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Compact localized states and flat bands from local symmetry partitioning
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We propose a framework for the connection between local symmetries of discrete Hamiltonians and the
design of compact localized states. Such compact localized states are used for the creation of tunable, local
symmetry-induced bound states in an energy continuum and flat energy bands for periodically repeated local
symmetries in one- and two-dimensional lattices. The framework is based on very recent theorems in graph
theory which are here employed to obtain a block partitioning of the Hamiltonian induced by the symmetry of a
given system under local site permutations. The diagonalization of the Hamiltonian is thereby reduced to finding
the eigenspectra of smaller matrices, with eigenvectors automatically divided into compact localized and extended
states. We distinguish between local symmetry operations which commute with the Hamiltonian, and those which
do not commute due to an asymmetric coupling to the surrounding sites. While valuable as a computational tool
for versatile discrete systems with locally symmetric structures, the approach provides in particular a unified,
intuitive, and efficient route to the flexible design of compact localized states at desired energies.
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I. INTRODUCTION

Compact localized states [1,2], i.e., wave excitations that
strictly vanish outside a finite subpart of a system, are caused
by destructive interference in the presence of local spatial sym-
metries [1]. Contrary to the case of Anderson localization [3],
where exponentially localized states are caused by disorder,
compact localized states (CLSs) typically occur in perfectly
ordered systems [1]. They were early deduced from symmetry
principles in bipartite lattices [4], and studied more recently in,
e.g., frustrated hopping models [5] as well as magnonic [6] and
interacting [7] systems. A possible application of CLSs lies
in information transmission [8–10] and directly stems from
their compactness: Being an eigenstate of the Hamiltonian,
a CLS does not spread out spatially during evolution, while
it is much less challenging to excite than a regular extended
eigenstate. For example, CLSs are ideal candidates for the
transmission of information along photonic waveguide arrays
avoiding “crosstalk” between waveguides [11]. Further, CLSs
essentially enable the appearance of isolated bound states
within a scattering continuum [12–14]. Such states were, e.g.,
realized recently as a symmetry-induced topological eigenstate
subspace of coupled-chain setups [15]. On a computational
level, CLSs induced by symmetries may also be used as a
symmetry-adapted basis for numerical computations [16]. In
periodic lattice systems, macroscopically degenerate CLSs
lead to the occurrence of flat, i.e., dispersionless, energy bands
[17]. Flat bands are studied in different contexts, including
the quantum Hall effect in topologically nontrivial lattices
[18–21], induced metal-insulator transitions [22,23], and non-
Hermitian quantum mechanics [24,25].

Different approaches have been suggested to design systems
featuring CLSs and flat bands. They are based on strate-
gies such as so-called origami rules [26], the repetition of
mini-arrays [27], working on bipartite Hamiltonians [28],

detangling the lattice into Fano lattices [1], or even more
general approaches, such as band engineering [29] or generator
principles [2]. Most of these works are based on the presence of
different kinds of local symmetries, i.e., on the invariance of a
subset of matrix elements under a site permutation. In general,
local symmetries of the underlying Hamiltonian are indirectly
encoded into its eigenstates, as has been demonstrated recently
in various contexts [30–38]. However, not every locally sym-
metric system features CLSs, and a systematic framework
linking a theory of local symmetries to the formation and
control of both CLSs and the resulting flat bands is still missing.

In the present work, we take a step in this direction
by applying very recent graph theoretical results to generic
single-particle discrete Hamiltonians. The resulting unifying
framework connects two types of local symmetries to the
occurrence of CLSs, flat bands, and bound states in the
continuum. Complementing many of the above CLS design
strategies, this framework uniquely pairs a high degree of
control with an in-depth understanding of the impact of local
symmetries. Technically, we apply and generalize two recently
published theorems [16,39–41] to general Hamiltonian matri-
ces. These theorems, which we refer to as the equitable and
nonequitable partition theorems, quantify the effect of certain
local symmetries of the Hamiltonian matrix H underlying
a given discrete system. Specifically, the equitable partition
theorem (EPT) applies to locally acting symmetry transforma-
tions which commute with H , while the nonequitable partition
theorem (nEPT) applies to a subclass of transformations that
do not commute with H . In essence, the theorems assert a
symmetry-induced decomposition of H into a direct sum (i.e.,
block-diagonal form) of smaller matrices, whose spectrum
and eigenvectors thereby determine those of H . In particular,
the eigenvectors of submatrices corresponding to symmetric
subsystems of the complete setup uniquely provide all existing
CLSs of H together with their eigenenergies. The remaining
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submatrix is analogously connected to extended eigenstates
(non-CLSs) of H .

In the context of periodic lattices, the presence of lo-
cal symmetries is thus shown to automatically enforce the
presence of flat bands, while the (n)EPT can be used to
control both the flat and dispersive bands of the system. The
approach can be seen as complementary to the general and
powerful design principle of Refs. [1,2] based on elementwise
conditions on the underlying eigenvalue equation, in that it
solely relies on generalized symmetry concepts. Moreover, the
methodology can be used to reduce the computational effort of
diagonalisation by exploiting local symmetries present in the
Hamiltonian.

We apply the framework to the design of both flat bands
and symmetry-induced bound states in the continuum. It
should be emphasized that the approach allows for the design
of symmetry-induced flat bands at prescribed energies in
arbitrary dimensions. Moreover, since it is solely based on the
symmetries of a complex-valued square matrix, the framework
is applicable to a broad range of physical problems, treated by,
e.g., multichannel scattering theory or dyadic Green functions
[42–44]. We thus believe that this work may inspire the
exploration of the effect of local symmetries in the broader
research community.

The paper is structured as follows. Sec. II introduces the
concept and description of local symmetries and subsequently
states the EPT and nEPT in terms of simple example setups.
In Sec. III we demonstrate the methodology in the design of
bound states in the continuum and flat band lattices. Sec. IV
contains our conclusions.

II. LOCAL SYMMETRIES AND EQUITABLE PARTITIONS

The setting we will operate on is the eigenvalue problem

Hφ = Eφ (1)

of a Hamiltonian matrix H modeling a (lattice) system of sites
n with elements

Hmn =
⎧⎨
⎩

vn, m = n,

hm,n �= 0, n ∈ N (m),
0 else,

(2)

whereN (n) denotes a set of neighboring sites connected to site
n via a nonvanishing hopping. H is graphically represented
by a (weighted) graph with vertices connected by edges for
corresponding nonzero hoppings, as in Fig. 1. Throughout,
we will use different vertex sizes and coloring to indicate
different values of the onsite potential of the represented
Hamiltonian. The considered model can be seen as a general-
ized tight-binding network, with more than just next-neighbor
hopping being allowed. Such a model is extensively used to
describe single-electron phenomena, such as localization in
lattice systems [5,45]. It also effectively describes, for instance,
arrays of evanescently coupled photonic waveguides, in terms
of which both flat bands [11,46,47] and bound states in the
continuum [48,49] have been studied.

(a) (b)
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1

FIG. 1. (a) The Hamiltonian of a three-site system is represented
by a graph with connected vertices, with vertex sizes (and colors)
indicating different onsite potential values. The system is symmetric
under the permutation of sites 2 and 3, or globally symmetric under a
left-right flip. In (b) the system is extended by attaching an arbitrary
subsystem (grey) to site 1 (which is fixed under the permutation),
so that the original global symmetry becomes a commutative local
symmetry. Independently of the parameters of the attached subsystem,
the eigenvalue v − h corresponding to a compact localized eigenstate
on the two sites 2, 3 is always present in the Hamiltonian spectrum.

A. Commutative local symmetries

To introduce the concept of local symmetry, let us first
consider the three-site system depicted in Fig. 1(a). Its Hamil-
tonian H is invariant under permutation of sites 2 and 3,
which represents a global left-right flip of the system. Since
the corresponding permutation matrix Π squares to unity
(Π2 = I ) and commutes with H , their common eigenvectors
will have definite parity under this permutation. The spectrum
σ (H ) = {E1,E2,E3} of H is given by E1 = v − h and E2,3 =
1
2 [v + v′ + h ±

√
8h′2 + (h + v − v′)2 ]. The corresponding

(unnormalized) eigenvectors are φ1 = [0,1,−1]� and φ2,3 =
[a±,1,1]� (with a± depending on all system parameters),
which indeed are of odd and even parity under Π , respectively.

Let us now connect an arbitrary subsystem to site 1, still
leaving the resulting composite system symmetric under the
site permutation 2 ↔ 3, as shown in the example of Fig. 1(b).
The corresponding permutation matrix Π now has the di-
mension of the enlarged system, but performs the left-right
flip only locally on subsystem {1,2,3}, leaving site 1 and the
added subsystem identical, or fixed under Π . Since this local
permutation commutes with the Hamiltonian, ΠH = HΠ , we
say that the system possesses a commutative local symmetry.

With Π2 = I , the composite system eigenvectors again
possess a definite parity under Π . In particular, any eigenvector
with odd parity will have zero amplitude on all sites fixed
under Π (since φn = −φn for those sites), that is, the state
is compactly localized on the symmetric subsystem. Conse-
quently, also the eigenvalues of these odd parity states are left
unaltered by variations of the parameters (onsite and hopping
elements) in the fixed subsystem. In the example of Fig. 1,
the same eigenvalue E1 = v − h (of the odd parity eigenstate)
will always be present in σ (H ), irrespectively of the fixed
subsystem connected to site 1. The corresponding eigenstate
is localized only on sites 2 and 3 with opposite sign.

The above symmetry considerations, explaining the per-
sistence of compact localized eigenstates of odd parity in
the presence of commutative local symmetries, are formal-
ized within graph theory by the so-called equitable partition
theorem (EPT) [50], which also provides the eigenvalues of
associated even parity eigenvectors. The term “equitable”
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FIG. 2. Left: Graphically represented Hamiltonian H (with
uniform hoppings h and onsite elements indicated by different vertex
sizes and coloring) of a system with local symmetry under mutual
exchange of (a) two subparts T0, T1, (b) three subparts T0, T1,
T2, and (c) two interconnected subparts T0, T1 (indicated by gray
background). Right: Using the equitable partition theorem (EPT), the
Hamiltonian matrix H is transformed (⇒) into a direct sum (⊕) of
the graphically represented matrices RH and Bj ; Eqs. (16) and (21).
In (a) and (b) there is no connection between the Ti , and only the
divisor matrix RH has altered hoppings [dotted lines;

√
2h in (a) and√

3h in (b)] compared to H . In (c), the intraconnections between T0

and T1 lead to altered onsite and hopping elements in both RH and
Bj .

denotes a partitioning of the vertices of a graph into nonover-
lapping classes such that for distinct classes Ai,Aj all vertices
belonging to Ai have the same number of adjacent vertices
belonging to class Aj . Although this concept is limited to
unweighted graphs, which can be represented by very specific
matrices such as the adjacency or Laplacian matrix, the above
definition of equitable partitions has recently been extended to
general complex square matrices [39,51] including the model
Hamiltonians considered here. In this generalization, a matrix
is “equitably partitionable” if it can be partitioned into blocks
of constant row sum. For instance, in Fig. 1(a) this is the case
as

H =
⎡
⎣ v′ h′ h′

h′ v h

h′ h v

⎤
⎦ (3)

with row sums v′,2h′,h′,v + h.
Before stating the EPT, let us introduce the employed

nomenclature through a suitable example. Consider the Hamil-
tonian graphically represented on the left-hand side of Fig. 2(a).
The structure possesses a commutative local symmetry which
can be visualized as a local flip of the sites {1,3} and {4,6}
around the axis running through the sites 7 − 2 − 5 − 10. By
“local” we mean that only the sites {1,3,4,6} are flipped, while
all other sites are unaffected. This commutative local symmetry

can be expressed by the commutation of the Hamiltonian with
the permutation matrix

ΠS =
⎡
⎣J3 0 0

0 J3 0
0 0 I3

⎤
⎦ ≡ J3 ⊕ J3 ⊕ I3, (4)

IN and JN being the N -dimensional identity and exchange
(antidiagonal, reverse identity) matrix, where ⊕ denotes direct
sum (i.e., block-diagonal concatenation). This symmetry op-
eration on H , or automorphism of its graph, can be described
as a simultaneous permutation

S : 1 �→ 3, 3 �→ 1, 4 �→ 6, 6 �→ 4, (5)

with all other sites being unaffected. This permutation S :
{1, . . . ,10} → {1, . . . ,10} is commonly written in the so-
called cyclic notation

S = (2)(5)(7)(8)(9)(10)(1,3)(4,6). (6)

Each tuple within parentheses in Eq. (6) is called an orbit.
Orbits are classified by their size, i.e., by the number of sites
they comprise. Orbits of size 1 are called trivial. Note that since
permutations are bijective, orbits are always nonoverlapping.

In accordance with the above, we will call a permutation
S : {1, . . . ,N} → {1, . . . ,N} satisfying

Hi,j = HS(i),S(j ) ∀ i,j ⇔ [H,ΠS ] = 0 (7)

a commutative local symmetry of H , withS acting nontrivially
on a subset of the system’s sites, and ΠS being the matrix
representation of S . If S is a commutative local symmetry
and all of its nontrivial orbits are of uniform size k, then we
call it a basic commutative local symmetry of order k. In the
present example, S given in Eq. (6) is a basic commutative
local symmetry of H of order 2 with two nontrivial and six
trivial orbits. It is clear from Eq. (7) that, in order to be a
commutative local symmetry, a given permutation must leave
the connections between sites invariant. For example, for H in
Fig. 2(a), the permutation

S = (1)(2)(3)(4)(6)(7)(9)(10)(5,8) (8)

is not a commutative local symmetry: While indeed v8 = v5,
S breaks the connection, e.g., between sites 7 (which is fixed
under S) and 8, hS(8),S(7) = 0 �= h8,7, thus violating Eq. (7).

If H is represented graphically, commutative local sym-
metries of order 2 can be seen as the invariance of the
Hamiltonian under a local flip of a subsystem about an axis
(which depends on how H is depicted graphically), represented
by a corresponding local permutation matrix ΠS . While this
procedure aids in the graphical identification of commutative
local symmetries, the notion of orbits is more powerful as it
makes the description more compact in the case of increased
local symmetry. For example, in Fig. 2(b) all of the following
are commutative local symmetries of H of order 2:

Sa = (7)(8)(9)(10)(2)(5)(4,6)(1,3),

Sb = (7)(8)(9)(10)(3)(6)(4,5)(1,2), (9)

Sc = (7)(8)(9)(10)(1)(4)(5,6)(2,3),

each one corresponding to a local flip of a symmetric subsys-
tem. Those different local symmetries of order 2 can now be
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unified into a single one of order 3,

S = (7)(8)(9)(10)(4,5,6)(1,2,3), (10)

i.e., by the simultaneous cyclic permutations 1 �→ 2 �→ 3 �→ 1
and 4 �→ 5 �→ 6 �→ 4, exploiting the full local symmetry of
the system at once. For the purpose of the EPT, S is preferably
chosen to be of highest possible order.

There is a fundamental connection between a basic com-
mutative local symmetry S of order k and the structure of H :
If it exists, then the sites of the system can be reordered [40]
by a suitable permutation P such that H is transformed into

H̃ = P −1HP =

⎡
⎢⎢⎢⎢⎢⎢⎣

F G G . . . G

G† C0 C1 . . . Ck−1

G† Ck−1 C0
. . .

...
...

...
. . .

. . . C1

G† C1 . . . Ck−1 C0

⎤
⎥⎥⎥⎥⎥⎥⎦

(11)

with k copies of the block C0 on its diagonal and Ci ∈ Cl×l ,
where l is the number of nontrivial orbits of S . For a Hermitian
Hamiltonian H = H † the relation Ci = C

†
k−i holds. A general

procedure to transform H to H̃ for a given basic commutative
local symmetry S of order k, with f trivial and l nontrivial
orbits, is as follows:

(i) Collect all f sites fixed by S into the subset F of the set
N of all sites.

(ii) Construct a set T0 of size l by picking one arbitrary site
from each one of the l nontrivial orbits of S .

(iii) Construct the setsTi = S iT0, i = 1, . . . ,k − 1, by the
i-fold application ofS ontoT0 (noting thatTk = SkT0 = T0).

(iv) Construct H̃ in the form of Eq. (11) using

F = HF,F, G = HF,T0 , Ci = HT0,Ti
, (12)

where HA,B denotes all elements Hmn with m ∈ A, n ∈ B.
As an example, for the system in Fig. 2(a) we could choose

T0 = {1,4}, so that T1 = {3,6}, and get

C0 =
[

v1 h1,4

h4,1 v4

]
, C1 =

[
0 0
0 0

]
, (13)

where C1 vanishes since there are no interconnections between
T0 and T1. The other matrices are given as

F =

⎡
⎢⎢⎢⎢⎢⎣

v2 h2,5 0 h2,8 0 0
h5,2 v5 h5,7 0 0 0

0 h7,5 v7 0 h7,9 h7,10

h8,2 0 0 v8 h8,9 h8,10

0 0 h9,7 h9,8 v9 0
0 0 h10,7 h10,8 0 v10

⎤
⎥⎥⎥⎥⎥⎦,

G =

⎡
⎢⎢⎢⎢⎢⎣

0 0
0 0

h7,1 0
0 0
0 0
0 h10,4

⎤
⎥⎥⎥⎥⎥⎦. (14)

Note that F constitutes the Hamiltonian of the isolated fixed
subsystem F, the matrix (k = 2)

C =

⎡
⎢⎢⎢⎢⎣

C0 C1 . . . Ck−1

Ck−1 C0
. . .

...
...

. . .
. . . C1

C1 . . . Ck−1 C0

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎣

v1 h1,4 0 0
h4,1 v4 0 0

0 0 v1 h1,4

0 0 h4,1 v4

⎤
⎥⎦ (15)

represents the isolated symmetric subsystem S = N \ F
(which in this case are two uncoupled symmetric blocks), while
G couples the subsystems F and S. Thus, H̃ in Eq. (11) can be
seen as a symmetry-adapted restructuring of the Hamiltonian.

We can now, following Refs. [39,40], state the following:
Equitable partition theorem. Let H ∈ CN×N have a commuta-
tive local symmetry S of order k with l nontrivial and f trivial
orbits. Then the following properties hold:

P1 There exists an invertible, nonunitary matrix M such
that

H ′ = M−1HM = R ⊕
k−1⊕
j=1

Bj =

⎡
⎢⎢⎢⎢⎣

R 0 . . . 0

0 B1
. . .

...
...

. . .
. . . 0

0 . . . 0 Bk−1

⎤
⎥⎥⎥⎥⎦

(16)

where

R =
[

F k · G

G† B0

]
, Bj =

k−1∑
m=0

ωjmCm, (17)

with ω = e2πi/k and the matrices F,G,Cm as defined in
Eq. (12).

P2 The spectrum σ (H ) is given by

σ (H ) = σ (H ′) = σ (R) ∪ σ (B1) ∪ · · · ∪ σ (Bk−1) (18)

(regarding the hermiticity of R, see the remark below).
P3 The N = f + kl eigenstates of the index-reordered

matrix H̃ defined in Eq. (11) are given by

φν =

⎡
⎢⎢⎢⎢⎣

wν

vν

vν

...
vν

⎤
⎥⎥⎥⎥⎦, φf +ml+r =

⎡
⎢⎢⎢⎢⎣

0f

um,r

ωmum,r

...
ω(k−1)mum,r

⎤
⎥⎥⎥⎥⎦ (19)

for ν ∈ [1,f + l] and m ∈ [1,k − 1],r ∈ [1,l], where R[wν

vν
] =

λν[wν

vν
] with wν ∈ Cf ×1, vν ∈ Cl×1, and Bmum,r = λm,r um,r .

The vectors φf +ml+r are thereby compact localized on S.
P4 The first f + l eigenvectors of H are symmetric under

S , while the remaining (k − 1)l eigenvectors are both compact
localized and not symmetric underS . Specifically, defining the
index-reordered permutation matrix Π̃S = P −1ΠSP with P

defined from Eq. (11), we have Π̃Sφν = φν for ν ∈ [1,f + l],
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FIG. 3. (a1) Eigenvectors φν of the Hamiltonian matrix H , with index ν ordered according to Eq. (19) in the EPT, (a2) their corresponding
eigenvalues {Eν}, and (a3) eigenvectors of the matrices RH and Bj (j = 1,2), for the system of Fig. 2(a), depicted on the left, with indicated
onsite elements and homogeneous hoppings hmn = 1. (b1)–(b3) Similarly, but for the system of Fig. 2(b). The norm |φν

n | of each real eigenstate
at each site n is plotted in black (red) for φν

n > 0 (φν
n < 0). The sites comprising the locally symmetric part of H are indicated by corresponding

light and dark blue background. The eigenvectors of RH and Bj , which share eigenvalues Eν with H , are spatially plotted following the
site-indexing of H with gray background for sites they are not defined on. Note that the CLSs [ν = 9,10 in (a1) and ν = 7,8,9,10 in (b1)] are
constructed from the components of Bj eigenvectors at the same energy [with pairwise degeneracy for ν = 7,9 and 8,10 in (b1)], and that the
remaining eigenstates are symmetric within the locally symmetric part.

while the remaining compact S-localized eigenvectors trans-
form as

Π̃S

⎡
⎢⎢⎢⎢⎣

0f

um,r

ωmum,r

...
ω(k−1)mum,r

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

0f

ω(k−1)mum,r

um,r

...
ω(k−2)mum,r

⎤
⎥⎥⎥⎥⎥⎦. (20)

Remark. The generally non-Hermitian “divisor” matrix R

defined in Eq. (17) is isospectral to the similar Hermitian matrix

RH =
[

F
√

k · G√
k · G† B0

]
= KRK−1 (21)

with eigenvectors [ wν

vν/
√

k
], where K = If ⊕ √

k · Il . Thus,
properties P2 and P3 of the EPT hold if we replace R by RH

and vν by vν/
√

k; we shall do so in the remainder of this work.
We see that, in essence, the EPT uses the symmetries

described by S to acquire partial information from H ,
namely its spectral composition and corresponding eigenvector
localization, without diagonalizing it. This information could
indeed alternatively be obtained by considering the system’s
symmetry under local flip operations (represented by involu-
tory matrices Π ), as explained above. In particular, however,
the EPT provides all eigenvalues and eigenvectors of H in
terms of those of the symmetry-adapted matrices R and Bj ,

i.e., not only those of the “decoupled” CLSs. Since R and
Bj are of reduced dimension, the EPT may additionally offer
a computational advantage in diagonalizing Hamiltonians of
extended systems with commutative local symmetries.

To give a concrete impression of the EPT, we consider
again the Hamiltonian H in Fig. 2(a), which is transformed
to the direct sum of matrices RH and B1 according to Eq. (16).
Recall that the similarity transformation involved preserves the
spectrum of H , while the final block-diagonal form ensures
property P2 in the EPT. The eigenvectors of H , RH, and
B1 of Fig. 2(a) are shown in Figs. 3(a1)–3(a3) together with
their eigenvalues. As predicted by the EPT (here with f = 6,
k = 2, and l = 2), there are two (antisymmetric) CLSs of H

(states ν = 9,10) localized on the sites {1,3,4,6} that form
a commutative local symmetry under the permutation S of
Eq. (6), while all other eigenstates are extended and symmetric
under S . In particular, the CLSs are constructed from the
components of the eigenvectors of B1 in Fig. 3(a3).

The matrices C0,C1 and F,G, used in this example to con-
struct the matrices R and Bj of the transformed Hamiltonian
H ′ in Eq. (16), are given in Eqs. (13) and (14), respectively, for
the choice T0 = {1,4} as initial orbit sites. Note that the choice
of T0 generally affects the matrices G,B1, . . . ,Bk−1 (but not
B0), though does not change the resulting decomposition of
the spectrum and the eigenvectors of the Hamiltonian. In the
present example, the sites in each orbit are disconnected, so
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that C1 vanishes and

B0 = B1 = C0 =
[

v1 h1,4

h4,1 v4

]
(22)

from Eq. (17) becomes the single submatrix corresponding to
the two CLSs.

The EPT works in a completely similar form for the example
in fig. 2(b): There are now 2 orbits of size k = 3, leading to (k −
1)l = 4 (pairwise degenerate) CLSs, as seen in Figs. 3(b1)–
3(b2). Note that any two degenerate real CLS eigenvectors
can be linearly combined to either be antisymmetric under one
of the (partial) local symmetry transformations in Eq. (9), or
to be of the complex form in Eq. (19). Also in this example
there are no intra-orbit connections, and so we have B0 = B1 =
B2 = C0.

In contrast, the system shown in Fig. 2(c) is invariant under
the permutation S = (1)(2,3)(4,5) but has intraconnected or-
bits (or interconnected local symmetry units T0 and T1), since
h2,3,h2,5,h4,3 �= 0. In such a case the matrices Bj differ; here
we have (with the choice T0 = {2,4})

R = [v1], B0
1

=
[

v2 h2,4

h4,2 v4

]
±

[
h2,3 h2,5

h4,3 h4,5

]
. (23)

Notably, the B0 and B1 here are given by adding and subtracting
the intra-orbit connection, respectively. In Sec. III A we will
use this property to tailor periodic systems featuring bound
states in the continuum.

B. Noncommutative local symmetries

So far we have considered the case of local symmetries
which, although localized within a part of a composite system,
are represented by a permutation matrix ΠS that commutes
with the system Hamiltonian H . We now show, partially
following the procedure in Ref. [41], how the merits of the
EPT can be extended to cases where a symmetric subsystem
is asymmetrically coupled to the rest of the system under the
given site permutation. Since ΠS then does not commute with
H , we call the underlying permutation S a noncommutative
local symmetry. In the following, we will impose two further
restrictions on S .

Specifically, consider a Hamiltonian H which can be index-
reordered, in analogy to Eq. (11), into the form

H̃ =

⎡
⎢⎢⎢⎢⎢⎢⎣

F γ ∗
1 G γ ∗

2 G . . . γ ∗
k G

γ1G
† C0 0 . . . 0

γ2G
† 0 C0

. . .
...

...
...

. . .
. . . 0

γkG
† 0 . . . 0 C0

⎤
⎥⎥⎥⎥⎥⎥⎦

(24)

with generally complex parameters γ1, . . . ,γk . As in Eq. (11),
the k copies of C0 ∈ Cl×l correspond to the same local
symmetry units under permutation S , the matrix F ∈ Cn×n

corresponds to sites fixed by S , while G ∈ Cn×l connects fixed
to local symmetry sites. Now, however, (i) the local symmetry
units are not interconnected (i.e., Cj>0 = 0), and (ii) while
each of them is geometrically coupled to the fixed part F in the
same manner, the coupling strength for each unit is weighted
by a factor γi . Thus, if γi �= γj for some i �= j , the coupling
of S (denoting the locally symmetric subsytems as a whole)

1

FIG. 4. Graphically represented example Hamiltonian H of the
form in Eq. (24) with a restricted noncommutative (local) symmetry
under the exchange of subparts T0 and T1, and its partitioning into
matrices R and C0 according to the nEPT with ξ = γ 2

1 + γ 2
2 .

to F (denoting the fixed subsystem) is asymmetric, and S
is no longer a commutative local symmetry of H . A simple
example is given by the system in Fig. 4; also by Fig. 2(a)
if, e.g., only h1,7 and h4,10 were multiplied by a factor γ , or
similarly in Fig. 2(b)—though not in Fig. 2(c), where there is
local symmetry unit interconnection.

In the following, we will call noncommutative local sym-
metries fulfilling the above restrictions (i) and (ii) restricted
noncommutative ones. For such local symmetries the EPT can
be modified, along the lines of Ref. [41], to the following:

Nonequitable partition theorem. Let H̃ ∈ CN×N be of the
form in Eq. (24), with F ∈ Cf ×f , k copies of C0 ∈ Cl×l , and
S̃ a restricted noncommutative local symmetry of H̃ . Then the
following properties hold:

P1 The eigenvalue spectrum of H̃ is given by σ (H̃ ) =
σ (H ′) = σ (R) ∪ σk−1(C0), where H ′ is a similarity transform
of H̃ and is given by

H ′ = R ⊕
k−1⊕
m=1

C0, R =
[

F
√

ξ · G√
ξ · G† C0

]
(25)

with ξ = ∑k
j=1 γ 2

j and σi(R) denoting i copies of σ (R) (i.e.,
i-fold degeneracy of those eigenvalues).

P2 The N = f + kl eigenstates of H̃ are given by

φν =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

wν

γ1√
ξ
vν

γ2√
ξ
vν

...
γk√
ξ
vν

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, φf +ml+r =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0f

γ1

γ1
u0,r

γ2

γ1
u0,r

...
γm

γ1
u0,r

−
∑m

i=1 γ 2
i

γ1γm+1
u0,r

0l

...

0l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭(k − 1) − m

(26)

for ν ∈ [1,f + l], m ∈ [1,k − 1], and r ∈ [1,l], where
R[wν

vν
] = λν[wν

vν
] with wν ∈ Cf ×1, vν ∈ Cl×1, and C0um,r =

λ0,r um,r .
The naming of the theorem was chosen to reflect the fact

that, for unequal γi , the matrix (24) cannot generally be
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partitioned into blocks with blockwise constant row sum; that
is, the matrix is “nonequitably” partitionable according to the
definition above in Sec. II A. The theorem is proven in Ref. [41]
for real H̃ , but is generalized here in a straightforward manner
to complex H̃ and γj ; see the Appendix. This may allow
for the possibility to include appropriately applied external
magnetic fields in the present symmetry-adapted construction
of CLSs (via Peierls phase factors in the hopping elements
[28]), or to include parametric gain and loss (via complex onsite
elements [24]).

It should here be mentioned that there exists a large class of
local symmetries which are neither commutative nor restricted
noncommutative. Also, the restrictions for the nonequitable
partition theorem (nEPT) to apply are indeed relatively strong.
However, the nEPT may still provide larger flexibility than
the EPT (requiring exact commutative local symmetry) in de-
signing CLSs for systems with non-intraconnected symmetric
subparts.

Comparing the nEPT with the EPT, some similarities but
also subtle differences become evident. Both the nEPT and
the EPT block-diagonalize the Hamiltonian, and in both cases
the eigenstates are decomposed into two classes: extended
states generally occupying all sites of the system, and CLSs
localized on S (the sites of the symmetric subsystems, non-
trivially affected by the permutation S). However, the detailed
properties of eigenstates in each class are different for the EPT
and nEPT. Extended eigenstates [the φν∈[1,f +l] in Eqs. (19)
and (26)] are symmetric under the action of S for the EPT,
while this holds only for equal γi for the nEPT (in which case
S becomes commutative and the EPT applies). Also, CLSs
[the φf +ml+r in Eqs. (19) and (26)] determined by the nEPT
are more compactly localized, on only a subset of S, as the
k − 1 − m vectors 0l in Eq. (26) indicate.

III. COMPACT LOCALIZED EIGENSTATES
IN LATTICE SYSTEMS

Having presented and analyzed the (n)EPT and its implica-
tions for the eigenspectra and eigenstates of discrete models
with (restricted non)commutative local symmetries, in the
following we demonstrate concrete applications to compact
state design in extended lattice systems.

A. Engineering bound states in the continuum

The band structure of a periodic lattice provides energetic
continua for extended (Bloch) eigenstates respecting the un-
derlying discrete translational symmetry. In this section we
will demonstrate how certain perturbations, which destroy
the periodic character of the lattice, may nevertheless leave
the band structure of the system unchanged. Key to this are
tailored local perturbations of one or more unit cells, which
can be described by local symmetries and thereby induce the
occurrence of CLSs.

Let us consider the system depicted in Fig. 5(a): a tight-
binding periodic chain (with vn = v and hn,n±1 = h) perturbed
locally by replacing a lattice site with a dimer of onsite energy
v1 and intrahopping h2, in turn connected to the chain by
hoppings h1. For generic defect parameters, the Bloch states of
the unperturbed chain are no longer eigenstates of the system,

(a)

(b)

(c)

a
b

FIG. 5. (a) Periodic lattice system locally perturbed by a symmet-
ric dimer defect with indicated onsite and hopping elements (top). The
corresponding Hamiltonian can be transformed (bottom) via the EPT
into the direct product of the divisor matrix R, corresponding to a gen-
erally perturbed linear chain, and the 1 × 1 matrix B1 corresponding
to a CLS on the defect with energy ECLS = v1 − h2. For the special
case of h1 = h/

√
2 and h2 = v − v1, the spectrum σ (H ) consists

of the unperturbed chain band structure with an additional tunable
bound state energy ECLS. (b) The same chain with an additional,
different, locally symmetric perturbation next to the first one, which
can be treated by an iterative decomposition. The first decomposition
(⇒) reveals the occurrence of two CLEs at energies v1 − h2,v2 − h4.
The second decomposition ( ∗⇒) applies if v2 + h4 = v,

√
2h3 = h5.

For parameters tuned so that
√

2h1 = h, v1 + h2 = v,
√

2h5 = h, the
spectrum of the perturbed system again consists of the unperturbed
chain band structure and three CLS energies v1 − h2,v2 − h4,v. (c)
Band structure of the unperturbed chain (blue line), present in the
spectra of the tuned locally symmetric systems of (a) and (b), together
with indicated corresponding CLS eigenenergies. Different onsite and
hopping elements are depicted with different sizes and colors.

and defect modes with exponential decay into the left and
right semi-infinite chains arise. This may change, however,
if the defect forms a commutative local symmetry, as we
now demonstrate. In this case, the EPT provides a symmetry-
adapted partitioning of the Hamiltonian into the matrices R

and B1, as shown graphically in Fig. 5(a). The divisor matrix R

corresponds to a linear chain with a single-site defect of energy
v1 + h2, connected by hoppings

√
2h1, while B1 corresponds

to a single CLS, localized only on the dimer, with energy
ECLS = v1 − h2, as indicated in Fig. 5(c) [52]. Following this
partitioning, the spectrum is given by σ (H ) = σ (R) ∪ σ (B1).

As we see, also in the partitioned representation a defect
is generally retained in the chain, which would lead to,
e.g., backscattering of incident waves lying energetically in
the unperturbed continuum. Note, however, that the defect
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parameters can be tuned so as to effectively recover those of
the unperturbed chain: Setting h1 = h/

√
2 and h2 = v − v1

indeed makes R coincide with the unperturbed Hamiltonian.
Thus, despite the presence of the defect, the spectrum in
this case consists of the band structure of the unperturbed
chain, augmented by the energy of the CLS. Moreover, by
simultaneously tuning v1 and h2 such that h2 = v − v1, the
CLS can be moved in energy into the band of the chain, so
that it becomes “bound state in the continuum” [12,13]. In
the present case, this state does not interact with the extended
continuum states due to eigenvector orthogonality, and thus the
defect is effectively invisible for an incident wave (i.e., causes
no backscattering).

Such a “renormalization” of defects into unperturbed chain
sites was recently shown to explain the absence of localization
[53], though for the special case of one dimension and zero
intradimer coupling h2. Following the above paradigm, the
EPT can be used to easily generalize the approach to pertur-
bations of various complexity and connectivity as well as to
higher dimensions. The key for such a generalization is to have
a perturbation that renders the divisor matrix R identical to
the unperturbed Hamiltonian. Note that this can be done even
for different kinds of perturbations, as shown in Fig. 5(b).
Here, an iterative decomposition is possible, provided that
v2 + h4 = v,

√
2h3 = h5. If, additionally,

√
2h1 = h, v1 +

h2 = v,
√

2h5 = h [indicated by an asterisk in Fig. 5(b)],
then the original band structure of the unperturbed chain
is recovered, together with three additional bound states at
energies v1 − h2,v2 − h4,v, as shown in Fig. 5(c).

CLSs tailored as above to be “invisible” to a host lattice can
clearly be inserted in multiple positions in the lattice without
affecting the unperturbed band structure. Notably, the same
could be done for restricted noncommutative local symmetry
defects using the nEPT, as long as its conditions are met. This
concept of tailoring R is thereby neither limited by the number
of dimensions nor by the number of perturbed unit cells, and
thus applies to quite generic extended lattice models. As an
application, CLSs could be distributed along a given aperiodic
or even random sequence, to then study their interaction with
continuum states by gradually breaking the local symmetry of
the defects.

B. Using symmetries to design flat bands

The above engineering of bound states in an unperturbed
continuum via the (n)EPT relies on making the divisor matrixR

coincide with the unperturbed lattice Hamiltonian by tuning the
defect parameters. To obtain a band structure for generic defect
parameters, however, the defects need to be placed periodically
as well. Then, since the corresponding CLSs vanish on the
sites (fixed under the local symmetry S) connected to adjacent
lattice cells, their energy will also be independent of the
Bloch momentum. Consequently, a flat band will form at
each CLS eigenenergy. An example for this is the well-known
one-dimensional diamond ladder lattice [1] which can be
constructed by periodically repeating the perturbed unit cell
in Fig. 5(a) and which features global chiral symmetry [28];
similarly, cross-stitch and one-dimensional pyrochlore lattices
[1] can be treated with the present local symmetry approach.

We now show how the (n)EPT can be used to design
lattices in arbitrary dimensions hosting a prescribed number

(c2)

1 2

3 4

5 6

7

(c1)

(a2)

(b2)

(a1)

(b1)

FIG. 6. (a1) Unit cell (indicated by dotted rectangle) of a periodic
setup, with a local symmetry under the permutation S: 1 ↔ 3, 2 ↔
4 leading to CLSs at two energies E1,E2, and (a2) corresponding
band structure with flat bands at E1,E2. (b1)–(b2) As in (a1)–(a2)
but with the same unit cell connected in parallel via two sites to each
neighboring cell. (c1)–(c2) As in (a1)–(a2) but with the same unit cell
augmented by three sites and connected into a 2D lattice. While the
dispersive bands are different in each case, the flat bands remain at
E1,2 since the symmetric subsystem remains unchanged. In the lower
part of (a1), the EPT decomposition (⇒) of the system’s Hamiltonian
into that of a modified lattice and (⊕) N → ∞ copies of isolated
dimers (with eigenenergies E1,2) is visualized. Arrowed lines indicate
complex-valued hoppings and dashed lines modified real hoppings.
For an asymmetry parameter γ �= 1 [indicated in (a1)] and vanishing
intraconnections (hmn = 0; m,n = 1,2,3,4), the nEPT applies (see
text).

of flat bands at desired energies. Consider a lattice like the
one in Fig. 6(a1), featuring a commutative local symmetry for
γ = 1 in each unit cell under the permutationS: 1 ↔ 3, 2 ↔ 4
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(leaving all other sites fixed). Then, by the EPT there are
(k − 1)l = 2 CLSs localized on the sites S = {1,2,3,4} within
the unit cell, with k and l being the uniform size and number of
nontrivial orbits of S , respectively. Two flat bands thus form at
the CLS energies E1,2, as shown in Fig. 6(a2) [52]. Specifically,
E1,2 are the eigenvalues of the matrix

B1 =
[

v1 h1,2

h2,1 v2

]
−

[
h1,3 h1,4

h2,3 h2,4

]
, (27)

of Eq. (17), and thus depend only on the elements within the
subpart S of the unit cell. Note here that, for H to be Hermitian
and S-symmetric, h1,3 and h2,4 need to be real, while h2,3 =
h4,1 may as well be complex (indicated by arrows).

In complete analogy, flat bands form in the presence of
restricted noncommutative local symmetries in the unit cell
following the conditions of the nEPT. Specifically, for γ �= 1 in
Fig. 6(a1), but with vanishing local symmetry intraconnection
(h1,3,h2,4,h2,3,h4,1 = 0), we obtain two flat bands (not shown)
at the CLS eigenvalues of the matrix

C0 =
[

v1 h1,2

h2,1 v2

]
(28)

defined in Eq. (12). Note that those are independent of the
asymmetry factor γ .

Figure 6(b1) shows a lattice where the same unit cell as
before is connected “in parallel” (via two connections) to each
neighboring unit cell, instead of “serially” as in Fig. 6(a1).
Again, the unit cell’s CLSs lead to two tunable flat bands at
energies given by the eigenvalues of Eq. (27), as shown in
Fig. 6(b2).

In the two-dimensional (2D) example of Fig. 6(c1), the unit
cell differs from that of Fig. 6(a1) in that it contains three
additional sites, though still containing the same locally sym-
metric unit. The CLS eigenenergies are also here independent
of the Bloch momentum, now in both directions of translational
invariance, and 2D corresponding bands thus arise. Note that
their position is the same as in Figs. 6(a) and 6(b), since the
underlying symmetric substructure is not changed.

Concluding the above, we have shown that a lattice auto-
matically features one or more symmetry-induced flat bands
if (i) the unit cell possesses a commutative or restricted
noncommutative local symmetry and (ii) this symmetry is
unbroken when isolated unit cells are connected to form the
lattice. Note that this approach to flat bands can be related
to the common description of symmetry via the point group
of the unit cell, whose action leaves at least one point fixed.
Indeed, the discreteness of the considered model Hamiltonian
maps each point group element to a site permutation. This
constitutes then a global symmetry of the isolated unit cell, and
thus a special case of condition (i) above. In turn, condition (ii)
is fulfilled provided that the unit cells are connected through
sites located at the point group’s fixed points. This link of the
proposed approach to point groups may aid the description and
design of symmetry-induced flat bands in more complex lattice
systems.

Having seen how local symmetries lead to (k − 1)l flat
bands [k being the number of copies of C0 ∈ Cl×l defined in
Eqs. (11) and (24)], let us now look at the remaining bands.
Note that these are usually completely dispersive, but could

contain flat bands as well that are induced by other means than
the above (restricted non)commutative local symmetries. In
any case, all of these remaining bands are entirely determined
by the divisor matrix R which is explicitly represented graph-
ically in Fig. 6(a1) (between ⇓ and ⊕). Thus, these remaining
bands can be directly obtained by diagonalizing the matrix
R which represents a strictly periodic system. Note that the
partition into matrices R and Bj (by the EPT) or C0 (by the
nEPT) allows for an effective design process in which the
symmetry-induced flat bands and the remaining band structure
can be designed separately.

It is clear that the present approach to design flat bands using
the EPT or nEPT applies to the class of lattices containing
commutative or restricted noncommutative local symmetries.
Thus, it does not cover other cases of lattices with other classes
of local symmetries, which may also host flat bands generated
by the very general method developed in Ref. [2]. The essence
of the present approach is that, instead of generating flat
bands from conditions imposed on the site-resolved eigenvalue
problem (1), it is based on unified and intuitive symmetry
principles forcing the occurrence of CLSs. We thus view
it as a complementary method which lends an insightful
understanding to already existing methods.

IV. CONCLUSIONS

We have shown how two very recent results from graph
theory can be used to analyze discrete Hamiltonians with
local symmetries. The resulting framework demonstrates the
impact of two types of local symmetries on the eigenstates
of a Hamiltonian H , including the formation of so-called
compact localized states (CLSs). These two types of local
symmetries are described by site permutations which either
leave all (commutative local symmetries) or some (restricted
noncommutative local symmetries) matrix elements of H

invariant. More specifically, the restricted noncommutative
local symmetries are such that the symmetric subsystems are
(i) not interconnected and (ii) asymmetrically coupled to the
remaining part of the system.

The essence of the framework is a symmetry-adapted
partition of H into smaller matrices R and Bi whose collec-
tive eigenvalue spectrum is equal to that of the original H .
Depending on the exact character of the local symmetry, H is
assured to have one or more compact localized eigenstates
which are localized on the symmetric subsystem S. Their
energies are given by the spectra of the matrices Bi . All other
eigenstates of H are not localized on S, with their energy
given by the spectrum of R. In short, the framework provides
the total eigenvalue spectrum as well as eigenvectors of the
Hamiltonian in terms of symmetry-adapted submatrices, which
are in turn more efficiently computed and better controllable
by parametric tuning.

We apply this novel framework to tight binding systems and
explicitly design flat bands at tailored energies in lattices of
one and two dimensions, with the generalization to arbitrary
dimensions being straightforward. Moreover, we use the
methodology to demonstrate the occurrence of bound states in
the energy continuum of a periodic chain perturbed by one or
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more symmetric defects. For both flat bands and bound states
in the continuum, our results give an intuitive understanding
of the impact of local symmetries, paired with a high degree of
control over the respective energies. We believe that the present
framework may serve as a complement to existing methods
in the design of CLSs and flat bands, by offering a unifying,
intuitive, and efficient way to connect them to local
symmetries.
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APPENDIX: PROOF OF THE nEPT

We here prove property P2 of the nEPT. To this end, we need to show that the vectors

xj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

wj

γ1√
ξ
vj

γ2√
ξ
vj

...
γk√
ξ
vj

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, ym,r =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0f

γ1

γ1
u0,r

γ2

γ1
u0,r

...
γm

γ1
u0,r

−
∑m

i=1 γ 2
i

γ1γm+1
u0,r

0l

...

0l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A1)

with j ∈ [1,f + l],m ∈ [1,k − 1],r ∈ [1, l], are linearly independent eigenvectors of the Hamiltonian H ′ given in Eq. (25).
Since [wj

vj
] is the j th eigenvector of the divisor matrix R [given in Eq. (25)] with eigenvalue λj , i.e.,[

F
√

ξ · G√
ξ · G† C0

][
wj

vj

]
=

[
Fwj + √

ξ · Gvj√
ξ · G†wj + C0vj

]
= λj

[
wj

vj

]
,

applying H ′ on xj yields

H ′xj = H

⎡
⎢⎢⎢⎢⎣

wj

γ1√
ξ
vj

...
γk√
ξ
vj

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

Fwj +
∑k

i=1 |γi |2√
ξ

Gvj

γ1G
†wj + γ1√

ξ
C0vj

...

γkG
†wj + γk√

ξ
C0vj

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

Fwj + √
ξ · Gvj

γ1G
†wj + γ1√

ξ
C0vj

...

γkG
†wj + γk√

ξ
C0vj

⎤
⎥⎥⎥⎥⎥⎦ = λj

⎡
⎢⎢⎢⎢⎣

wj

γ1√
ξ
vj

...
γk√
ξ
vj

⎤
⎥⎥⎥⎥⎦ = λj xj . (A2)

Thus, {xj } are eigenvectors of H ′. If we choose the set of eigenvectors {[wj
vj

]} such that they are pairwise linearly independent
(which can always be done), then this is also the case for the set {xj }. To see this, let us assume that there exists an xi and constants
{αj } such that xi is given by a superposition of {xj } with j �= i, i.e.,

xi =
∑
j �=i

αj xj . (A3)

Then, from the definition of xi , it would hold that[
wi
γ1√
ξ
vi

]
=

∑
j �=i

αj

[
wj
γ1√
ξ
vj

]
⇒

[
wi

vi

]
=

∑
j �=i

αj

[
wj

vj

]
, (A4)

which is not true since the [wj

vj
] are pairwise linearly independent. Thus, the xj are pairwise linearly independent eigenvectors of

H ′.
Further, since C0u0,r = λ0,r u0,r by definition, application of H ′ on ym,r yields

H ′

⎡
⎢⎢⎣

0f

a1u0,r

...
aku0,r

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

C00f

a1C0u0,r

...
akC0u0,r

⎤
⎥⎥⎦ = λ0,r

⎡
⎢⎢⎣

0f

a1u0,r

...
aku0,r

⎤
⎥⎥⎦ (A5)
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for any a1, . . . ,ak ∈ C. Thus, the ym,r are eigenvectors of H ′. As is easily shown, they are also pairwise orthogonal, both for the
same and for different u0,r .

Having shown that both sets { ym,r},{xj } are eigenvectors of H ′, we need to show that they form a linearly independent set.
Evaluating the scalar product of xj and ym=i,r for arbitrary i and r gives

xj · yi,r =
(∑i

p=1 γ 2
p

γ1
√

ξ
− γi+1√

ξ

∑i
p=1 γ 2

p

γ1γi+1

)
vj · u0,r = 0, (A6)

where the last equality stems from the cancellation of the two summands in parentheses. Note that H ′ ∈ CN×N has N = f + kl

linearly independent eigenstates. Since R ∈ Cn+l and since { ym,r} contains (k − 1)l orthogonal eigenstates, we have thus proved
that the eigenstates of H ′ are given by {xj },{ ym,r}.
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