (k) is determined by

∑
k′

[
h̄2k2

2μ
δkk′ − 1

AU (k − k′)
]
f (k′) = −Ebf (k), (A1)

where μ = memh/(me + mh) is the reduced mass and
Eb is the electron-hole binding energy. In (A1), U (q) =
[2πe2/(εq)] exp(−qd) is the interlayer Coulomb energy,
where ε is the effective dielectric constant and d is the vertical
distance between W layer and Mo layer.

The effective mass me and mh vary as a function of r0.
Ab initio calculations show that the variation in μ (reduced
mass) and M (total mass) is only about ±1%, which we will
neglect for simplicity. For WS2/MoS2 bilayers in both AA and
AB stackings, me ≈ 0.42m0, mh ≈ 0.34m0, and d ≈ 6.15 Å,
where m0 is the free electron mass. The dielectric constant ε

has a strong dependence on the environment. Assuming that
the heterobilayer is put on a hexagonal boron nitride substrate
and exposed to vacuum, ε is about (5 + 1)/2 = 3. Equation
(A1) is solved numerically. We find that the binding energy

Eb is about 300 meV for the lowest energy exciton, of which
f (k) depends only on the magnitude of k. For comparison,
the binding energy of the interlayer exciton in MoS2/WSe2 het-
erobilayer on sapphire substrate was determined to be 260 meV
in a previous experimental work [52]. We approximate the
exciton internal radius aX by the root of mean square of the
electron-hole separation. aX can be estimated based on the
wave function f (k). We obtain a numerical value of aX about
1.3 nm. aX is much smaller compared to the moiré periodicity
when the twist angle is smaller than 1◦. Therefore it is a good
approximation to assume that the energy of the exciton follows
the local band gap.

For a WSe2/MoSe2 bilayer, me ≈ 0.49m0, mh ≈ 0.35m0,
and d ≈ 6.47 Å. Still using ε ≈ 3, we find Eb is about 300 meV
and aX is about 1.3 nm. The lattice constant a0 is about 3.19
Å for WS2 and 3.32 Å for WSe2.

APPENDIX B: DEPENDENCE OF THE OPTICAL
SPECTRUM ON r0

The global displacement r0 just leads to a spatial translation
of the moiré potential. Therefore, the energy spectrum is
independent of r0. Here we further show that the optical
spectrum is also independent of r0.

The moiré potential has the form

	(r) =
6∑

j=1

Vj exp[ibj · (r + r ′
0)], (B1)

where r ′
0 = r0 × ẑ/θ − r0/2. The wave function at a finite r0

is related to that at r0 = 0 by applying a unitary transformation
to the plane-wave state:

|χ〉 = e−iq1·r ′
0
(
c1e

iq1·r ′
0 |q1〉+c2e

iq2·r ′
0 |q2〉+c3e

iq3·r ′
0 |q3〉+· · ·)

= c1|q1〉 + c2e
ib2·r ′

0 |q2〉 + c3e
ib3·r ′

0 |q3〉 + · · ·
≈ c1|q1〉 + c2e

iG(2)
T ·r0 |q2〉 + c3e

iG(3)
T ·r0 |q3〉 + · · · , (B2)

where |χ〉 is the wave function at κ point, and · · · represents
other components in |χ〉. In (B2), the approximation GT ≈
G + θ ẑ × G/2 is used. The phase factors eiG(j )

T ·r0 capture the
dependence on r0, while the coefficient cj is independent
of r0.

The optical matrix element for |χ〉 is

1√
A

〈G| ĵ |χ〉 = 1√
A

3∑
n=1

〈qn|χ〉〈G| ĵ |qn〉

= c1 J1 + [
c2e

iG(2)
T ·r0

][
J2e

−iG(2)
T ·r0

]
+[

c3e
iG(3)

T ·r0
][

J3e
−iG(3)

T ·r0
]

= c1 J1 + c2 J2 + c3 J3, (B3)

where we have used Eq. (9). Equation (B3) proves that the
optical spectrum is independent of r0 for small but finite twist
angle θ .
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