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Gyrotropic effects in trigonal tellurium studied from first principles
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We present a combined ab initio study of several gyrotropic effects in p-doped trigonal tellurium (effects that
reverse direction with the handedness of the spiral chains in the atomic structure). The key ingredients in our study
are the k-space Berry curvature and intrinsic orbital magnetic moment imparted on the Bloch states by the chirality
of the crystal structure. We show that the observed sign reversal with temperature of the circular photogalvanic
effect can be explained by the presence of Weyl points near the bottom of the conduction band acting as sources
and sinks of Berry curvature. The passage of a current along the trigonal axis induces a rather small parallel
magnetization, which can nevertheless be detected by optical means (Faraday rotation of transmitted light) due to
the high transparency of the sample. In agreement with experiment, we find that when infrared light propagates
antiparallel to the current at low doping the current-induced optical rotation enhances the natural optical rotation.
According to our calculations the plane of polarization rotates in the opposite sense to the bonded atoms in the
spiral chains, in agreement with a recent experiment that contradicts earlier reports.
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I. INTRODUCTION

The spontaneous magnetization of ferromagnetic metals
gives rise to Hall and Faraday effects at B = 0. These effects
are termed anomalous, in opposition to the ordinary (linear in
B) Hall and Faraday effects in metals lacking magnetic order.
The scattering-free or intrinsic contribution to the anomalous
Hall conductivity (AHC) is given by [1,2]

σ A
ab = −e2

h̄

∫
[dk]

∑
n

f0(Ekn,μ,T )εabc�
c
kn, (1a)

�kn = ∇k × Akn = −Im〈∂ kukn| × |∂ kukn〉, (1b)

where Akn = i〈ukn|∂kukn〉 is the Berry connection, �kn is the
Berry curvature, Ekn is the band energy, f0 is the equilibrium
occupation factor, and the integral is over the Brillouin zone
with [dk] ≡ d3k/(2π )3.

The possibility of inducing similar effects in nonmagnetic
conductors by purely electrical means was raised by Baranova
et al. [3], who predicted the existence of an electrical analog
of the Faraday effect in chiral conducting liquids: a change in
rotatory power caused by the passage of an electrical current.
In the following, we shall refer to this phenomenom as “kinetic
Faraday effect” (kFE).1 In the kFE the induced rotatory power
reverses sign with the applied electric fieldE , in much the same
way that in the ordinary Faraday effect it reverses sign with B.
Although it has not been observed so far in liquids, the kFE

1Although this is a nonstandard designation, we find it preferable
to current-induced optical activity [4,5] since the effect is closer to
Faraday rotation than to natural optical activity. The name adopted
here is also consistent with that of a closely related phenomenom to
be discussed shortly, the kinetic magnetoelectric effect.

was measured in a chiral conducting crystal, p-doped trigonal
Te [4,5], following a theoretical prediction [6]. The effect is
symmetry allowed in the 18 (out of 21) acentric crystal classes
known as gyrotropic [7], including those for which natural
optical rotation is disallowed.

Gyrotropic crystals also display a nonlinear optical effect
closely related to the kFE: the circular photogalvanic effect
(CPGE). It consists in the generation of a photocurrent that
reverses sign with the helicity of light [6–11], and occurs
when light is absorbed via interband or intraband scattering
processes, with the latter involving virtual transitions to other
bands [11].

When impurity scattering is treated in the constant
relaxation-time approximation, it becomes possible to identify
a contribution to the intraband CPGE associated with the Berry
curvature of the free carriers [12–14]. This “intrinsic” contri-
bution, proportional to the relaxation time τ , is conveniently
described in terms of the following dimensionless tensor,

Dab =
∫

[dk]
∑

n

∂Ekn

∂ka

�b
kn

(
−∂f0

∂E

)
E=Ekn

, (2)

where the index k has been dropped for brevity. D transforms
like the gyration tensor g, but unlike g it is always traceless.2

This means that D can only be nonzero in 16 of the 18
gyrotropic crystal classes; the excluded classes are O and T,
for which g is isotropic (its form is tabulated in Ref. [10] for
all the gyrotropic crystal classes).

2After integrating Eq. (2) by parts, the trace of the tensor D can be
expressed as a Brillouin-zone integral of the divergence of the Berry
curvature, weighted by the occupation factor. The fact that the Berry
curvature is divergence-free except at isolated chiral band crossings
(Weyl points) implies that D is traceless [12].
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FIG. 1. Fully relativistic band structure of trigonal Te, with energies measured from the valence-band maximum (VBM). (b) A blow-up of
the region demarcated by a dashed rectangle in (a), and (c) shows the top of the upper valence band around H, along the HK line. The Brillouin
zone and its high-symmetry points are displayed in (d).

In addition to the CPGE, the tensor D also describes a
nonlinear anomalous Hall effect (AHE) [14] that can be viewed
as the low-frequency limit of the kFE. Indeed, the kFE is
governed by a tensor D̃(ω) [Eq. (12) below] that reduces to
D at ω = 0.

The flow of electrical current that gives rise to the kFE
generates a net magnetization in the gyrotropic medium, a
phenomenom known as kinetic magnetoelectric effect (kME)
[15]. It was first proposed for bulk chiral conductors [6,15] and
later for two-dimensional (2D) inversion layers [16,17], where
it has been studied intensively [18].

A microscopic theory of the intrinsic kME effect in bulk
crystals was recently developed [19,20]. The response, pro-
portional to τ , is described by

Kab =
∫

[dk]
∑

n

∂Ekn

∂ka

mb
kn

(
−∂f0

∂E

)
E=Ekn

, (3)

which has the same form as Eq. (2) but with the Berry curvature
replaced by the intrinsic magnetic moment mkn of the Bloch
electrons. In addition to the spin moment, mkn has an orbital
component given by [2]

morb
kn = e

2h̄
Im〈∂ kukn| × (Hk − Ekn)|∂ kukn〉, (4)

where we chose e > 0. The tensor K (with units of amperes)
is symmetry allowed in all 18 gyrotropic crystal classes, and
its symmetric part gives an intraband contribution to natural
optical rotation at low frequencies [20,21].

In this work, we evaluate from first principles in p-doped
tellurium (p-Te) the CPGE and nonlinear AHE described by
the tensor D, the kFE described by D̃(ω), and the kME and
intraband natural optical activity described by K , as well as the
interband natural optical activity. We study them as a function
of temperature and acceptor concentration, compare with the
available experimental data, and establish correlations between
them on the basis of a unified microscopic picture.

The manuscript is organized as follows. In Sec. II we de-
scribe the crystal structure of trigonal Te, the energy bands, and

the form of the gyrotropic response tensors. In the subsequent
sections we present and analyze our first-principles results
for the various gyrotropic effects. The circular photogalvanic
effect is treated in Sec. III, the nonlinear anomalous Hall
effect in Sec. IV, the kinetic Faraday effect in Sec. V, the
kinetic magnetoelectric effect in Sec. VI, and natural optical
activity in Sec. VII. In each section, only the essential theory
needed to understand the results under discussion is given;
all derivations and additional technical details are left to the
Appendixes.

II. CRYSTAL STRUCTURE, ENERGY BANDS, AND
SYMMETRY CONSIDERATIONS

Elemental Te is a nonmagnetic semiconductor that crystal-
izes in two enantiomorphic structures with space groups P3121
and P3221 (crystal class 32). The unit cell contains three atoms
disposed along a spiral chain that is right-handed for P3121 and
left-handed for P3221, with the chains arranged on a hexagonal
net. In addition to the screw symmetry along the trigonal axis,
there are three twofold axes lying on the perpendicular plane.

The calculations reported in this work were carried out for
the right-handed Te structure described in Ref. [22]. For the
left-handed enantiomorph, the tensors D and K flip sign. These
two tensors assume the forms,

D = D‖
2

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠ (5)

(note that the trace vanishes2) and

K =
⎛
⎝K⊥ 0 0

0 K⊥ 0
0 0 K‖

⎞
⎠, (6)

where ‖ and ⊥ denote the directions parallel and perpendicular
to the trigonal axis, respectively.

The fully relativistic density-functional theory calculations
were done using the HSE06 hybrid functional [23]. Figure 1
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shows the calculated energy bands. The energy gap of 0.312 eV
at the H point is in good agreement with the value of 0.314 eV
obtained with the GW method [24], and with the experimental
value of 0.323 eV [25]. The characteristic “camel-back” shape
of the upper valence band around H can be seen in Fig. 1(c).
The band structure in Fig. 1 is in good agreement with other
fully relativistic calculations [24,26]. It was calculated in the
same way as in Ref. [27], and we refer the reader to that work
for further details.

Below room temperature, the transport and low-frequency
optical properties of weakly p-doped Te are governed by
the upper valence band together with the lower conduction
subbands. The conduction subbands have an anisotropic
Rashba-type spin-orbit splitting around H, visible in Fig. 1(b);
their spin textures (not shown) are consistent with those
reported in Ref. [24].

The three band degeneracies visible in Fig. 1(b) are Weyl
points [24]. Of particular interest to the present study is the
one at H between the conduction subbands. It has positive
chirality in the right-handed structure, which means that it
acts as a source (sink) of Berry curvature in the lower (upper)
subband. Time-reversal symmetry maps the Weyl point at H
onto a Weyl point of the same chirality at H′. More generally,
it sends (Ekn,�kn,mkn) to (E−k,n, − �−k,n, − m−k,n), so that
k and −k contribute equally to Eqs. (2) and (3).

III. CIRCULAR PHOTOGALVANIC EFFECT

A detailed study of the CPGE in Te due to free-carrier
absorption was reported in Ref. [9]. The measurements were
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FIG. 2. (Solid lines) Temperature dependence, for different ac-
ceptor concentrations, of the intraband photocurrent density induced
in right-handed Te by circularly polarized light of positive helicity
and intensity I = 10 W/cm2 propagating along the trigonal axis in
the positive direction. According to Eq. (7), the photocurrent is pro-
portional to D‖. (Dashed line) Open-circuit photovoltage measured in
Ref. [9], converted to a current density as described in the main text.

done at room temperature and below on samples with a residual
acceptor concentrationNa ≈ 4 × 1014 cm−3, using a CO2 laser
source with frequency h̄ω = 0.117 eV. Under these conditions
the relaxation time exceeds 10−12 s [26] so that ωτ 	 1,
and Eq. (A7) for the intrinsic contribution to the intraband
photocurrent becomes

jCPGE
‖ (Na,T ) = sgn(q‖)(2πaPcircD‖)

eI0

h̄ω
. (7)

The quantity D‖(μ(Na,T ),T ) is given by Eqs. (2) and (5),
a ≈ 1/137 is the fine-structure constant, and I0 is the intensity
of incident light with wave vector q‖ and degree of circular
polarization Pcirc propagating along the trigonal axis.

The photocurrent density calculated from Eq. (7) with
sgn(q‖) > 0 and Pcirc = +1 is plotted versus temperature in
Fig. 2 for several acceptor concentrations, assuming a laser
intensity of 10 W/cm2 (see below). The photocurrent starts out
positive at low temperature, and becomes negative at around
room temperature (except at the highest doping level). Such
a sign reversal was indeed observed experimentally [9]. For
a more detailed comparison, we have converted the open-
circuit photovoltage and longitudinal conductivity measured
in Ref. [9] into a current density, shown as a dashed curve
after an overall sign change (the handedness of the sample
was not determined in Ref. [9]). Since the laser intensity
was also not reported, we fixed the value of I0 in Eq. (7)
by matching the experimental values at low temperature. At
the experimental doping level the calculated photocurrent
changes sign at around 220 K, in good agreement with
experiment.

In order to understand the temperature dependence, it is
convenient to express the quantity D‖ in Eq. (7) as

D‖(μ,T ) =
∫ +∞

−∞
dε D0

‖(ε)

(
−∂f0(E,μ,T )

∂E

)
E=ε

, (8a)

D0
‖(ε) = 1

(2π )3

∑
n

∫
Ekn=ε

dS v̂z
kn�

z
kn, (8b)

where D0
‖(ε) ≡ D‖(ε,T ≈ 0), and v̂kn is the unit vector along

the band velocity.3

Figure 3(a) shows that D0
‖ has opposite signs at the two

band edges, increasing slowly into the valence band and rapidly
into the conduction band, where it peaks. At the experimental
doping level, −∂f0/∂E at 150 K is non-negligible in the
valence band only, resulting in a positive D‖. At 250 K
the chemical potential μ approaches the center of the gap,
and −∂f0/∂E reaches the conduction band. D‖ now collects
contributions of opposite signs from the two band edges;
the largest one comes from the D0

‖ peak in the conduction
band, which renders D‖ negative. (When Na is increased to

3Equation (8) is also convenient for numerical work. Once D0
‖ (ε) has

been calculated from Eq. (8b), Eq. (8a) can be used to evaluate D‖ as
a function of T and Na at a low computational cost. The temperature
dependence of the chemical potential is calculated assuming that at
the temperatures of interest all dopant levels are activated. The same
approach will be used in subsequent sections to evaluate the tensors
D̃(ω), K , and C [Eq. (B6)].
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FIG. 3. Microscopic mechanism of the intraband circular photogalvanic effect in right-handed Te. (a) The quantity D0
‖ in Eq. (8b) versus

ε measured from the VBM, calculated using a Fermi smearing of 23 K with (heavy black solid line) and without (dashed gray line) spin-orbit
coupling. The light colored lines show the function −∂f0(E,μ(Na,T ),T )/∂E|E=ε plotted versus ε at fixed Na and two different temperatures,
as detailed in the inset. (b) (Solid lines) Fully relativistic band structure in the vicinity of the H point. qz denotes kz measured from the H point
along HK, and the arrows denote the z component of the Berry curvature on each band. (Dashed lines) Scalar-relativistic band structure; for
comparison purposes, the band edges have been aligned with those of the fully relativistic calculation.

7 × 1015 cm−3, μ stays close to the valence-band edge even
at room temperature. The photocurrent is then dominated
by holelike carriers, and it remains positive over the entire
temperature range of Fig. 2.)

The behavior of D0
‖(ε) at the two band edges can be under-

stood by inspecting the energy bands and their Berry curvatures
along the HK line [Fig. 3(b)]. Because of twofold symmetry
about 
K, vz

kn and �z
kn are both odd in qz = kz − kH ,z, so

that qz and −qz contribute equally to Eq. (8b). Regarding the
�z

kn profiles, note that the Berry curvature of a band arises
from its coupling to other bands [see Eq. (C20)], and that this
coupling becomes resonantly enhanced at (near) degeneracies
[1,2]. At the nondegenerate valence-band edge this coupling
has no singularities and as a result �z

kn varies smoothly with
qz, vanishing at qz = 0. Apart from a small region between the
“camel humps” that gives a negligible contribution, v̂z

kn and
�z

kn have the same sign, which explains the steady increase in
D0

‖ towards positive values as ε enters the valence band.
At the edge of the conduction band the Berry curvature

is dominated by the strong intersubband coupling near the
Weyl point, which acts as a monopole of Berry curvature
leading to �z

kn ∝ ±q−2
z for small |qz| [2]. When ε is slightly

above the crossing energy, the two subbands give competing
contributions to Eq. (8b): |�z

kn| is larger on the inner branch, but
the outer branch has a larger energy isosurface. For an isotropic
three-dimensional (3D) Rashba model these two contributions
would cancel out,2 but the anisotropy of the Rashba splitting
in Te is such that the inner branch dominates the integral in

Eq. (8b), producing a negative peak in D0
‖ near the Weyl-point

energy.
A minimal model for the conduction-band edge is [28]

H R(q) = h̄2q2
‖

2m‖
+ h̄q2

⊥
2m⊥

+ h̄v‖q‖σz + h̄v⊥(qxσx + qyσy),

(9)
where q = k − kH. We have evaluated Eq. (8b) numerically
for this two-band model, starting from the analytic expression
for the Berry curvature [29]. As expected D0

‖ vanishes in the
isotropic limit, and when either m‖ �= m⊥ or v‖ �= v⊥ a peak
develops around the Weyl crossing. For a given chirality, the
peak can change sign depending on the ratios m‖/m⊥ and
v‖/v⊥, as illustrated in Fig. 4.

While spin-orbit coupling is not needed to generate Weyl
points and Berry curvatures in the bands of Te (in contrast to
centrosymmetric collinear ferromagnets, where it is essential),
the intraband CPGE would be very different in its absence. The
spin-orbit-free D0

‖ and energy bands are shown as dashed gray
lines in Fig. 3. The D0

‖ peak in the conduction band has been
suppressed, and a new peak has appeared in the valence band,
again associated with a Weyl crossing at H.

In conclusion, the intrinsic CPGE of p-Te is strongly
affected by the presence of spin-orbit-induced Weyl points at H
and H′ near the bottom of the conduction band. The large Berry
curvature around those chiral band crossings causes a sign
reversal of the photocurrent upon cooling a weakly p-doped
sample, in agreement with experiment [9].
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FIG. 4. (a) Energy bands for the anisotropic 3D Rashba model of
Eq. (9) with m‖/m⊥ = 1, and v‖/v⊥ = 0.6 (solid line) or v‖/v⊥ = 1.1
(dashed line). The isolated degeneracy is a chiral Weyl point. (b) The
quantity D0

‖ in Eq. (8b) evaluated for the same choices of parameters
with sgn(v‖) > 0 (positive chirality). All axes are in arbitrary units.

We emphasize that the Berry-curvature mechanism for
the intraband CPGE is different from the one discussed in
Ref. [9]. It involves elastic scattering from impurities rather
than inelastic phonon scattering, and it relies on the spin-orbit
splitting of the conduction subbands that was neglected in that
work.

IV. NONLINEAR ANOMALOUS HALL EFFECT

In tellurium, the nonlinear AHE takes the form of an in-
plane linear AHE proportional to the current density flowing
along the trigonal axis. Taking j‖ = 1000 A/cm2 as a reference
value [4,5], the current-induced AHC is given by [see Eq. (B7)]

σ A
xy(j‖ = 1000 A/cm2) ≈ 0.116D‖

C‖ (A/cm)
S/cm. (10)

The AHC calculated from Eq. (10) is plotted versus temper-
ature in Fig. 5 at three different doping levels. At high doping it
decreases monotonically with temperature, while at low doping
it drops to negative values above 220 K (due to the sign change
in D‖ discussed in the previous section) and then approaches
zero from below. Between 50 and 170 K, the AHC is only
weakly dependent on Na over a wide doping range. This is due
to a near cancellation between the strong dependencies of D‖
and C‖ on Na (see Fig. 6).
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FIG. 5. Anomalous Hall conductivity induced in right-handed
Te by a current density j‖ = 1000 A/cm2 [Eq. (10)], plotted versus
temperature at different acceptor concentrations.
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FIG. 6. (a) The quantities D‖ [Eq. (2)] and D̃‖ [Eq. (12)] in right-
handed Te, plotted versus temperature on a semilogarithmic scale for
different acceptor concentrations. The strong dip in log D‖ around
220 K at Na = 4 × 1014 cm−3 signals the sign change in D‖ seen in
Fig. 2. (b) The quantity C‖ [Eq. (B6)].

The current-induced AHC displayed in Fig. 5 does not
exceed 5 × 10−3 S/cm, which is probably too small to be
detected (it is five orders of magnitude smaller than the
spontaneous AHC of bcc Fe [1]). Nevertheless, the associated
Faraday rotation has been observed in the infrared [4,5]. The
analysis of that effect will occupy us in the next section.

V. KINETIC FARADAY EFFECT

So far, p-Te is the only material for which the kFE has
been measured. The first observation was reported in Ref. [4],
and new measurements were taken in Ref. [5]. These works
established that the current-induced change in rotatory power
(�ρ) is linear in j‖ up to at least ±1500 A/cm2, and that �ρ

has the opposite (same) sign as the natural rotatory power ρ0

when light travels parallel (antiparallel) to the current.
We have calculated �ρ from the following expression,

derived in Appendix C 3,

�ρ(ω,j‖) = sgn(q‖)
aD̃‖(ω)j‖
n⊥(ω)C‖

(11)

(our sign convention for optical rotation is specified in Ap-
pendix C 1). Here q‖ is the wave vector of light, and n⊥ is the
index of refraction; we used the value n⊥ = 5.15 calculated
from Eqs. (C7) and (C22), which is slightly higher than the
experimental value of 4.8 [30]. When light travels parallel to
the current [sgn(q‖) = sgn(j‖)], �ρ has the same sign as the
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TABLE I. Natural rotatory power (in units of rad/cm), and
current-induced change in rotatory power divided by the current
density (in units of 10−5rad cm/A) at h̄ω = 0.117 eV and T =
77 K for two different doping concentrations. The sign of �ρ/j‖
corresponds to light propagating in the positive direction along the
trigonal axis [sgn(q‖) > 0 in Eq. (11)].

ρ0 �ρ/j‖ Handedness

Expt. 1.57 ± 0.03a −9.5 ± 0.4,b −6c Unknown
Theory −0.86 4.5, 4 Right-handed

aRef. [31], undoped samples.
bRef. [5], p-doped samples with Na = 4 × 1016 cm−3.
cRef. [4], p-doped samples with Na = 1.5 × 1017 cm−3.

quantity D̃‖(ω) defined by

D̃ab(ω) =
∫

[dk]
∑

n

∂Ekn

∂ka

�̃b
kn(ω)

(
−∂f0

∂E

)
E=Ekn

, (12)

a finite-frequency generalization of Eq. (2) obtained by replac-
ing �kn therein with �̃kn(ω) given by Eq. (C20).

In addition to �ρ, we have calculated the rotatory power
ρ0 caused by the natural optical activity of Te at j‖ = 0. We
used the formalism described in Appendix C 2 a to evaluate ρ0

ignoring the influence of doping (the effect of doping on ρ0

will be analyzed in Sec. VII, where it is shown to be negligible
at the doping levels used in the kFE measurements [4,5]).

Table I shows the calculated values of ρ0 and �ρ/j‖
alongside the experimental ones, measured on samples of
unknown handedness. In agreement with experiment, we find
that �ρ has the opposite sign from ρ0 when light travels parallel
to the current (we defer the discussion of absolute signs to
Sec. V C). The calculated |ρ0| and |�ρ| are smaller by roughly
a factor of two compared to the measured values, which can
be considered a fair level of agreement. The calculated |�ρ|
decreases only slightly as Na is increased from 4 × 1016 to
1.5 × 1017 cm−3. The larger decrease seen in the experimental
values was attributed in Ref. [5] to technical differences relative
to Ref. [4].

At j‖ = 1000 A/cm3, �ρ is about five orders of magnitude
smaller than the spontaneous Faraday rotatory power of bcc Fe
[32]. This is the same difference in orders of magnitude that
was found in the previous section for the AHC. However, the
smallness of the kFE is compensated by the high transparency
of Te in the infrared, which allows one to measure the optical
rotation across a cm-sized sample [4,5], compared to ∼10−6

cm-thick iron films [32].

A. Doping and temperature dependence

Figure 7 shows a weak doping dependence of �ρ at low
doping between 50 and 170 K, in good agreement with the
experimental data in Ref. [34] (p. 27), and a monotonic
decrease with temperature. The decrease is by a factor of three
to four between 77 and 300 K, in agreement with an earlier
theoretical estimate [35]. Apart from the previously mentioned
overall factor of two which at present we cannot account for,
the calculated �ρ agrees rather well with the experimental data
reported in Refs. [33] and [34] (p. 35), as indicated by the open
circles in Fig. 7.
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FIG. 7. Temperature dependence of the change in the rota-
tory power of right-handed Te induced by a current density of
1000 A/cm2. The optical frequency is h̄ω = 0.117 eV, Na is the
doping level, and the sign of �ρ corresponds to light propagating
parallel to the current along the trigonal axis. The open circles denote
experimental data [33,34] taken at Na = 3.2 × 1016 cm−3, which has
been rescaled by a factor of 1/2 for comparison purposes.

Even at the lowest doping, �ρ shows no sign change (only
a dip) around 220 K. This behavior, which is in contrast
to the CPGE and the nonlinear AHE, can be understood
from Fig. 6(a) where at Na = 4 × 1014 cm−3 the quantity D̃‖
maintains its sign as T goes above 220 K, whereas D‖ changes
sign.

How close D̃‖(ω) is to D‖ at a given temperature and doping
level depends on how close �̃kn(ω) is to �kn in the relevant
energy bands, which in turn depends on how ω compares with
ωmn for the dominant transitions in Eq. (C20). We proceed as
in Sec. III, expressing D̃‖(ω) in terms of D̃0

‖(ε,ω) according
to Eq. (8). The band-edge behavior of D̃0

‖(ε,ω) and �̃z
kn(ω)

at h̄ω = 0.117 eV is depicted in Fig. 8, to be compared with
Fig. 3. In the valence band �̃z

kn ≈ �z
kn and D̃0

‖ ≈ D0
‖ , because

the dominant coupling is with the conduction bands that are
separated by more than 0.3 eV (the coupling to the valence band
below, which is closer in energy, is suppressed by selection
rules [5]). In contrast |�̃z

kn| � |�z
kn| in the conduction bands,

because 0.117 eV is a large energy compared to the Rashba
splitting of the coupled subbands. The peak in D̃0

‖ is therefore
strongly reduced compared to the peak in D0

‖ , and this is the
reason for D̃‖ not changing sign with temperature at low doping
in Fig. 6(a).

In conclusion, at the CO2 laser frequency the kFE is
dominated by contributions that to a good approximation can
be expressed in terms of the Berry curvature at the top of the
valence band. Since this is the same quantity that governs
the intrinsic CPGE at low temperatures (Sec. III), one can
correlate the sign of �ρ with that of the photocurrent measured
on the same sample. When linearly polarized light travels
parallel to the current [sgn(q‖)j‖ > 0 in Eq. (11)], �ρ has the
same sign as the photocurrent induced at low temperatures
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FIG. 8. Microscopic mechanism of the kinetic Faraday effect in right-handed Te at h̄ω = 0.117 eV. The figure is similar to Fig. 3, but with
D0

‖ replaced by D̃0
ab(ω) [the low-temperature limit of Eq. (12)], �z

kn by �̃z
kn(ω) [Eq. (C20)], and a different doping level when plotting −∂f0/∂E

in (a). The dotted line in (a) represents D0
‖ , and is identical to the heavy solid line in Fig. 3(a).

by light of positive helicity traveling in the positive direction
[sgn(q‖)Pcirc > 0 in Eq. (7)].

B. Frequency dependence

The spectral dependence of the kFE was investigated in
Ref. [5] by taking additional measurements with a CO laser,
which generates radiation of higher frequency than the CO2

laser. These measurements were again taken at 77 K on samples
with Na ≈ 4 × 1016cm−3.

Between h̄ω = 0.117 eV and h̄ω = 0.23 eV, �ρ was found
to increase by a factor of 1.7. This is significantly less than
the increase by a factor of 4.7 in ρ0 [31], confirming that
current-induced optical rotation and natural optical activity
are separate physical effects [5]. Our calculated �ρ and ρ0

increased by factors of 1.4 and 5.6, respectively, over the same
spectral range, in reasonable agreement with the observed
trends.

The calculated �ρ(ω) is plotted in Fig. 9 at different doping
levels and temperatures. At Na = 4 × 1016 cm−3 the spectral
dependence is smooth, becoming weaker as the temperature
increases. The reason is that at this relatively high doping D̃‖
is mostly determined by �̃kn at the valence-band edge, which
depends only weakly on frequency over the subgap spectral
range of Fig. 9.

Reducing Na to 4 × 1014 cm−3 has practically no effect on
the spectral dependence of �ρ in Fig. 9 at low temperatures,
since D̃‖ still originates mostly from the top of the valence
band. At 300 K, the contribution from the conduction bands
has become significant at this low doping. At frequencies
higher than 0.05 eV this leads to a reduction in �ρ, due to the

opposite signs of D̃0
‖ at the two band edges [Fig. 8(a)]. Below

that frequency, the photon energy becomes comparable to the
Rasha splitting near the bottom of the conduction band. As a

T = 300 K

T = 150 K

T = 77 K

Na = 4 · 1016

Na = 4 · 1014

0 0.1 0.2

h̄ω (eV)

0

0.02

0.04

0.06

Δ
ρ

(r
ad

/
cm

)

FIG. 9. Frequency dependence of the change in rotatory power
induced in right-handed Te by a current density j‖ = 1000 A/cm2,
at different temperatures and doping levels. In order to avoid sin-
gularities in Eq. (C20) at ω2 = ω2

kmn, �ρ is calculated at complex
frequencies using Im[h̄ω] = 1 meV.
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result, �ρ exhibits a strong dispersion caused by the coupling
in Eq. (C20) between the two conduction subbands.

C. Absolute sign of the optical rotation

All gyrotropic effects have equal magnitudes and opposite
signs for two otherwise identical samples of opposite hand-
edness. Unfortunately the experimental determination of the
handedness is particularly difficult for elemental crystals [36],
and there are conflicting claims in the literature as to which
enantiomorph of trigonal Te rotates the plane of polarization
of light in which sense.

We are aware of three studies that tried to establish the
handedness of a Te sample, correlating it with the sign of
the rotatory power ρ0. The first work used etching techniques
[37], the second polarized neutron diffraction [38], and the
third resonant x-ray diffraction [36]. In Refs. [37,38] it was
concluded that the plane of polarization of light rotates in the
same sense as the bonded atoms in the spiral chains (with
our sign convention, that means ρ0 > 0 for the right-handed
structure), and this has become the “accepted wisdom” in the
literature [5,31,39,40]. However, the authors of the most recent
study [36] arrived at the opposite conclusion (see Erratum
[41]): Right-handed Te has a negative ρ0, in agreement with
our calculations.

Let us conclude with a comment on the sign of �ρ calcu-
lated in Refs. [4,5] using a k · p model for the band-edge states.
It was found in those works that �ρ < 0 when the states with
positive (negative) qz at the top of the uppermost valence band
are dominated by atomic states with total angular momentum
jz = −3/2 (jz = +3/2). In Ref. [5] that situation was assumed
to correspond to right-handed Te, since it leads to ρ0 > 0
[see Eq. (15) in Ref. [28]], in agreement with Refs. [37,38].
However, an examination of our ab initio results leads to the
opposite conclusion. For example, the lower panel of Fig. 11(c)
shows that in right-handed Te the spin magnetic moment of
states near the top of the upper valence band is negative for
qz > 0. In an atomic picture, this corresponds to states with
total angular jz = +3/2 being dominant at positive qz. In
conclusion, once the k · p model is matched to our ab initio
wave functions it yields ρ0 < 0 and �ρ > 0 for right-handed
Te, in agreement with our calculations.4

VI. KINETIC MAGNETOELECTRIC EFFECT

Along with the Faraday rotation of transmitted light, the
flow of a dc current through a gyrotropic crystal produces a
macroscopic magnetization. So far, the intrinsic contribution
to this effect has only been calculated for model tight-binding
systems [19,42]. Our goal in this section is to make quantitative
estimates for p-Te, and to provide a microscopic picture for
the effect.

4The k · p model of Refs. [4,5] includes spin-orbit coupling in the
valence bands only. This is an acceptable approximation, given that
the spin-orbit induced Weyl points at the edge of the conduction band
do not give a large contribution to the kFE at the CO2 laser frequency.
Recall from Sec. III that this was not the case for the CPGE: Without
spin-orbit coupling in the conduction bands, the intrinsic part of the
intraband CPGE would not change sign with temperature.
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FIG. 10. Temperature dependence of the orbital and spin magne-
tization induced in right-handed Te, at different acceptor concentra-
tions, by a current density j‖ = 1000 A/cm2.

A current flowing along the trigonal axis induces a parallel
magnetization given by (Appendix D)

M‖ = − K‖j‖
2πC‖

. (13)

The temperature and doping dependence of M‖ calculated
at j‖ = 1000 A/cm2 is shown in Fig. 10. In contrast to 2D
inversion layers where the current-induced magnetization is
purely spinlike [16–18], in p-Te it has both orbital and spin
components, shown separately in Fig. 10. They have opposite
signs and comparable magnitudes, with the orbital effect being
somewhat larger.5 Their magnitudes are ∼10−8 μB/atom, six
orders smaller than the spontaneous orbital magnetization
in bcc Fe [43] (recall that comparable differences in orders
of magnitude relative to bcc Fe were found earlier for the
nonlinear AHE and for the kFE).

The current-induced spin density at 77 K, Na = 4 ×
1016 cm−3, and j‖ = 1400 A/cm2 was estimated in Ref. [5]
to be ∼560 spins/μm3. Under the same conditions our
calculation yields 561 spins/μm3, in a surprisingly perfect
agreement. While it may be difficult to directly measure such
a small magnetization, indirect evidence for the kME in p-Te

5Without spin-orbit coupling the bulk kME would be purely orbital
[19,20], and we attribute the presence of a comparable spin contribu-
tion to the kME to the strong spin-orbit coupling in Te.
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FIG. 11. Microscopic mechanism of the kinetic magnetoelectric effect in right-handed Te. (a) Similar to the lower panel of Fig. 8(a), with D̃0
‖

replaced by K0
‖ [the low-temperature limit of Eq. (3)]. The total K0

‖ (heavy solid line) is decomposed into orbital (dashed line) and spin (dotted

line) parts. (b) and (c) Like the lower panels of Fig. 8(b), with �̃z
kn replaced by morb

kn,z [Eq. (4)] in (b), and by m
spin
kn,z = − 1

2 gsμB〈ψkn|σz|ψkn〉 in
(c)—the orbital and spin parts of the intrinsic magnetic moment of a Bloch electron. In (b), the gray arrows denote orbital moments calculated
according to Eq. (14).

has already been gathered. In addition to the kFE [4,5], a
current-induced splitting of nuclear magnetic resonance peaks
was recently detected [44].

The dominance of the orbital contribution to M‖ in Fig. 10
implies that it remains positive over the entire temperature
range. The signs of Morb

‖ and M
spin
‖ can be understood from

Fig. 11. Figure 11(a) shows the quantity K0
‖ (ε) [defined in

terms of K‖ in the manner of Eq. (8)] at the top of the valence
band, and the signs of its orbital and spin contributions follow
from Figs. 11(b) and 11(c), where it can be seen that the z

component of the orbital (spin) moments of the band states are
antiparallel (parallel) to ∂Ekn/∂kz.

The fact that the spin and orbital moments are antiparallel
for states in the upper valence band is somewhat surprising.
Those states can be approximated as a linear combination of
atomic states with total angular momenta jz = ±3/2 [4–6],
suggesting parallel spin and orbital moments. This is confirmed
by the gray arrows in Fig. 11(b), which show the orbital
moments calculated in the atomic-sphere approximation as

matomic
kn,z = −μB

∑
ilm

m|〈ukn|ilm〉|2, (14)

where the |ilm〉 are projectors onto spherical-harmonic states
localized on the ith atom in the unit cell, and μB = eh̄/(2me)
is the Bohr magneton. As seen in Fig. 11(b), the moments
calculated from Eqs. (4) and (14) differ in both sign and
magnitude. This signals a breakdown of the atomic picture
of orbital magnetism for states at the top of the valence band,
highlighting the need to use the rigorous definition (4) of morb

kn

so as to include itinerant contributions related to the Berry
curvature.

In fact, the signs of morb
kn,z and �z

kn are correlated for states
in the upper valence band, as can be seen by comparing the
spectral decomposition of Eq. (4),

morb
kn = e

2h̄

∑
m

(Ekm − Ekn)Im(Aknm Akmn), (15)

with that of Eq. (1b) [given by Eq. (C20) at ω = 0], and
recalling from Sec. V A that the upper valence band couples
most strongly to the lower conduction subbands, for which
Ekm − Ekn > 0. This analysis suggests that morb

kn,z and �z
kn

should be antiparallel, which is indeed the case: Compare
Fig. 11(b) with Fig. 3(b).

VII. NATURAL OPTICAL ACTIVITY OF DOPED
TELLURIUM

The theoretical value of ρ0 in Table I was calculated for
undoped Te, and here we analyze how it changes under
doping. We consider two effects: the doping dependence of the
interband contribution, and the appearance in doped samples of
an intraband contribution, whose mechanism is closely related
to that of the kME [20,21]. We calculate both effects at 77 K,
for the CO2 laser frequency.

We begin with the doping dependence of the interband
rotatory power, which can be taken into account by replacing∑o,e

n,l with
∑

n,l fkn(1 − fkl) in Eq. (C12) (see Ref. [40]). As
shown by the dashed line in Fig. 12, ρ inter

0 remain negative
over the entire doping range. At first its magnitude decreases
slightly with increasing Na , due to a depopulation of the upper
valence band that blocks some of the interband transitions

1016 1017 1018 1019

Na (cm−3)
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−1

0

1

2

3

ρ
0

(r
ad

/c
m

)

total
interband
intraband

FIG. 12. Doping dependence of the natural rotatory power of
right-handed Te at 77 K and h̄ω = 0.117 eV, decomposed into
interband and intraband contributions.
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[40]. It reaches a minimum at Na ≈ 2.5 × 1018 cm−3, and then
increases rapidly in magnitude. The rapid increase is caused
by transitions between the two upper valence bands, which
become possible at high doping [40]. Although the matrix
elements for such transitions are small [5,40], along the HA line
the band separation is close to the CO2 laser frequency of h̄ω =
0.117 eV [see Fig. 1(b)], producing a resonant enhancement.

We now turn to the intraband rotatory power, shown as the
dotted line in Fig. 12. In Appendix C 2 b we obtained, following
Refs. [20,21],

ρ intra
0 (ω) = ω2τ 2

1 + ω2τ 2
ρclean

0 , (16a)

ρclean
0 = −4πa

ec
K⊥, (16b)

with K⊥ given by Eqs. (3) and (6). Using the values of τ (Na,T )
from Ref. [26], we conclude that up to Na = 1020 cm−3

the “clean-limit” condition ωτ 	 1 is satisfied at the CO2

laser frequency and room temperature (and below). Thus,
ρ intra

0 ≈ ρclean
0 over the entire range of Fig. 12. ρ intra

0 has the
opposite sign compared to ρ inter

0 , and a negligible magnitude at
low doping. But while |ρ inter

0 | initially decreases as the doping
level increases, |ρ intra

0 | increases (more or less linearly) with
Na . Interestingly, between 8 × 1017 and 7.5 × 1018 cm−3 the
competition between the two contributions results in a sign
reversal of ρ0.

VIII. SUMMARY

In summary, we have carried out a combined ab initio study
of several gyrotropic effects in p-doped Te.6 The motivation
was provided by recent theoretical developments that recog-
nized the central role played by the Berry curvature and by
the intrinsic orbital moment in the description of such effects
in the semiclassical regime of low frequencies compared to
the band splittings. This prompted us to revisit the pioneering
infrared measurements of the CPGE [8,9] and kFE [4,5] in
bulk Te.

We found that the intrinsic mechanism for the intraband
CPGE [12–14] accounts for the observed sign reversal of
the CPGE with temperature, and that the sign reversal is
caused by the presence of Berry-curvature monopoles (Weyl
points) at the bottom of the conduction band. This provides
an interesting example of the way in which Weyl points can
influence physical observables in semiconductors.

Regarding the natural and current-induced optical rotation
(kFE), our calculations give rotatory powers whose magnitudes
are within a factor of two of the measured ones. In agreement
with experiment [5], we find that �ρ and ρ0 have opposite
signs when light propagates in the same direction as the
current.

As for the absolute sign of ρ0, we find that in undoped
samples the plane of polarization rotates in the opposite sense
to the bonded atoms in the spiral chains. This contradicts the

6The computer code developed for this project was written as a
module of the WANNIER90 package [45,46], and will be made publicly
available in a forthcoming release.

result of early attempts to determine the handedness of a Te
sample [37,38], but agrees with the most recent experimental
determination [36,41]. We also predict a sign reversal of ρ0

over a significant doping range, due to the competition between
interband and intraband contributions to the natural optical
activity.

In order to compare our fully quantum-mechanical cal-
culation of �ρ with the semiclassical limit, the result was
expressed in terms of a quantity �̃kn(ω) that reduces to the
Berry curvature at ω = 0. We found that at the CO2 laser
frequency, �̃kn(ω) at the top of the valence band is very close to
�kn. Hence, the low-temperature kFE is well described by the
same Berry-curvature parameter D‖ that governs the intrinsic
CPGE. This leads to a definite sign relation between the two
effects, which could be tested by measuring both on the same
sample.

We have also provided estimates for the magnitudes of other
gyrotropic effects that have not yet been observed, such as
the nonlinear AHE and the kME. Our estimates indicate that
those effects are rather small in p-Te. However, a recent study
predicted a sizable nonlinear AHE in Weyl semimetals [47].

In closing, we hope that the present work will stimulate
further experimental and theoretical work exploring the role
of the k-space Berry curvature, intrinsic orbital moment, and
Weyl points in connection with gyrotropic effects in bulk
crystals.

Note added: After this work was submitted, a complemen-
tary theoretical study of the kME in p-Te appeared [48]. The
authors used a k · p model to investigate extrinsic as well as
intrinsic contributions to the kFE. For doping concentrations
up to a few 1017cm−3 they find that the latter are dominant,
with the same magnitude and sign as reported here.
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APPENDIXES

In Appendixes A–D we review the theory of the various gy-
rotropic effects considered in the main text. The photogalvanic
effect is treated in Appendix A, the nonlinear AHE in Appendix
B, optical rotation in Appendix C, and the kinetic magnetoelec-
tric effect in Appendix D. Concerning the microscopic theory
of these effects, our aim is to present a coherent picture based
on a small number of basic ingredients (Berry connections,
curvatures, and intrinsic magnetic moments). We only consider
the “intrinsic” contributions that can be calculated from the
electronic structure of the pristine crystal supplemented by a
phenomenological relaxation time τ . We therefore neglect ex-
trinsic effects due to skew-scattering and side-jump processes
at impurities [12,49]. Finally, Appendix E describes some
technical details of our Wannier-based numerical scheme.
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APPENDIX A: PHOTOGALVANIC EFFECT

1. Phenomenology

Consider an oscillating electric field,

E(r,t) = Re[E(ω)ei(q·r−ωt)]. (A1)

The current density induced at second order in the field
amplitude can be written as [14]

ja(t) = Re
(
j 0
a + j 2ω

a e−i2ωt
)
, (A2a)

j 0
a = 1

2σabc(ω)Eb(ω)E∗
c (ω), (A2b)

j 2ω
a = 1

2σabc(ω)Eb(ω)Ec(ω). (A2c)

Equations (A2b) and (A2c) describe a dc photocurrent and a
second-harmonic current, respectively.

Writing σabc = λabc + γabc and EbE∗
c = Re(EbE∗

c ) +
iIm(EbE∗

c ), where the first and second terms in these
expressions are, respectively, symmetric and antisymmetric
under b ↔ c, Eq. (A2b) becomes

j 0
a = 1

2 {λabcRe(EbE∗
c ) − γabIm(E × E∗)b}, (A3)

where γab = −iεbcdγacd/2 = −iεbcdσacd/2. The first (second)
term describes the linear (circular) photogalvanic effects. λabc

transforms like the piezoelectric tensor, and γab like the
gyration tensor [10,11].

2. Berry-curvature (“intrinsic”) contributions

The intrinsic intraband contribution to the nonlinear con-
ductivity of a nonmagnetic crystal can be expressed in terms
of the tensor D in Eq. (2) as [14]

σabc = −e3τω

h̄2 εadcDbd, (A4)

where

τω = τ

1 − iωτ
. (A5)

Combining Eqs. (A2)–(A4) one finds

Re
(
j 0
a

) = jLPGE
a + jCPGE

a , (A6a)

jLPGE
a = − e3

2h̄2 Re(τω)εadcDbdRe(EbE∗
c ), (A6b)

jCPGE
a = − e3

4h̄2 Im(τω)DabIm(E × E∗)b, (A6c)

where LPGE stands for “linear photogalvanic effect,” and
Tr(D) = 0 was used to eliminate one term from Eq. (A6c)
[12].

Consider the CPGE in trigonal Te with light propagat-
ing along the trigonal axis. Writing q = q‖ ẑ, E = |E|ê, and
−Im(e × e∗) = Pcircq̂ where Pcirc is the degree of circular
polarization, and defining the intensity of incident light as
I0 = cε0|E|2/2, Eq. (A6c) becomes

jCPGE
‖ = sgn(q‖)(2πaPcircD‖)Im(τω)

eI0

h̄
, (A7)

where a = e2/(4πε0h̄c) is the fine-structure constant. For posi-
tive helicity (Pcirc > 0), the current flows parallel (antiparallel)
to the light beam when D‖ > 0 (D‖ < 0).

APPENDIX B: NONLINEAR ANOMALOUS HALL EFFECT

In the ω → 0 limit the total current from Eqs. (A2) and (A6)
becomes

ja = −e3τ

h̄2 εadcDbdEbEc, (B1)

with equal parts coming from the second-harmonic and LPGE
currents (the CPGE vanishes at ω → 0). Since E · j = 0,
Eq. (B1) describes a nonlinear anomalous Hall current [14].

It is instructive to obtain Eq. (B1) by replacing f0 in Eq. (1)
with the change in the distribution function at linear order in
an applied static field,

�f ≡ f − f0 = −eτE · vkn

(
−∂f0

∂E

)
E=Ekn

. (B2)

Doing so yields

�σ A
ab = e3τ

h̄2 εabdDcdEc (B3)

for the field-induced AHC, in agreement with Eq. (B1).
Inserting Eq. (5) for the tensor D in Te into Eq. (B1) for the

current, we obtain

jx = 3e3τ

2h̄2 D‖EzEy, (B4a)

jy = −3e3τ

2h̄2 D‖EzEx, (B4b)

jz = 0. (B4c)

The nonlinear current flows in the plane perpendicular to the
trigonal axis, and the effect can be viewed as an in-plane linear
AHE induced by the out-of-plane field component E‖ ≡ Ez.
The effective field-induced AHC is

σ A
xy(E‖) = 3e3τ

2h̄2 D‖E‖ = 3e3

2h̄2

D‖
σ‖/τ

j‖, (B5)

where in the second equality we inverted Ohm’s law to express
the result in terms of j‖ (the nonzero components of the Ohmic
conductivity areσ⊥ ≡ σxx = σyy andσ‖ ≡ σzz). In the constant
relaxation-time approximation we have σ‖/τ = (2πe/h̄)C‖,
with

C‖ = e

h

∫
[dk]

∑
n

(
∂Ekn

∂kz

)2(
−∂f0

∂E

)
E=Ekn

(B6)

a positive quantity with units of surface current density. With
this notation, the current-induced AHC reads

σ A
xy(j‖) = (e2/h)(3D‖/2)(j‖/C‖), (B7)

where e2/h is the quantum of conductance, D‖ is dimension-
less, and j‖/C‖ has units of inverse length.

APPENDIX C: OPTICAL ROTATION

1. Phenomenology

The dielectric tensor of trigonal Te has the form [5],

ε(ω,q‖,j‖) =
⎛
⎝ ε⊥ εA

xy(ω,q‖,j‖) 0
−εA

xy(ω,q‖,j‖) ε⊥ 0
0 0 ε‖

⎞
⎠.

(C1)
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In equilibrium, the antisymmetric part εA
xy responsible for opti-

cal rotation is linear in the wave vector q‖ of light propagating
inside the crystal along the trigonal axis. Under a steady current
flow, εA

xy acquires a new contribution closely related to the
nonlinear AHC of Appendix B. It is linear in j‖ and zeroth order
in q‖, giving rise to the kFE. (As for the diagonal elements ε⊥
and ε‖, they are independent of j‖ and q‖ to linear order.)

Before proceeding further, let us specify our sign convention
for optical rotation. We say that the rotatory power ρ is
positive when the sense of rotation of the electric field vector
is counterclockwise as seen by an observer looking toward the
light source. With this choice we have7

ρ = π

λ0
Re(n− − n+) = ω

2c
Re(n− − n+), (C2)

where λ0 is the wavelength in vacuum, and n+ and n− are the
complex indices of refraction for circularly polarized waves of
positive and negative helicity, respectively, with polarization
vectors given by

e± = x̂ ± isgn(q‖) ŷ√
2

. (C3)

Assuming a sufficiently small current density such that
|εA

xy/ε⊥| � 1, one finds [5,52]

n− − n+ ≈ −sgn(q‖)i
εA
xy/ε0

n⊥
, (C4)

where n⊥ ≡ √
ε⊥/ε0. Converting to conductivities using

εab(ω) = ε0

[
δab + i

ωε0
σab(ω)

]
, (C5)

we obtain

ρ(ω,j‖) = sgn(q‖)
Re σ A

xy(ω,j‖)

2cε0n⊥(ω)
(C6)

at nonabsorbing frequencies, with

n⊥(ω) =
[

1 − 1

ωε0
Im σ⊥(ω)

]1/2

. (C7)

In the following, we expand the rotatory power as [5]

ρ(ω,j‖) = ρ0(ω) + �ρ(ω,j‖) + O(j 2
‖ ). (C8)

ρ0 is the natural rotatory power at j‖ = 0, and �ρ(j‖) is the
change in rotatory power at linear order in j‖.

2. Natural optical rotation

Natural optical rotation is described by σ A
xy(q,ω) at first

order in qz, which is conventionally written as [53]

σ A
xy(ω,q) = ωε0γxyzqz = sgn(q‖)ωε0γxyz|q‖|, (C9)

where γxyz has units of length. Using |q‖|/Re n⊥ = ω/c,
Eq. (C6) becomes [28]

ρ0(ω) = ω2

2c2
Re γxyz(ω). (C10)

7Compare with Eq. (2) in Ch. XIV of Ref. [50], where the
opposite sign convention for ρ was adopted. Therein, “left-circular
polarization” refers to our positive helicity (see also Ref. [51]).

Note that the natural rotatory power does not reverse sign with
q‖. Thus, if a linearly polarized ray travels back and forth inside
the material the plane of polarization is unchanged when it
returns to the initial point [52,53].

We now turn to the microscopic theory. The natural optical
activity of nonconducting crystals is governed by virtual inter-
band transitions [28,54,55], and the rotatory power decreases
as ω2 at frequencies well below those of interband transitions.
Instead, conducting crystals remain optically active at such
low frequencies due to intraband processes [20,21]. Thus, the
rotatory power of a conducting crystal is given by

ρ0(ω) = ρ inter
0 (ω) + ρ intra

0 (ω). (C11)

In the following, both contributions are calculated.

a. Interband natural optical rotation

Following Ref. [55] we write, with ∂c ≡ ∂/∂kc,

Re γ inter
abc (ω) = e2

ε0h̄
2

∫
[dk]

o,e∑
n,l

,

×
[ 1

ω2
ln − ω2

Re
(
Ab

lnB
ac
nl − Aa

lnB
bc
nl

)

− 3ω2
ln − ω2(

ω2
ln − ω2

)2 ∂c(El + En)Im
(
Aa

nlA
b
ln

)]
.

(C12)

The summations over n and l span the occupied (o) and empty
(e) states, respectively, ωln = (El − En)/h̄, and we omit the k

subscript for brevity. Here

Aa
ln = i〈ul|∂aun〉 (C13)

is the matrix generalization of the Berry connection appearing
in Eq. (1b). Finally, the matrix Bac

nl has both orbital and spin
contributions given by

B
ac (orb)
nl = 〈un|(∂aH )|∂cul〉 − 〈∂cun|(∂aH )|ul〉, (C14)

and

B
ac (spin)
nl = − ih̄2

me

εabc〈un|σb|ul〉. (C15)

In Te the spin matrix elements contribute less than 0.5%
of the total ρ inter

0 , and can be safely ignored. Writing H =∑
m |um〉Em〈um|, the orbital matrix elements become

B
ac (orb)
nl = −i∂a(En + El)A

c
nl

+
∑
m

{
(En − Em)Aa

nmAc
ml − (El − Em)Ac

nmAa
ml

}
.

(C16)

This reduces the calculation of B(orb) to the evaluation of band
gradients and off-diagonal elements of the Berry connection
matrix, and both operations can be carried out efficiently in a
Wannier-function basis [56].

In our implementation, the summation in Eq. (C16) is
restricted to the s and p bands included in the Wannieriza-
tion procedure (see Appendix E). To check how quickly the
calculated ρ inter

0 converges with the number of bands, we redid
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the calculation keeping only the four bands (two valence and
two conduction) closest to the gap, and found that the value
changed by only 10% compared to a calculation including all s
and p states. This is consistent with the conclusion of Ref. [40]
that the natural optical activity of Te is contributed mainly by
transitions between states near the energy gap.

b. Intraband natural optical rotation

Here we calculate ρ intra
0 following Refs. [20,21]. Combining

Eqs. (5a) and (S61) in Ref. [20] and noting that in our notation
the tensor αGME defined therein is given by −iω(e/h̄)τωK , we
find

Re γ intra
abc (ω) = eIm τω

ωε0h̄
(εacdKbd − εbcdKad ). (C17)

Using Eq. (6) for the tensor K in Te leads to

Re γ intra
xyz (ω) = −2eIm τω

ωε0h̄
K⊥. (C18)

The intraband rotatory power of Eq. (16) is obtained by
inserting this expression in Eq. (C10).

3. Current-induced optical rotation

Let us now obtain a microscopic expression for �ρ in
Eq. (C8), by expanding Eq. (C6) to first order in j‖. For
that purpose, it is sufficient to expand the tensor Re σ A

xy(ω)
in the numerator. At j‖ = 0 it is given by the following
finite-frequency generalization of Eq. (1),

Re σ A
ab(ω) = −e2

h̄

∫
[dk]

∑
n

f0(Ekn)εabc�̃
c
kn(ω), (C19)

where the quantity,

�̃kn(ω) = −
∑
m

ω2
kmn

ω2
kmn − ω2

Im(Aknm × Akmn), (C20)

reduces to the Berry curvature at ω = 0.8

The correction to Eq. (C19) at first order in j‖ can be
obtained by replacing f0 therein with �f given by Eq. (B2).
Following Appendix B we obtain

Re σ A
xy(ω,j‖) = (e2/h)D̃‖(ω)(j‖/C‖), (C21)

with D̃‖(ω) given by Eq. (12), and inserting this expression in
Eq. (C6) we arrive at Eq. (11) for �ρ. Note that �ρ reverses
sign with q‖, contrary to ρ0: Like the conventional Faraday
effect [52,53], the kFE is nonreciprocal.

The final step is to determine the refraction index n⊥
appearing in Eq. (11). For that purpose, we evaluate the
quantity Im σ⊥(ω) in Eq. (C7) using

Im σ⊥(ω) = −e2

h̄

∫
[dk]

∑
nm

′
f0(Ekn)[1 − f0(Ekm)]

× ω2
kmn

ω2
kmn − ω2

(∣∣Ax
knm

∣∣2 + ∣∣Ay

knm

∣∣2
)
, (C22)

8Contrary to the Berry curvature, the divergence of �̃kn(ω) is
generally nonzero. As a result, D̃(ω) given by Eq. (12) can have a
nonzero trace at finite frequencies, i.e., D̃‖ �= −2D̃⊥ in Te.

where the prime on the summation indicates that the term
m = n is excluded. This expression gives the interband contri-
bution to Im σ⊥(ω). Since at the CO2 laser frequency we have
ωτ 	 1 across the entire range of temperatures and doping
levels considered in our calculations, the intraband (Drude)
contribution is negligible.

APPENDIX D: KINETIC MAGNETOELECTRIC EFFECT

The kME effect in a conducting gyrotropic crystal is
described phenomenologically by [20]

j B
a (ω) = iωαab(ω)Bb(ω), (D1a)

Ma(ω) = αba(ω)Eb(ω). (D1b)

In the limit ωτ � 1 where αab(ω) becomes real we have

j B
a (t) = −αab(0)Ḃb(t), (D2a)

Ma(t) = αba(0)Eb(t), (D2b)

which for an isotropic gyrotropic medium (αab = αδab) re-
duces to Eqs. (1) and (3) of Ref. [15].

It is convenient to introduce a reduced (dimensionless)
magnetoelectric tensor,

αr
ab(ω) = cμ0αab(ω), (D3)

in direct analogy with the standard description of magneto-
electric couplings in insulators [57]. The intrinsic part is given
in terms of Eqs. (2) and (A5) by

αr
ab(ω) = −4πa

τω

e
Kab. (D4)

It can be verified that at ω = 0 this expression agrees with that
obtained in Ref. [19] for the magnetization induced by a static
E field. Specializing to Te and following Appendix B to recast
the result in terms of j‖, we obtain

M‖ = (e/8π2a)(αr
‖(0)/τ )(j‖/C‖), (D5)

which combined with Eq. (D4) becomes Eq. (13).

APPENDIX E: WANNIER INTERPOLATION

In order to interpolate in k space the energy bands and other
quantities (see below), we use the formalism of maximally
localized Wannier functions [58,59], as implemented in the
WANNIER90 code package [45,46]. We construct four disen-
tangled Wannier functions per tellurium atom and per spin
channel, for a total of 24 Wannier functions per cell. The 5s

and 5p bands of trigonal Te are well separated from the lower
d states, and they cross with higher-lying sates only in a small
region of the Brillouin zone. Thus we set the outer energy
window for the disentanglement procedure [59] from −20 to
+5 eV relative to the valence-band maximum, so as to cover
all s and p bands. The inner frozen window spans the range
from −20 to +2.5 eV, and we choose atom-centered sp3-type
trial orbitals for the initial projections. This choice of Wannier
functions differs from that of Ref. [24,27], where only 5p states
were included in the Wannierization.

The Wannier basis is also used to evaluate the k-space
quantities entering the expressions for the response tensors,
namely: the band gradient ∇kEkn, the Berry curvature �kn
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[Eq. (1b)], the intrinsic orbital moment [Eq. (4)], and the
off-diagonal elements of the Berry connection matrix Aknm

[Eq. (C13)]. The Wannier interpolation of these quantities is
described in Refs. [43,56,60].

When evaluating the response tensors, the integrations over
the Brillouin zone are performed using a uniform grid of
200 × 200 × 200 k points. In the case of responses that can
be expressed in the form of Eq. (8), when ε is close to the band

gap (no further than 100 meV from the band edges), only k

points in the vicinity of H and H’ contribute, due to the factor
(−∂f0/∂E) in that equation. In such cases, we use a grid of
200 × 200 × 200 k points within a small box centered at H that
amounts to less than 0.2% of the entire Brillouin zone, and then
multiply the result by two in order to account for H′. This allows
us to increase the numerical accuracy for ε near the band gap,
which is the energy range that contributes most the response.
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