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Roughness scattering induced insulator-metal-insulator transition in a quantum wire
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We investigated theoretically the influence of interface roughness scattering on the low-temperature mobility
of electrons in quantum wires when electrons fill one or many subbands. We find that the Drude conductance of
the wire with length L first increases with increasing linear concentration of electrons η and then decreases at
larger concentrations. For small radius R of the wire with length L the peak of the conductance Gmax is below
e2/h so that electrons are localized. The height of this peak grows as a large power of R, so that at large R

the conductance Gmax exceeds e2/h and a window of concentrations with delocalized states (which we call the
metallic window) opens around the peak. Thus, we predict an insulator-metal-insulator transition with increasing
concentration for large enough R. Furthermore, we show that the metallic domain can be subdivided into three
smaller domains: (1) single-subband ballistic conductor, (2) many-subband ballistic conductor, and (3) diffusive
metal, and use our results to estimate the conductance in these domains. Finally, we estimate the critical value of
Rc(L) at which the metallic window opens for a given length L and find it to be in reasonable agreement with
experiment.
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I. INTRODUCTION

Semiconductor nanowires have attracted lots of attention
due to their potential applications, such as field-effect transis-
tors, elementary logic circuits, resonant tunneling diodes, light-
emitting diodes, lasers, and biochemical sensors [1,2]. Ad-
vances in the nanowire growth have also led to the development
of novel quantum devices [3–7], which allow the exploration
of mesoscopic transport in highly confined systems. Recently,
hybrid superconductor-semiconductor nanowire devices have
been identified [8,9] as a platform to study Majorana end
modes [10], which exhibit topological properties [11–13]. To
further improve this topological system, a reduction of the
disorder in the nanowire is essential [14,15]. The performance
of some of these devices is limited by scattering of electrons on
surface roughness [16–21]. A theory of roughness scattering
limited mobility of nanowires as a function of their radius R

and linear electron concentration η controlled by a back gate
would be helpful. In spite of some attempts to create such a
theory [22–24] the full picture of roughness limited transport
in nanowires currently is not available. This is not surprising
because, as we show below, even in the case of quantum wells
there are big gaps in the roughness limited mobility theory;
namely, for wells with many subbands filled. In this paper, we
fill the gaps in the theoretical description of roughness limited
mobility both for quantum wells and quantum wires.

Much of the focus in nanowire technology is in creating
ballistic nanowires that can support the Majorana zero edge
modes for quantum computation [14,15]. We show below that
the possibility to achieve ballistic transport depends strongly
on the radius R and the length L of the wire. Namely, we
show that, for a fixed L, there exists a critical value Rc(L) such
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that electrons in wires with R < Rc(L) are localized, while
for R > Rc(L) there is a window of concentrations where a
metallic phase exists.

Before addressing why such a window exists, let us describe
the conventional models of roughness developed for quantum
wells. In a quantum well confined by interfaces at z = 0 and
z = L, the surface roughness is a random shift of the interface
position �(�r ) from the average level so that 〈�(�r )〉 = 0, where
�r = (x,y) is the coordinate in the z = 0 (or z = L) interface
plane. The roughness is described by the height correlator and
its Fourier transform

〈�(�r)�(�r ′)〉 = W (�r − �r ′),

〈|�(q)|2〉 = W (q). (1)

The first theories of surface roughness scattering assumed the
correlator to be Gaussian [25–29]:

W (�r − �r ′) = �2e−(�r−�r ′)2/d2
,

W (q) = π�2d2e−q2d2/4. (2)

However, experimental observations using transmission elec-
tron microscopy (TEM) and scanning tunneling microscope
(STM) measurements of Si/SiO2 interfaces and InAs/GaSb
interfaces found that the spatial correlations follow an expo-
nential behavior [30,31]:

W (�r − �r ′) = �2e−√
2|�r−�r ′ |/d ,

W (q) = π�2d2(1 + q2d2/2)−3/2. (3)

This correlator describes randomly distributed flat islands of
typical thickness � and diameter d on the top of the last
complete layer of the crystal [32]. On the other hand, Gaussian
roughness can be visualized as randomly positioned stacks of
total height � and diameter d made of progressively smaller
islands of flat atomic layers on the top of bigger ones [32],
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TABLE I. Mobility μ in units of (e/h̄)(d4/�2) as a function of
the linear electron concentration η at d < aB for different regions.

A B C

a2
BR2/η2d6 a

8/5
B R11/5/d6η11/5 aBR/ηd3

D E F

a2
BR3/ηd6 a

1/2
B R11/3/η11/6d6 a

1/2
B R5/3/η5/6d3

G H I

R7η/d6 R14/3/η4/3d6 R8/3/η1/3d3

similar to the ancient Mayan pyramids. As we show below,
in many cases the two correlators give the same expression
for the mobility in terms of � and d, and so the difference in
parameter values can have serious implications. Only at very
large electron densities when kF d � 1 (kF is the Fermi wave
number), do the two correlators give different expressions for
the mobility. This difference is relatively unimportant for this
work, so we give results only for the exponential correlator.

While the above isotropic roughness models were designed
for quantum wells with flat interfaces, they are valid for
quantum wires of characteristic size R > d.1 In most of this
paper we deal with such roughness. However, TEM images of
InAs wires [21] suggest that in quantum wires another model
of roughness in which the radius of the wire varies along its
axis may be more realistic. We discuss this “variable-radius
model” (VRM) and its implications in Sec. VI.

In this paper we consider wires with linear electron concen-
tration η doped by a relatively distant back gate (we assume that
there are no chemical donors in the wire). Then the interplay
between the concentration η, the radius of the wire R, and the
semiconductor Bohr radius aB determines the number of filled
subbands of radial quantization, the Fermi wave number kF

of electrons, and whether the confinement is electrostatic or
by the surface barriers (referred to as geometric confinement).
Here the effective Bohr radius aB = κh̄2/m∗e2, where κ is the
effective dielectric constant, h̄ is the reduced Planck constant,
and m∗ is the effective electron mass. This means that, for
quantum wires, there are five lengths �, d, η−1, R, and aB ,
or four dimensionless lengths when all are scaled by aB , that
determine the Drude mobility.

Below we use the scaling theory to calculate the low-
temperature roughness limited Drude mobility μ in units
(e/h̄)(d4/�2) as a function of the dimensionless variables
R/aB and ηaB . Here the use of Drude’s name signifies that we
ignore interference effects and electron-electron correlations.
We summarize our results for different regions in Fig. 1 as a
“phase diagram” in the plane of R/aB and ηaB , the details
of which are elaborated in Sec. IV. For the most interesting
case � 	 d 	 aB we find a total of nine regions A–I whose

1For the case of cylindrical wires, the characteristic size R would be
the radius of the wire. However, the results presented are applicable
to any cross section that can be described with a single characteristic
length, such as a square wire with side length 2R or a regular
hexagonal wire in which R is the distance from the center of the
wire to each vertex.

FIG. 1. The scaling phase diagram of roughness limited electron
Drude mobility of a long quantum wire plotted as a function of radius
R and linear electron concentration η for d < aB on a log-log scale.
Different “phases” or regions are denoted by capital letters. Drude
mobility expressions corresponding to these regions are given in
Table I. Region boundaries are given by the equations next to them.
The schematic self-consistent electron potential-energy profile along
the wire diameter and subbands occupied by electrons are shown for
each region. Small arrows show the direction of mobility decrease
in each region. The colored areas illustrate where the wire of length
L is metallic. The dark-red, light-red, and pink regions correspond
to the single-subband ballistic conductor, many-subband ballistic
conductor, and diffusive metal regions for Rc(L) < aB , respectively.
Electrons are localized in all the colorless regions. The border between
them and colored regions is determined by the length of the wireL. We
assumed that L ∼ 1 μm as is used in quantum devices. For shorter
wires Rc(L) decreases, and the colored metallic regions expand to
cover most of the area of the phase diagram.

mobilities are listed in Table I. Note that, due to the limitations
of the scaling theory, the mobility expressions for the different
regions of the phase diagram are valid only away from the
borders between different regions. In the vicinity of the border
between regions, there is a smooth crossover between the
two mobilities, the details of which are beyond the scope
of this paper. While the scaling approach only gives the
dependence of mobility on the different parameters without
numerical precision, its simplicity allows for a clear picture
of the different physical domains and the approximate limits
under which they occur.

Now we are ready to address the origin of the Drude
conductance peak which leads to a metallic window for large
R, illustrated by the colored regions in Fig. 1. Schematic plots
of the Drude conductance (in units e2/h) G = ημh/Le of the
wire with length L are shown in Fig. 2 for two representative
values of R by full lines. They are obtained from cross sections
of Fig. 1 and the mobilities in Table I. At low concentrations,
we see that the Drude conductance increases with increasing
concentration. This corresponds to region G of Fig. 1, where
there is a single radial subband occupied and the electrons are
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FIG. 2. The scaling behavior of the dimensionless Drude conduc-
tance of a quantum wire with lengthL and radius R as a function of the
linear electron concentration η at different wire radii for d 	 aB on a
log-log scale (full lines). The upper curve corresponds to R = aB and
the lower one is R = (aBd)1/2. They are obtained from cross sections
of the phase diagram in Fig. 1 and the mobilities in Table I. The
dashed line on the upper curve shows the metal-insulator crossover
near ηaB = 0.5 induced by electron-electron interactions. We see that
for R = aB the metallic window is open, while for R = (aBd)1/2 the
window is closed. L = a

7/2
B �−2d−1/2 was chosen.

confined geometrically. We know from Fermi’s golden rule that
the relaxation time τ is inversely proportional to the density of
states at the Fermi energy, which in the one-dimensional (1D)
case goes like 1/kF ∼ 1/η. The scattering potential, however,
is independent of concentration in this regime. Therefore, the
relaxation time τ , the mobility μ, and conductance G increase
with concentration due to the decrease in the density of states.
This trend continues until the concentration is large enough that
multiple subbands become occupied. Now electrons have more
states to scatter into, and the relaxation time quickly decreases
with increasing concentration. Thus the conductance peaks at
the border concentration ηc when electrons begin to populate
multiple subbands. The peak of the Drude conductance for the
most interesting cases of R � aB is given by

Gmax = R5

L�2d2
. (4)

So far we have ignored electron-electron interactions and
quantum interference effects. They dramatically change the
conductivity of one-dimensional systems at low temperatures.
For single subband wires (regions D and G), electron-electron
interactions result in Wigner-crystal-like correlations and pin-
ning of the electron gas leading to the metal-insulator crossover
near ηaB = 0.5 [33]. In Fig. 2 the corresponding collapse
of conductance at ηaB < 0.5 is shown by the dashed lines.
According to Luttinger liquid theory [34,35] similar effects
persist at very low temperatures in very long wires. We are
interested here in relatively short wires with L ∼ 1 μm,
where plasmon quantization does not allow such effects to
develop [35]. Therefore, for ηaB > 1 we can ignore electron-
electron interactions. However, in this case we should still
take into account quantum interference effects. They lead
to one-electron localization when Drude G < 1. This means
that, when Gmax < 1 (see lower curve in Fig. 2), the wire
is an insulator at any concentration η. On the other hand,
for Gmax > 1 (see upper curve in in Fig. 2) the wire has a

TABLE II. Metal-insulator border RMI (η), ballistic-diffusive bor-
der RBD(η), and the total number of subbands Kmax for regions G, H,
E, and B of Fig. 1.

Region RMI (η) RBD(η) Kmax

G η−2/7Rc(L)5/7 1
H η1/14Rc(L)15/14 η2/13Rc(L)15/13 (ηR)2/3

E a
−3/22
B η5/22Rc(L)15/11 a

−3/7
B η5/7Rc(L)15/7 (ηR)2/3

B a
−8/11
B η6/11Rc(L)25/11 a

−7/9
B ηRc(L)25/9 η3/5R2/5a

1/5
B

concentration window of metallic behavior. The critical radius
Rc(L) in which the metallic window opens is then determined
by the condition that Gmax = 1. For Gmax defined by Eq. (4)
we find

Rc(L) = (�2d2L)1/5. (5)

Note that the restriction that ηaB > 0.5 necessary for the single
subband wires to be metallic requires Rc < 2aB .

Thus, we predict a zero-temperature reentrant insulator-
metal-insulator transition with increasing η in quantum wires
with R > Rc(L). Such a transition was first predicted for a
two-dimensional electron gas (2DEG) in silicon MOSFETs
[36]. However it was later shown [32] that there is no second
reentrant metal-insulator transition at large concentrations of
a 2DEG because the dimensionless conductance saturates at a
value larger than unity. As our paper shows, the idea of Ref. [36]
is realized in quantum wires. For more details see Sec. II below.

The metallic regimes for a wire with Rc(L) < aB are shown
in different colors in Fig. 1, while regions where the electrons
are localized are left blank. The dark-red, light-red, and
pink regions of the metallic regime specify a single-subband
ballistic conductor, a many-subband ballistic conductor, and a
diffusive metal, respectively. It should be emphasized that the
metal-insulator and ballistic-diffusive borders depend on the
wire length. With decreasing L and Rc(L) the colored regions
expand dramatically and for short wires eventually cover most
of the phase diagram. In Fig. 1 we used L ∼ 1 μm as in
Fig. 2, which is typically used in quantum devices (see details
in Sec. VII).

The detailed derivation of all the metallic border equations
are given in Sec. V and in Table II. Here we give a brief sum-
mary of the derivation. Let us begin with the metal-insulator
border. For ηaB > 0.5 this border comes from the condition
that the Drude conductance GD = e2/h and gives rise to the
sequence of border lines between the colored and uncolored
regions with minimum at Rc(L) in Fig. 1. For ηaB < 0.5 there
is no metallic regime for the single subband regions (G and H),
as illustrated by the vertical line that cuts off the dark-red region
of Fig. 1 at low concentrations. This line continues vertically to
the asymptotic line ηaB ∼ C(R/aB), which can be understood
as the Wigner crystallization of the 2DEG at na2

B = C 	 1,
where n = η/2πR. Finally, we address the ballistic-diffusive
border which only exists in the regions with many subbands
occupied. Typically, a diffusive metal becomes ballistic when
the mean-free path l = L. However, for the many subband
regions there is an ambiguity, because we can have different
l for different subbands. Fortunately, the conductance in these
cases is determined by a small subset of subbands which have
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identical l and we define the ballistic-diffusive border by the
line where l = L for these subbands.

Let us discuss the conductance in the different-colored
regions of Fig. 1. We begin with the ballistic regimes (red
regions of Fig. 1). Here the dimensionless conductance G ≈
2K , where K is the number of ballistic channels of a wire
with finite length L, and the factor of two comes from the spin
degeneracy. Estimates of K can be found in Sec. V. Within
the diffusive regime (pink regions of Fig. 1) G = (h/e)ημ/L,
where the mobility is given in Table I. Finally, in the insulating
regions electrons are localized at temperature T = 0. At finite
T wires conduct via phonon-assisted hopping. Calculations of
the hopping conductivity are relatively straightforward but are
beyond the scope of this paper.

The plan of this paper is as follows: In Secs. II and III we
study the roughness limited mobility of quantum wells as a
function of their width L and two-dimensional concentration
of electrons n arriving at the phase diagram for μ(L,n) with
nine different regions. In Sec. IV we use the quantum well
phase diagram to construct the phase diagram μ(R,η) for
quantum wires with surface roughness described by Eq. (3). In
Sec. V we use our results for the Drude mobility to estimate
the wire conductance in the ballistic and diffusive regions. In
Sec. VI we discuss quantum wires within the variable-radius
model (VRM). In Sec. VII we dwell upon some experimental
implications; namely, the peak mobility and the value of radius
Rc(L) in which the metallic window opens. We conclude with
Sec. VIII.

II. ROUGHNESS LIMITED MOBILITY RESULTS FOR
QUANTUM WELLS

To understand the roughness limited mobility of quantum
wires, it is convenient to first make clear of that in quantum
wells. We start from a quantum well confined by two high
potential barriers at z = 0, L. It has the two-dimensional (2D)
electron concentration n created either by two positive donor
layers located symmetrically on both sides of the well or by two
symmetric metallic gates. In both cases, at z = 0, L there is an
electric field pointing into the well with |E| = 2πne, where e

is the electron charge. Interplay of effects of the electric field
and barrier confinement creates five different types of wells
shown in Fig. 3 in regions I–IX. In a narrow well the electric
field E plays a minor role in level quantization compared with
confining barriers so that we assume that all subbands are
geometrically confined in the small-L regions VI, VII, VIII,
and IX in Fig. 3. When the concentration is relatively small,
electrons occupy only the first subband. At larger n, electrons
populate many subbands (see the level schematics in regions
VI and VII in Fig. 3). In the wider wells shown in regions I, II,
III, IV, and V the electric field becomes important compared
with the surface barriers. In turn this leads to the splitting of the
electron density in two peaks. With growing L, in the beginning
(regions IV and V) this splitting is moderate and affects only
the lowest subbands. In regions II and III the splitting results
in two separate accumulation layers in response to the electric
field each side of the well. Finally, at large L and small n, we
again reach the single-subband limit; however, the confinement
is electrostatic rather than geometric (region I in Fig. 3).

FIG. 3. The scaling phase diagram of roughness limited electron
mobility of quantum well at different well width L and 2D electron
concentration n for d 	 aB on a log-log scale. Different “phases”
or regions are denoted by Roman numerals. Mobility expressions
corresponding to these regions are given in Table III. Region bound-
aries are given by the equations next to them. The schematic self-
consistent electron potential-energy profile along the z axis of wells
and levels (subbands) occupied by electrons are shown for each
region. Small arrows show the direction of mobility decrease in each
region. Apparently the maximum mobility is achieved in region I. The
dashed line indicates schematically the border of the metal-insulator
transition (MIT) at small enough n. At large n there is no reentrant
MIT in spite of the decreasing mobility.

The roughness limited mobility of a single-subband electron
gas of a quantum well (regions I, VIII, and IX) was thoroughly
studied in Refs. [25–28] more than 30 years ago. On the other
hand, the roughness limited mobility of accumulation layers
was calculated recently in Ref. [32], the results of which are
directly applicable to regions II and III. However, no work has
been done in the intermediate regions where many subbands
are occupied but the electric field is weak so that some or all
of the subbands are confined geometrically (regions IV, V, VI,
and VII). In this paper we fill this gap. Below, because of the
complexity of the problem, we first present the final results in
this section and then give their derivations in next section.

The complete results at d 	 aB are shown in Fig. 3 and
Table III. The single subband results I, VIII, and IX are taken
from Refs. [25–28] and the accumulation layer results II and
III are from Ref. [32]. For the intermediate regions IV, V, VI,
and VII, we obtain their results in this paper.

Let us first look at the physical meaning and corresponding
equations of boundary lines in Fig. 3. Across the line between
region I and region II, the concentration becomes so large
that electrons have to occupy multiple subbands (see level
schematics in Fig. 3). With n further increased, kF d becomes
larger than unity in region III where kF is the three-dimensional
(3D) electron Fermi wave number here. Instead of averaging
over different islands, the electron hits only a single island
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TABLE III. Mobility μ in units of (e/h̄)(d4/�2) as a function of
the 2D electron concentration n at d < aB for different regions.

I II III

a2
B/n2d6 a

8/5
B /n11/5d6 aB/nd3

IV V VI

a
1/2
B L11/6/n11/6d6 a

1/2
B L5/6/n5/6d3 L10/3/n4/3d6

VII VIII IX

L7/3/n1/3d3 L6/d6 L6n3/2/d3

now. This leads to the change of the mobility result at the II-III
border.

For regions I, II, and III, all subbands are electrostatically
confined. For moderately smaller well width L, some of the
subbands become geometrically confined. This happens when
the well width L becomes smaller than the characteristic
thickness D of the accumulation layer, where [37,38]

D � aB(
na2

B

)1/5 . (6)

The criterion L = D then gives the line between II, III and IV,
V. At the line between IV and V, kF d = 1.

With further reduction of L, all subbands would be geo-
metrically confined (see the level schematic in Fig. 3). This
happens when the electrostatically confined distance of the
lowest-subband electrons from the surface is equal to the well
width L. This distance is D0 � a

1/3
B /n1/3 (see Refs. [25,28]),

which is the smallest among all subbands since the lowest
subband has the smallest kinetic energy in the z direction. The
condition L = D0 gives the line between IV, V and VI, VII.
The border between VI and VII corresponding to the critical
point of kF d = 1 is a continuation of the line between regions
IV and V. Moving to even smaller L from regions VI and VII,
we cross over to the single subband (see level schematic in
Fig. 3). This corresponds to the line kF L = 1 between VI, VII
and VIII, IX. The border of the VIII and IX regions is the line of
kF d = 1 where kF is the 2D electron Fermi wave number here.
In Fig. 3, one can see that there is another border line between
I and VIII, which both correspond to a single subband gas.
However, region I corresponds to two electrostatically split
electron subbands near the two well interfaces, while region
VIII represents the case that the electron subband is spatially
restricted by the well width L (see the level schematic in Fig. 3).
Their crossover happens at the point that both electrostatic and
geometric confinements give the same thickness of the electron
gas. Remember that the electrostatically confined thickness of
the first subband is D0. Then the condition L = D0 gives the
border. So this line between I and VIII is just an extension of
the line between IV, V and VI, VII.

One should note that, in Table III, all results are shown
without numerical coefficients, i.e., we present only the scaling
behavior. Previous works have already found the exact coef-
ficients in the single-subband regions I, VIII, and IX [25,26].
Results of many subband regions II, IV, and VI with kF d 	 1
can also be obtained with the approximate coefficients, as seen
later in Sec. III. We cannot get coefficients analytically in

remaining regions III, V, and VII. Thus we focus only on the
scaling behavior in all tables and derivations.

In Fig. 3 the metal-insulator transition (MIT) is shown
schematically by the dashed lines. Let us dwell on the meaning
of these lines. The lower line is related to the localization
physics of a noninteracting electron gas. Strictly speaking all
states are localized in 2D infinite samples; however, at kF l � 1
the localization length grows exponentially as ζ = l exp(kF l),
where l is the mean-free path. In finite square samples of
area A we have in mind that ζ quickly becomes larger than
the sample size A1/2. This allows one to discuss the metallic
conductivity and expect the insulator-metal transition near
σ = (e2/h̄) ln(A1/2/l). Ignoring the logarithm and using the
expressions of mobility μ for VIII and IX in Table III as
well as σ = neμ, one gets that the low-L MIT border of
region VIII obeys L = �1/3d1/3n−1/6. We also find the MIT
border of region IX is L = �1/3d−1/6n−5/12. We have used
�/d = (d/aB )8/5 in order to draw these lines. The vertical
line na2

B = C 	 1 reflects the role of the Coulomb interaction
between electrons in a degenerate electron gas. At na2

B 	 1
strong Coulomb repulsion leads to Wigner crystallization.
The Wigner crystal is pinned by relatively small disorder and
electrons become localized.

III. ROUGHNESS LIMITED MOBILITY DERIVATIONS
FOR QUANTUM WELLS

In the previous section, we have presented the physical
picture of all nine regions and their border lines and sum-
marized the mobility results. In this section, we derive the
new expressions of mobility for regions IV, V, VI, and VII.
First, let us derive μ for region VI. According to Fermi’s
golden rule and the Boltzmann equation, the relaxation time
τN of a particular state with the wave function ξ (z,�r ) and with
in-plane velocity �vk in the N th (counted from the bottom lowest
subband) subband is

1

τN

= 2π

h̄

∑
N ′

∫
d2k′

(2π )2

|V (q)|2
ε(q)2

δ(ε − εF )

(
1 − �vk′ · �E

�vk · �E
τ ′
N

τN

)
,

(7)

where τN, τ ′
N denote the relaxation time for N, N ′th subbands,

�vk′ is the in-plane velocity for the final state with the wave
function ξ ′ in the N ′ subband with in-plane momentum �k′, ε
is the energy of the final state ξ ′ and εF is the Fermi energy,
q is the transferred momentum in the x-y plane between ξ

and ξ ′. Here V is the scattering matrix element arising from
the scattering potential. Due to the electronic screening, the
Fourier transform of the scattering potential V (q) is reduced
by the dielectric function ε(q) [25]. One should note that
here the last term inside the parentheses of Eq. (7) does not
reduce to cos θ , where θ is the angle between the initial and
final total momenta. This is because, due to the 2D nature of
the surface roughness and thus of the scattering potential, the
multisubband electron gas experiences anisotropic scattering,
i.e., different subbands have different relaxation times.2 As

2One should note here that the definition of relaxation time τ is
still valid according to Ref. [39], which might be broken in more
complicated cases.
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a result, cos θ in Eq. (7) is replaced by the ratio of the
out-of-equilibrium part of the distribution function of the states
ξ ′ and ξ represented by ( �vk′ · �E/ �vk · �E)(τ ′

N/τN ) (see Ref. [39]).
For brevity, we refer to this term as the distribution function
ratio (DFR) from now on.

It is known that the roughness-caused scattering potential
V (�r ) and corresponding scattering matrix element V (q) satisfy
the equation [25,32]

V (r) = h̄2

m∗ �(�r )
∂ξ

∂z

∂ξ ′

∂z

∣∣∣∣
z=0,L

,

〈|V (q)|2〉 �
(

h̄2

m∗

)2 k2
z

Z

k′2
z

Z′ W (q), (8)

where kz � N/Z, k′
z � N ′/Z′ are the z-direction momenta of

ξ and ξ ′, Z and Z′ are the z-direction widths of the N th and
N ′th subbands, which are determined by the confinement. For
example, when the subband N is electrostatically confined,
Z = εz/eE � h̄2k2

z /m∗e2n � aBk2
z /n (εz is the kinetic energy

in the z direction), while when geometrically confined, Z = L.
For region VI, all subbands are geometrically confined. So

〈|V (q)|2〉 �
(

h̄2

m∗

)2
N2

L3

N ′2

L3
W (q). (9)

Since in region VI kF d 	 1, W (q) � �2d2 is independent
of q according to Eq. (3). The scattering is isotropic for a
given subband N ′ with respect to different directions of �vk′ .
The scattering rate is then reduced to

1

τN

= 2π

h̄

∑
N ′

∫
d2k′

(2π )2

(
h̄2

m∗

)2
N2N ′2�2d2

L6ε(q)2
δ(ε − εF ).

(10)

The (2D) screening radius is aB/kF L where kF L is the total
number of subbands in region VI. Since L 	 aB in this region,
this screening radius is much larger than the Fermi wavelength
1/kF . So ε(q) ≈ 1 and the screening can be ignored for the
scattering between the N th subband and the typical subbands
with k′

z � kF and thus q ∼ kF . Equation (10) then yields

1

τN

� h̄

m∗
N2�2d2

L6

∑
N ′

N ′2 � h̄

m∗
N2�2d2

L6
(kF L)3

� h̄

m∗
N2�2d2k3

F

L3
, (11)

where the 3D wave number kF = (n/L)1/3, and the scattering
rate is mainly determined by scattering between the N th
subband and typical subbands with large N ′. The absence
of screening in the scattering-rate calculation is then self-
consistently justified. Also, from Eq. (11), one can easily
see that τN ∝ 1/N2 so the lowest subband with N = 1 has
the largest relaxation time while for typical subbands with
kz � kF and, thus, N � kF L, the corresponding relaxation
time is (kF L)2 times smaller. Since there are ∼kF L subbands
in total with each subband having a 2D concentration n/kF L

and the number of typical subbands is close to the total
number kF L, the final conductivity is dominated by the lowest

subband as

σ = n

kF L

e2

h̄

L3

�2d2k3
F

= ne
e

h̄

L2

�2d2k4
F

, (12)

and the effective mobility is

μ = σ

ne
= e

h̄

L2

�2d2k4
F

= e

h̄

(
d4

�2

)
L10/3

d6n4/3
. (13)

This is the result shown in Table III in Sec. II.
Now let us move to region IV. This region is a crossover

between completely geometrically confined region VI to com-
pletely electrostatically confined region II. The lowest M

subbands are electrostatically confined due to their relatively
small distances to the surface while the kF L − M higher
subbands are geometrically confined. So for the lowest M sub-
bands, k2

z /Z ∼ n/aB is a constant independent of the subband
index N determined only by the surface electric field E or
the 2D electron concentration n. As a result, the lowest M

subbands have comparable relaxation times. The rest kF L − M

subbands are geometrically confined and their contribution to
the conductivity is dominated by the lowest subband of the
group, i.e., by the (M + 1)st subband. Here the index M is
obtained by the condition that its electrostatically confined
width is equal to the well width L:

aBk2
z

n
= L, kz � M

L
. (14)

As a result, M = (nL3/aB )1/2. Now Eq. (11) is modified for
subbands from 1 to M as

1

τ1−M

� h̄

m∗
n�2d2

aB

( ∑
N ′=1,...,M

n

aB

+
∑

N ′=M+1,...,kF L

N ′2

L3

)

� h̄

m∗
n�2d2

aB

∑
N ′=M+1,...,kF L

N ′2

L3
� h̄

m∗
n�2d2k3

F

aB

,

(15)

where N ′2/L3 � n/aB for N ′ > M and the total number
of subbands is still kF L � M in region IV. Therefore the
scattering rate of each subband is always determined by its
scattering into the typical subbands which are geometrically
confined to a width L and have the momentum kz = kF in
the z direction. One can easily check that in region IV, i.e., at
L < n−1/5a

3/5
B , the conductivity is determined by the lowest

M subbands and the effective mobility

μ = σ

ne
=

(
M

n

kF L

e2

m∗
m∗

h̄

aB

n�2d2k3
F

)
1

ne

= e

h̄

(
d4

�2

)
a

1/2
B L11/6

n11/6d6
(16)

is obtained in a way similar to that of region VI discussed
before. This is the result given in Table III.

Now let us talk about the kF d � 1 case for regions V and
VII. In this case, W (q) is no longer a constant but can be much
smaller than �2d2 for some values of q. The scattering is no
longer isotropic in the x-y plane and one cannot ignore the DFR
term �vk′ · �Eτ ′

N/ �vk · �EτN in Eq. (7). As we show in Appendix
B, the scattering is dominated by events with q � kF instead
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of small q � 1/d. It can be easily seen quasiclassically that
only when an electron hits the sharp edge of an island can the
nonspecular reflection happen. This is an event on a length
scale k−1

F 	 d so that the scattering is dominated by q � kF .
For the dominant large-angle scattering, although the term

(1 − �vk′ · �Eτ ′
N/ �vk · �EτN ) after averaging over different φ is not

exactly unity as in the kF d 	 1 case, it is still of order unity.
Thus in the scaling sense, the difference brought by kF d � 1
is only in the (kF d)3 times reduction of W (q). Note that, for the
large-angle scattering, the rate is dominated by scattering into
typical subbands of k′

z � kF similarly to the kF d 	 1 case
discussed before. The screening here is again ignored since
the large-angle scattering has q � kF and the screening radius
aB/kF L is much larger than the electron Fermi wavelength
k−1
F , similarly to the case in regions IV and VI. As a result,

from region IV to V, the scattering rate decreases by (kF d)3 for
each subband and the effective mobility increases by (kF d)3. A
similar increase by a factor (kF d)3 happens across the border
from region VI to region VII. So far we have derived all the
new results in Fig. 3 and Table III.

One can see from Fig. 3 and Table III that the results of
mobility in different regions match each other at all borders
between the regions. Actually, by using the derived result
Eq. (13) for region VI together with the results for regions
II, III, and IX, which are already known, one can uniquely
identify the mobility expressions in regions IV, V, and VII by
matching them with the neighboring mobilities on the borders.

So far, we have focused on the d 	 aB case, which is
generic for large-aB semiconductors such as InAs and InSb.
Now we would like to briefly discuss the d � aB case, which
may take place, say, in silicon. Let us start from the case when
d = aB . In this case, the phase diagram Fig. 3 is dramatically
simplified because the middle regions II, IV, and VI vanish and
the border line kF d = 1 merges with the vertical axis na2

B = 1.
Let us now move to the case d � aB . Since at na2

B 	 1, the
electron gas is two dimensional for all values of L, there is
only one line nd2 = 1 for the critical border kF d = 1. We
assume that this line is located already in the insulator regime,
so that in the whole metallic region kF d � 1. This leads to an
additional factor (kF d)3 for the mobility result in region I and
gives μ = (e/h̄)(d4/�2)(a2

B/n1/2d3) (see Ref. [32]). Mobility
results for the extended regions III, V, VII, and IX remain the
same as in Table III.

IV. ROUGHNESS LIMITED MOBILITY
IN QUANTUM WIRES

In the previous sections, we described the roughness limited
mobility in a quantum well as a function of the 2D electron
concentration n and the well width L. Here we would like
to generalize these results to that of a nanowire with linear
electron concentration η and radius R. We assume that an
electric field E = 2eη/R applied radially inward at the surface
of the wire. Such a system can be realized by a metallic gate
surrounding the nanowire, or by a planar gate located a distance
greater than the wire radius R.

Our results are summarized in Fig. 1 as a phase diagram
in the plane (η,R), where each “phase” or region marked by
a capital letter denotes a different dependence of the mobility
on R and η, as shown in Table I. Just as for quantum wells,

(a) (b) (c)(b) (c)

FIG. 4. Electron concentration within the nanowire (top) and the
corresponding level schematic along the diameter (bottom). Regions
of higher concentration correspond to darker shading. (a) Regions B
and C of the scaling phase diagram Fig. 1, where all subbands are
confined electrostatically forming an accumulation layer of thickness
D near the surface. (b) Regions E and F, where the lowest subbands
are confined electrostatically, while the top subbands are confined
geometrically. (c) Regions H and I, where all the subbands are
confined geometrically.

many different regions appear due to the interplay between
the electrostatic and geometric confinements. The electronic
structure of each region is illustrated with a radial level
(subband) schematic similar to those in Fig. 3. One can divide
all regions into three groups. In regions D and G the electron
gas is strictly one dimensional (1DEG), i.e., it occupies a single
subband in the wire cross section. In region A electrons occupy
a single radial subband and many azimuthal subbands (2DEG).
Finally, in regions B, C, E, F, H, and I, electrons occupy many
subbands in both the radial and azimuthal directions and the
gas is three dimensional (3DEG). To clarify the meaning of the
level schematics, Fig. 4 provides an illustration of the electronic
structure in the 3DEG regions. Each top image shows the
electron density (shaded regions) in a cross section of the
wire while its bottom image shows the corresponding level
schematic along the wire diameter.

Let us first concentrate on the 2DEG and 3DEG regions,
where the circumference 2πR is much larger than the typical
electron wavelength k−1

F . This means that we can generalize
our results of the quantum well by treating the wire along
the x axis as a stripe-like quantum well whose y-direction
size is 2πR and 2D concentration n = η/2πR. As a result
each of the regions I–VII of Fig. 3 has an analogous region in
Fig. 1 in which the electronic structure near the surface and
the mobility are the same upon substituting n = η/2πR and
L � R everywhere. For example, in region B electrons are
confined electrostatically near the wire surface and form an
accumulation layer [see Fig. 4(a)] whose thickness is given by
Eq. (6) with n = η/2πR, similar to region II for the quantum
well. By using the correspondence between regions A, C, E, F,
H, and I of Fig. 1 with regions I, III, IV, V, VI, and VII of Fig. 3
we find the wire mobility values for each of these regions as
listed in Table I.

So far we have shown that, in the 2DEG and 3DEG
limits of the nanowire, there is a corresponding region in
Fig. 3 from which the mobility of the wire may be obtained
upon substituting n = η/R. In regions D and G however, the
electron gas in the wire forms a 1DEG for which there is
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no corresponding region in the quantum well. Let us first
concentrate on region G, where the gas is geometrically
confined to a single subband in the plane of its cross section
(y,z) with energy ER = h̄2/2m∗R2 and its wavelength along
the wire axis is k−1

F = η−1. Here y is the azimuthal direction
along the wire circumference and z is the radial direction.
Due to the roughness, the radius of the wire varies along the
wire surface in the x and azimuthal directions by an amount
δR = �(k−1

F R/d2)−1/2, where k−1
F R/d2 is the typical number

of islands over which the electron averages the roughness.
These variations lead to a change in the confinement energy that
acts as a random scattering potential given by V = ER(δR/R).
Using h̄/τ ≈ V 2/(h̄2k2

F /2m∗) to estimate the scattering rate,
we find the mobility in region G to be

μ = e

h̄

ηR7

�2d2
. (17)

If we increase R so that we enter region D, the electron gas
will instead be confined electrostatically to a single subband
of width D0 = (aBR/η)1/3. This change amounts to replacing
R by D0 in the confinement energy ER . The mobility can thus
be obtained by replacing the R6 factor in Eq. (17) by D6

0 =
a2

BR2/η2 and so the mobility in region D is given by

μ = e

h̄

a2
BR2

η2�2d2
(ηR) = e

h̄

a2
BR3

η�2d2
. (18)

The factor ηR is unchanged because this came from averaging
over an area k−1

F R on the surface and was independent of the
confinement in the radial direction. The mobility values given
in Eqs. (17) and (18) are shown in Table I.

We can make the previous discussion more rigorous by
considering the scattering rate by using Fermi’s golden rule. In
the 1DEG limit there is only one radial or azimuthal subband
occupied so that the scattering rate given by Eq. (7) then
simplifies to

1

τ
= 2π

h̄

1

R

∑
k′
y

∫
dk′

x

2π
〈|V (q)|2〉δ(εF − ε′)

= 2π

h̄

1

R

∫
dk′

x

2π
〈|V (q)|2〉δ(εF − ε′). (19)

Here the marginal one-dimensional screening is ignored and
〈|V (q)|2〉 is defined to be

〈|V (q)|2〉 �
(

h̄2

m∗Z3

)2

W (q) (20)

for the gas confined to the lowest radial subband where W (q) =
�2d2 at kF d 	 1. Setting Z = R in region G and Z = D0

in region D, we arrive at the mobilities given by Eqs. (17)
and (18).

We see in Fig. 1 that region G is located at small R and
small η and extends until the line R = d. Beyond this point,
the characteristic size of the islands d becomes larger than the
radius of the wire R and the model of isotropically distributed
islands on the wire surface breaks down.

So far we have dealt with the mobility of quantum wires that
are cylindrically symmetric. A stripe-like wire along the x axis
can be made out of a narrow single subband GaAs/AlGaAs
quantum well by the etching or split-gate techniques [40].

The mobility of such a modulation-doped stripe of 2DEG was
calculated [22] for kF d 	 1 under the assumption that all scat-
tering happens on the one-dimensional rough y = 0, R edges
of the stripe and that the stripe has many y-direction subbands
filled. Although our undoped wires studied in regions H and I
are different from wires of Ref. [22], they share an important
feature with them, i.e., the conduction is determined by the
lowest subband. This can be easily understood quasiclassically,
because the lowest subband electrons have most of its kinetic
energy in the x direction and run approximately parallel to the
surfaces or edges, and thus rarely get scattered.

V. BALLISTIC-DIFFUSIVE BOUNDARY AND THE
CONDUCTANCE OF A WIRE WITH LENGTH L

In the Introduction we explained that, due to the 1D nature
of the wire, the transport properties differ greatly across the
different regions of Fig. 1. Specifically, in the multisubband
regions the wire of characteristic size R undergoes a transition
between a ballistic conductor and a diffusive metal as a function
of concentration. We will now explain why such a transition
occurs and calculate the conductance G within these regions.

Let us first review what we know about the Drude con-
ductance and show where it fails. In Table I we give the
Drude mobility for the various regions of Fig. 1. By using
these formulas one can calculate the dimensionless Drude
conductance GD = (h/e)ημ/L per spin for a wire with length
L and linear concentration η. One can then define the metal-
insulator transition by the condition GD = 1. For example,
in region H we find that GD = R14/3/[η1/3Rc(L)5], where
Rc(L) = (�2d2L)1/5 is defined in the Introduction. Using the
requirement GD = 1, we find the MIT border within region
H to be RMI (η) = η1/14Rc(L)15/14. Similar calculations for
regions G, E, and B lead to the RMI (η) in Table II.

The dimensionless Drude conductance is valid in all regions
where GD > 1, but the mean-free path l < L. In region G
where there is a single subband occupied, GD = 1 and l = L
are the same as long as ηaB > 0.5 where we can safely ignore
electron-electron interactions. However in the multisubband
regions B, H, and E the conditions are different. This can
be understood by realizing that the condition GD = 1 is
equivalent to ζ = L, where ζ is the localization length. When
multiple subbands are occupied, ζ grows larger than l, so in the
multisubband region we can satisfy the conditions l 	 L 	 ζ

required for diffusive transport.
Let us begin with the simplest region B where all subbands

have the same l. We define the mean-free path as l = vF τ ,
where τ is the relaxation time and vF = h̄kF /m∗ is the Fermi
velocity. The relaxation time τ can be calculated from the
mobility in Table I and we find that in region B,

l = a
7/5
B R9/5

�2d2η9/5
. (21)

The border equation is defined by the condition l = L and is
found to be

RBD(η) = ηRc(L)25/9

a
7/9
B

, (22)

as shown in Table II.
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In regions E and H there are radial subbands which are
geometrically confined. As we showed in Sec. III, subbands
that are geometrically confined will have different relaxation
times, with higher subbands having smaller relaxation times.
As a result GD in these regions is determined by the lowest
radial subbands where τ and l are largest. In region E the
bottom M radial subbands are confined electrostatically, while
the higher subbands are confined geometrically. Similar to
region B the subbands that are electrostatically confined have
the same mean-free path

l1−M = aBR7/3

�2d2η5/3
. (23)

These are the lowest subbands that determine GD and thus
setting l1−M = L leads to RBD(η) in Table II.

Finally, in region H all radial subbands are geometrically
confined and therefore have different mean-free paths. The
mean-free path of the N th subband lN is given by

lN = R13/3

�2d2η2/3N2
. (24)

We see that lN ∝ N−2 and the conductance is determined by
the lowest radial subband where N = 1. We can define the
diffusive border by the condition that l1 = L, leading to the
border equation in Table II.

Let us now use these results to determine the number K

of ballistic subbands at the border. Recall that in the ballistic
regions, the dimensionless conductance of the wire is GB = K .
At the border GB = GD , and so using our results of the
Drude conductance we can self-consistently find the number
of ballistic subbands. In region H, we find K = kF R, in region
E we find that K = MkF R, and in region B we find that
K = k2

F RD, where D is given by Eq. (6) with n = η/R.
These results can be easily understood. For each radial subband
there are kF R azimuthal subbands that contribute equally to
the conductance. Then we can generically set K = (kF R)Kr

where Kr will be the number of ballistic radial subbands at
the border. In region H only one radial subband is ballistic, in
region E there are M ballistic radial subbands, and finally in
region B there are kF D radial subbands which are ballistic.
Beyond the border, Kr increases as (l1/L)1/2 until K reaches
the total number of subbands given in Table II, where l1 is
given by Eq. (24) for N = 1. The condition Kr = kF R defines
a final border

R(η) = η4/11Rc(L)15/11 (25)

in regions H and E, beyond which all subbands are ballistic.

VI. VARIABLE-RADIUS MODEL OF A NANOWIRE

Previously, we considered a model of the surface roughness
as flat islands of size d 	 R and height � randomly distributed
over the surface of the crystal. For the case of the nanowire,
however, one can imagine another model of roughness in which
the radius of the wire varies along its length but is independent
of the azimuthal direction. We may consider these variations
as ring-like steps of typical length d and thickness �. The
step-like nature of the roughness means that we can describe
this new model from our old one by restricting the spatial
correlator given in Eq. (3) to variations in the x direction. The

FIG. 5. The scaling phase diagram of roughness limited electron
mobility of a quantum wire for the variable-radius model (VRM)
plotted as a function of radius R and linear electron concentration
η for d < aB on a log-log scale. Different phases or regions are
denoted by capital letters. Mobility expressions corresponding to
these regions are given in Table IV. Region boundaries are given
by the equations next to them. The schematic self-consistent electron
potential-energy profile along the the wire diameter and subbands
occupied by electrons are shown for each region. Small arrows show
the direction of mobility decrease in each region. All regions and the
borders have the same definitions as Fig. 1, with the exception of
a new region J′ that was previously forbidden. The dark-red, light-
red, and pink regions correspond respectively to the single-subband
ballistic conductor, many-subband ballistic conductor, and diffusive
metal defined by the same conditions as the isotropic model for
L = a

7/2
B �−2d−1/2. We see that, for the same L, the metallic window

in the VRM is much smaller than the isotropic model. Electrons are
localized in all colorless regions at T = 0.

corresponding Fourier transform of the correlator is then given
by

W (qx,qy) = 2
√

2π�2d
(
1 + q2

xd
2/2

)−1
δ(qy), (26)

where qx is the momentum along the wire’s length and qy is
the momentum in the azimuthal direction. We call this model
the variable-radius model (VRM).

The new phase diagram for the VRM is shown in Fig. 5. It
should not be surprising that most of the regions and borders
are identical to those in Fig. 1, because these are set either by
the number of subbands occupied, the type of confinement,
or comparison between the island size d and the wavelength
k−1
F . Because none of these properties depend on the details

of the correlator, the regions and borders remain the same as
Fig. 5. However, there is a new region J ′ that emerges in Fig. 5
that did not appear in Fig. 1. This region is the geometrically
confined 1DEG under the condition kF d � 1. We see that this
region occurs in the limit R 	 d, which was forbidden for the
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TABLE IV. Mobility μ in units of (e/h̄)(d4/�2) as a function of
the linear electron concentration η at d < aB for different regions of
Fig. 5.

A′ B′ C′

a2
BR3/2/η3/2d5 a

7/5
B R9/5/d5η9/5 aBR/ηd3

D′ E′ F′

a2
BR2/ηd5 a

1/2
B R3/η3/2d5 a

1/2
B R5/3/η5/6d3

G′ H′ I′

R6η/d5 R4/ηd5 R8/3/η1/3d3

J′

η3R6/d3

previous model of roughness. No such restriction is necessary
for the VRM, and so the new region emerges.

The mobility of these regions are given in Table IV. We
notice immediately that the mobility expressions in regions
C′, F′, and I′ are identical to the same lettered regions in
Fig. 1. The reason is that, in these regions, kF d � 1, and
the scattering is dominated by large-angle scattering at the
edge of a single island, rather than an effect averaged over
many islands. The lack of averaging eliminates the differences
between the two models in this region, and so the mobility
expressions are the same. When kF d 	 1, the electrons feel
instead an averaged effect, and so we see differences emerge
between the two models. The effect of averaging results in a
reduction of the scattering rate by the number of scattering
centers which are typically seen. In the model considered
previously, the variations are two dimensional and so the
electrons average along both the x direction and the azimuthal
direction. This leads to an average number of islands that
contribute to scattering given by the factor 1/(kF d)2 in the
2DEG and 3DEG regions, and R/(kF d2) in the 1DEG limit.
In the VRM the variations only occur in the x direction and so
we do not average in the azimuthal direction. This reduces the
number of islands averaged over to be 1/(kF d) in all regions.
Knowing this, we may easily obtain the new mobilities of most
regions by multiplying the expressions in Table I by the ratio
of the new number of islands to the old number of islands. This
ratio is kF d in the 2DEG and 3DEG and d/R in the 1DEG.
The results are shown in Table IV.

While we can understand the changes in mobility in the
VRM as due to a difference in averaging, we may also
derive these changes from the correlator in Eq. (26). All the
differences between the two models occur in the regions where
kF d 	 1, where the correlator is simply

√
2�2dδ(qy). We see

that the major difference from Eq. (3) is that d2 → dδ(qy),
and so it must be true that this difference is responsible for the
change in the mobility between the two models. Indeed, when
calculating the scattering rate, we integrate the correlator over
the possible final states k′, so that it appears in the scattering rate
as a factor

∫
d2k′W (q). In our previous model this provided to

the scattering rate an overall factor of k2
F �2d2 for the 2DEG

and 3DEG regions, and kF �2d2/R in the 1DEG. In the VRM
the presence of a δ function for the azimuthal momentum
means that these factors change to kF �2d in all regions. From
here it is clear that the change in the correlator leads to a
difference in the mobility between the two models by a factor

of kF d in 2DEG and 3DEG regions and d/R in the 1DEG
regions as we described above.

We have shown that all regions in Fig. 5 can be obtained
from Fig. 1 except for the region J′. In this region kF d � 1,
where the scattering rate is determined by large-angle scatter-
ing. As was discussed in Sec. III, the large-angle scattering
reduces the correlator, and thus the scattering rate, by a factor
of (kF d)3 in the denominator. This allowed us to obtain the
mobility for kF d � 1 from the corresponding region with
kF d 	 1 by multiplying the expression by the factor (kF d)3.
The same logic may be applied in the VRM, but with a small
change. The correlator for the VRM has a different power
in the denominator than the previous model. The large-angle
scattering then reduces the correlator by a factor of (kF d)2 in
the denominator, rather than (kF d)3. This means that we may
obtain the mobility of J′ from that of G′ by multiplying by the
factor (kF d)2 = (ηd)2, and this value is shown in Table IV.

The results presented in Sec. V about the conductance and
ballistic-diffusive border can easily be generalized to the VRM
model. As the results are quite similar, we do not repeat the
discussion here.

VII. DISCUSSION

Here we would like to estimate the critical value Rc(L) in
which the metallic window opens for InAs and InSb nanowires.
To obtain an accurate estimate of Rc(L), we first need the
proper numerical coefficient beyond the scaling approach.
Fortunately, the simple single-subband structure of regions G
and G′ allows this number to be determined analytically if we
ignore electron-electron interactions. We have calculated these
coefficients for a cylindrical wire in Appendix A and found that
the mobility in region G of the isotropic model is

μ = 0.047
e

h̄

ηR7

�2d2
, (27)

while for region G′ of the VRM we find the mobility to be

μ = 0.017
e

h̄

ηR6

�2d
. (28)

Rc(L) is defined to be the radius in which the dimensionless
conductance G = 1. Using Eqs. (27) and (28), and assuming
we are on the border ηR = 1 between regions G and H (or G′
and H′), we find the value of Rc(L) in the isotropic roughness
model to be

Rc(L) = 1.8(�2d2L)1/5, (29)

while for the VRM we find

Rc(L) = 2.8(�2dL)1/4. (30)

Now let us see what our theory predicts for a wire with
L = 1 μm. If we assume that � = 1 nm and d = 10 nm, then
using Eq. (29) we find that Rc(L) = 18 nm for the isotropic
model, while using Eq. (30) for the VRM we find Rc(L) = 28
nm. We see that Rc(L) < aB in both InAs (aB ≈ 34 nm)
[18] and in InSb (aB = 64 nm) [41], so that the ballistic
single subband region exists. Recent experiments [7] have
demonstrated ballistic transport in InSb nanowires with L �
1 μm and R in the range of 40–50 nm. These R satisfy the
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condition Rc(L) < R < aB from our estimates, and thus our
theory is consistent with their observation of ballistic transport.

In the above estimate we used the condition G = 1 so
that the conductance per spin was e2/h. One could use a
different condition in which Rc(L) is defined to be the R such
that l = L. This different definition alters Rc(L) by a factor
1.1 in the isotropic model and 1.2 in the VRM, and so our
prediction for Rc(L) is only slightly different between the two
definitions.

VIII. CONCLUSION

In this paper, we have studied the surface-roughness-limited
mobility in quantum wells and wires for single-subband and
multisubband cases. In these systems, electrons are either
electrostatically confined by the surface electric field E or
geometrically confined by the surface barriers. The mobility
is found to be a function of the electron concentration and
well width L or wire radius R. Both quantum wells and wires
are studied for the exponential model of roughness. For the
wires, another model of variable radius (VRM) where there
is exponential roughness only in the direction of the wire
axis is also discussed. We have presented phase diagrams
summarizing the rich collection of mobility scaling regions and
found that in quantum wires there exists a critical size Rc(L)
so that wires with R > Rc(L) have a window of concentrations
where the wire is metallic, while for R < Rc(L) electrons are
localized at T = 0.

So far we have ignored the spin-orbit coupling of electrons.
In InAs and InSb nanowires studied for the purpose of quantum
computations [5,6,11,12], the spin-orbit interaction is quite
strong. However, the experimentally relevant Rashba spin-
orbit interaction [42] just shifts two electron bands of opposite
spin polarizations away from each other in the Brillouin
zone. Therefore, electrons in each spin-polarized band move
independently of the other band and the mobility is the same
as the case without the spin-orbit coupling.
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APPENDIX A: COEFFICIENTS OF MOBILITY FOR
GEOMETRICALLY CONFINED ONE-DIMENSIONAL
ELECTRON GAS IN CYLINDRICAL NANOWIRES IN

REGIONS G AND G′

In the Discussion, we used the coefficient of the mobility
and thus the mean-free path of electrons in narrow nanowires
of cylindrical cross sections at low electron concentrations
(regions G of Fig. 1 and G′ of Fig. 5). In this appendix, we
derive this coefficient.

For a narrow nanowire at low electron concentrations,
electrons occupy only the first subband in the wire cross section
forming a 1DEG which is geometrically confined. If we ignore

correlation effects, the wave function of the lowest subband in
a cylindrical nanowire of radius R is

ξ (r,φ,x) = J0(ν0r/R)eikx

√
πRJ1(ν0)

, (A1)

where x is directed along the wire axis, r is the distance from
the wire center, φ is the azimuthal angle in the cross section
of the wire, J0 and J1 are the zeroth- and first-order Bessel
functions of the first kind, and ν0 ≈ 2.4 is the first zero of J0.

It can be easily derived that, for a 1DEG, the scattering
rate is

1

τ
= 2π

h̄
|V |2ρ(1 − cos θ ), (A2)

where |V | is the scattering matrix element due to roughness,
θ = π is the angle between initial and final electron mo-
menta, ρ = m∗/2πh̄2kF is the density of states into which the
backscattering can happen, and kF is the Fermi wave number
of the 1DEG. For 1D scattering, only backscattering can cause
momentum relaxation, and so the angle between the initial and
final momenta is π .

Similar to Eq. (8), according to Ref. [25], one can obtain
the scattering potential in the cylindrical geometry to be

V (φ,z) = h̄2

2m∗ �(φ,z)
∂ξ

∂r

∂ξ ′

∂r

∣∣∣∣
r=R

, (A3)

and the scattering matrix element for R � d is

〈|V (q)|2〉 = ν0

2π

h̄4

m∗2R7
W (q), (A4)

where q = 2kF is the transferred momentum along the wire
axis for backscattering of electrons at the Fermi level.

If we combine Eqs. (A2) and (A4), set kF = (π/2)η for a
1D gas, and use kF d 	 1 for the correlator given in Eq. (3),
we find the mobility μ = eτ/m∗ to be

μ = π

2ν4
0

e

h̄

ηR7

�2d2
. (A5)

If instead we consider the VRM model described in Sec. VI,
then we use the correlator given in Eq. (26) instead. As a result,
the mobility in region G′ in the VRM is

μ = π

4
√

2ν4
0

e

h̄

ηR6

�2d
. (A6)

APPENDIX B: LARGE-ANGLE-SCATTERING
DOMINANCE IN SCATTERING RATE FOR QUANTUM

WELL

Here by using Eq. (7) we prove that the scattering rate in
kF d � 1 regions V and VII is dominated by the large-angle
scattering, i.e., scattering events with large q � kF . One might
expect that, because the correlator W (q) ∼ �2d/(kF d)3 for
large-angle scattering with q ∼ kF is much smaller than that
for scattering into small angles with q ∼ 1/d by a factor of
(kF d)3 in the denominator, that the scattering is dominated by
the small-angle regime. However as we show below, the limited
number of final subbands that electrons can scatter into for
q � 1/d, the small value of the angular integral

∫
dφ(1 − �vk′ ·

�EτN ′/ �vk · �EτN ), and in certain cases the smaller z-direction
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momentum of final states k′
z 	 kF , act to suppress the small-

angle scattering rate so that the scattering is determined by the
large-angle scattering. We show this below for three cases: L <

d (in some part of regions V and VII); L > d and M/L < 1/d

(for the rest of region V and some part of region VII); L > d

and M/L > 1/d (for the rest of region VII).
First let us consider the case when L < d. From energy

conservation, the total magnitude of the momentum is fixed,
and so any difference in magnitude of the in-plane momenta
follows from the difference |kz − kz′ | ∼ 1/L of their z mo-
mentum. When L < d, q � 1/d 	 1/L and the scattering
happens only within the same subband. This means that the
DFR term �vk′ · �Eτ ′

N/ �vk · �EτN reduces to the usual cos φ for
2D scattering, where φ is the angle between �vk′ , �vk . The
final angular integral for the small-angle scattering is

∫
(1 −

cos φ)dφ ∼ φ3 ∼ (kF d)−3, while it is of order unity for the
large-angle scattering. This cancels the advantage of larger
W (q) in the small-angle scattering. Moreover, the small-angle
scattering has only one final subband to scatter into while the
large-angle scattering covers all kF L subbands. This combined
with the small-angular integral means that the small-angle
scattering rate is kF L � 1 times smaller than that of the
large-angle scattering when L < d.

Now let us look at the second case where L > d and M/L <

1/d. For simplicity, we focus on the lowest subbands with
kz < M/L 	 kF because these dominate the conductivity in
regions V and VII. In the limit L > d and M/L < 1/d,
there will always exist L/d > M subbands with k′

z < 1/d

so that the scattering now involves intersubband scattering.
As a result the DFR term is not reduced to cos φ and the
term (1 − �vk′ · �EτN ′/ �vk · �EτN ) is of order unity instead of
being infinitesimal for small q and thus small φ. The angular
integral of this term would just give 1/(kF d) from the small
angle

∫
dφ � 1/dkF and does not compensate the (kF d)3

reduction of the correlator. However, we must consider the
importance of k′

z in the scattering matrix element according
to Eq. (8). For the small-angle scattering k′

z < 1/d, while for
the large-angle regime k′

z ∼ kF . This gives an extra factor
1/(kF d)2 to |V (q)|2 in small-angle regime relative to the
large-angle scattering. This additional factor combined with
the small angular integral compensates the 1/(kF d)3 reduction
of the correlator. Considering also the accessible number of
final subbandsL/d in the small-angle limit is kF d times smaller
the kF L available subbands for large-angle scattering, we find

that the small-angle scattering rate is kF d times smaller than
that of the large-angle scattering.

Finally, we must consider the intermediate case whenL > d

and M/L > 1/d. For small-angle scattering the number of
subbands L/d that may be scattered into is small, and so we
expect that the DFR term is near the 2D limit cos φ. Expanding
around this value, we find that the DFR term is approximately

�vk′ · �Eτ ′
N

�vk · �EτN

= cos φ

(
1 − δvk

vk

− δτN

τN

)
, (B1)

where δvk = |vk − v′
k| and δτN − |τN − τ ′

N |. Let us examine
these correction terms, beginning with δvk/vk . The allowed dif-
ference in k and k′ is 1/d for the small-angle scattering. Since
k � kF for the lowest subbands, the velocity difference ratio
|vk′ − vk|/vk = |k′ − k|/k is then 1/kF d. In considering the
other correction term δτN/τN , let us assume that the scattering
rate of each subband is always determined by their large-angle
scattering into typical subbands and show that this assumption
self-consistent. With this assumption the difference in relax-
ation times δτN is solely caused by the different z-direction mo-
menta and subband widths as seen from Eq. (8). Again we focus
on the the lowest M subbands because these determine the con-
ductivity. For the bottommost subbands, all subbands within
q ∼ 1/d are electrostatically confined and δτN = 0 because
k′2
z /Z′ = k2

z /Z = n/aB [see Eq. (8)]. For the higher subbands
with kz ∼ M/L, there are bands within q ∼ 1/d which are
instead geometrically confined and the correction is nonvanish-
ing. Indeed, we find that δτN ∼ τNδkz/kz and so the correction
is given by (1/d)/(M/L). We find then that the leading contri-
bution to the DFR term in Eq. (B1) in the small-angle regime
is approximately 1 − (1/d)/(M/L), where we have used the
fact that 1/(kF d) 	 L/Md in the limits being considered.

Using the DFR term above, the angular integral now gives
a factor (1/kF d)(1/d)/(M/L) to the scattering rate, while the
integral is of order unity for the large-angle limit. Combined
with the fact that the final state in the small-angle regime has
k′2
z /Z′ � (M/L)2/L, we find that these terms give an extra

factor (Md/L)/(kF d)3 compared with the same terms for the
large-angle limit. We see then that there is a factor of 1/(kF d)3

term that compensates the suppression of the correlator in
the large-angle limit. Adding the fact that the small-angle
scattering can only scatter into L/d 	 kF L, we find that the
ratio of scattering rates in the small- and large-angle regimes
is M/(kF L) 	 1 and indeed the large-angle limit dominates.
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