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Effect of the lattice dynamics on the electronic structure of paramagnetic NiO
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Using the disordered local moments approach in combination with the ab initio molecular dynamics method,
we simulate the behavior of a paramagnetic phase of NiO at finite temperatures to investigate the effect of
magnetic disorder, thermal expansion, and lattice vibrations on its electronic structure. In addition, we study its
lattice dynamics. We verify the reliability of our theoretical scheme via comparison of our results with available
experiment and earlier theoretical studies carried out within static approximations. We present the phonon
dispersion relations for the paramagnetic rock-salt (B1) phase of NiO and demonstrate that it is dynamically
stable. We observe that including the magnetic disorder to simulate the paramagnetic phase has a small yet
visible effect on the band gap. The amplitude of the local magnetic moment of Ni ions from our calculations
for both antiferromagnetic and paramagnetic phases agree well with other theoretical and experimental values.
We demonstrate that the increase of temperature up to 1000 K does not affect the electronic structure strongly.
Taking into account the lattice vibrations and thermal expansion at higher temperatures have a major impact on the
electronic structure, reducing the band gap from ∼3.5 eV at 600 K to ∼2.5 eV at 2000 K. We conclude that static
lattice approximations can be safely employed in simulations of the paramagnetic state of NiO up to relatively
high temperatures (∼1000 K), but as we get closer to the melting temperature vibrational effects become quite
large and therefore should be included in the calculations.
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I. INTRODUCTION

Transition metal oxides (TMO) exhibit a rich variety of elec-
tronic and magnetic properties, ranging from being insulators
to metals or even superconductors, from Pauli paramagnetism
to local moment behavior of ferromagnetic or antiferromag-
netic phases [1]. They range from TiO2 with a nominal
3d0 configuration to Cu2O with a closed 3d10 shell, from
nonmagnetic insulators (TiO2) to ferromagnetic half-metallic
CrO2 [2]. In addition, changes of temperature, pressure, or
composition, as well as deliberate doping of these materials can
modify their electronic and magnetic structure dramatically.
It is a challenging task to study these systems by means of a
first-principles electronic structure theory as the partially filled,
rather localized,d shell of the transition metals contain strongly
correlated electrons while the s and p shells of oxygen contain
delocalized electrons. In particular, NiO has been the subject of
research for over 80 years [3]. It has a large band gap of 4.3 eV
with the Néel temperature of TN = 523–530 [4–6] above
which NiO is paramagnetic (PM) with a rock-salt (B1) crystal
structure. Below this temperature, NiO has antiferromagnetic
(AFM) ordering with a small rhombohedral distortion from
its cubic structure. It has been considered as a prototype Mott
insulator [7,8] after Mott showed that NiO and other similar
insulators are better described within the picture of localized
electrons bound to partially filled shells. The experimental
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observation of the Mott insulator-to-metal (IMT) transition in
NiO at 240 GPa by resistance measurements has been reported
by Gavriliuk et al. [9], but the presence of the transition at
pressure below 280 GPa has been questioned by Potapkin et al.
[10], who observed magnetic hyperfine splitting that confirms
the antiferromagnetic state of NiO up to 280 GPa, the highest
pressure where magnetism has been observed so far, in any ma-
terial. In fact, recent calculations by Leonov et al. predict that in
NiO the magnetic collapse should occur at a remarkably higher
pressure of ∼429 GPa [11]. Moreover, since Fujimori and
Minami could explain NiO photoemission data using a cluster
approach with a configuration interaction model, NiO was
considered as a charge transfer insulator [12]. Thus, despite
all the experimental and theoretical research [1,8,11,13–20]
carried out on NiO, investigations of its electronic structure still
attract substantial interest. On one hand, using band theories,
which are based on the delocalized nature of the electrons,
predict NiO to be metallic [21]. On the other hand, due to the
strong correlation between the d electrons conventional density
functional theory (DFT) in the framework of local density
approximation (LDA) or generalized gradient approximation
(GGA), are not applicable resulting in too small band gaps and
local magnetic moment as compared to experimental values.
Self-consistent GW [22] calculations on NiO do not properly
reproduce the experimental spectra [23,24]. The LDA+U

[25] approach has significantly improved the band structure
theory of strongly correlated systems. However, the static
LDA+U calculations do not take into account the effects of
electron dynamics on the electronic structure and might for
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this reason not adequately produce the energy spectrum of
NiO, especially in its paramagnetic state. A combination of
LDA and dynamical mean field theory (DMFT), LDA+DMFT
[4,11,26–29], can be used to study the photoemission spectra of
NiO which provide a more accurate scheme. Indeed, analysis
of orbitally resolved spectra showed [26] that the LDA+DMFT
description is superior to the LDA+U . In particular, the
LDA+DMFT is able to realistically capture the distribution of
spectral weight between different peaks in the photoemission
spectra. Moreover, Panda et al. [19] used a combination of
DMFT and GW to get a better description of the photoemission
spectra of NiO. Eder applied the variational cluster approxima-
tion to the calculation of the single-particle spectral function of
NiO [30]. The LDA+DMFT calculations that includes the Ni d
and O p orbitals (the so-called p-d model) give a description
of the spectral properties of NiO, which are consistent with
cluster calculations [12,30] within their respective limitations.

The studies that focused on the AFM phase attributed the
insulating gap to the long-range magnetic order. However,
it is now well known that neither the band gap nor the
local magnetic moment typically change dramatically when
the temperature is raised above the Néel temperature. The
LDA+DMFT is generally believed to give the best description
of real systems close to the Mott-Hubbard metal-insulator tran-
sition (MIT) [31], but if the lattice dynamics is to be included,
the calculations would be computationally extremely demand-
ing. An alternative approach could be to use the LDA+U

which is computationally less demanding than LDA+DMFT.
Although LDA+U is considered as a reliable method within
which the magnetically ordered phases can be simulated easily,
it is believed not to be suitable for the simulations of the
magnetically disordered PM state. However, its combination
with the disordered local moment (DLM) picture opens up
a possibility for such a study. This is the approach we use
in the present work. We are therefore led to a question on
the possibility of simulating the PM insulating phase of NiO,
which should also include other types of excitations and in
particular lattice vibrations.

The disordered local moments molecular dynamics (DLM-
MD) method is an implementation of the DLM picture within
the framework of ab initio molecular dynamics (MD). The idea
was developed by Steneteg et al. [32]. DLM-MD is shown to
be a reliable method to simulate magnetic materials in their
paramagnetic state [32–34]. In this work we investigate the
electronic structure of PM NiO using DLM-MD in which the
magnetic disorder and the lattice vibrations are treated simulta-
neously. In order to verify our theoretical tools, we compare the
obtained energy spectra with the ones obtained from other the-
oretical schemes and also with the experimental photoemission
spectra (available only for a magnetically ordered phase). We
study the explicit effects of lattice vibrations on the electronic
density of states of NiO and we derive the vibrational phonon
spectra of PM NiO at elevated temperatures.

II. COMPUTATIONAL DETAILS

The theoretical background of the DLM picture and its
implementation in the magnetic sampling method, as well as in
the DLM-molecular dynamics, have been discussed in detail in
Ref. [32]. Thus, here we mainly focus on the technical details of

the calculations and on the method’s limitations. Starting from
the DLM idea of having spatially disordered local moments,
we prepare a supercell in which the local magnetic moments on
metal atoms (Ni in our study) are randomly oriented in up and
down directions. T = 0 K calculations are done using DLM in
combination with a magnetic sampling method (DLM-MSM)
[35]. In this method a series of static DLM calculations are
run, each with a random magnetic configuration which is
different from other magnetic configurations in the series. The
density of states is then obtained by averaging DOSs from these
calculations.

For DLM-MD calculations, we fix the magnetic subsystem
at a specific magnetic configuration for an interval time which
we call spin flip time tsf. We then run MD calculations for
tMD time steps. The number of the MD steps during which the
magnetic configuration is kept fixed can be obtained by N sf

MD =
tsf/tMD. After N sf

MD time steps, the orientation of the magnetic
moments is changed to another random configuration and the
calculations continue with this new magnetic configuration for
the next N sf

MD time steps. In our simulations we have chosen
tsf = 5 fs and tMD = 1 fs and run the calculations for the total
number of 5000 steps (5 ps). This corresponds to a rapid change
of the magnetic state on the time scale of the vibrational periods
meaning that the trajectories of the atoms are effectively
determined by forces averaged over magnetic degrees of
freedom, making the approach close to the adiabatic limit of a
very fast magnetic degree of freedom. We have carried out the
DLM-MD calculations at 600, 1000, and 2000 K and the local
spin density approximation is used together with the Hubbard
Coulomb term (LDA+U ) following the Dudarev scheme [36].
We have tested the LDA+U method with different U eff values
and compared the obtained electronic structure with that of the
experiment and the electronic spectrum from LDA+DMFT
calculations. Based on this comparison, we have chosen the
value U eff = 8 eV (U eff = U − J ) with U = 9 and J = 1 eV.

Beside using the DLM-LDA+U approach to describe the
paramagnetic state, it is worth to point out the additional
important underlying assumptions of the DLM-MD method.
In particular, the local magnetic moments are considered to
be collinear and therefore the effect from the noncollinear-
ity of the moments is neglected. This assumption is well
justified for the simulations of the paramagnetic state with
disordered local moments as long as the temperature of the
simulation is much larger than the strongest interaction of the
classical Heisenberg Hamiltonian (T � J max

ij ) [37]. Therefore,
we assume that the local magnetic moments exist above the
magnetic transition temperature, and they are fully disordered
and collinear. In addition, we note that in the DLM-MD, the
true spin dynamics is substituted by instantaneous alteration
of the sample magnetic configuration with time steps tsf. In
other words, within the DLM model [37], it is assumed that
for a duration of tsf the system gets stuck near points (in the
phase space) with finite moments at every magnetic site (Ni
ions in our case) oriented in more or less random directions
and then rapidly moves to another similar point. This means
that the ergodicity is temporarily broken. However, according
to Ref. [37], the system is in fact ergodic even though it does
not cover the phase space uniformly in time and the motion
of the temporarily broken ergodicity can be mainly attributed
to the changes in the orientational configuration of the local

035152-2



EFFECT OF THE LATTICE DYNAMICS ON THE … PHYSICAL REVIEW B 97, 035152 (2018)

moments. One very important factor to point out is that the goal
of supercell calculations is to approximate the self-averaging
extensive physical properties of a paramagnetic alloy at finite
temperatures, like the potential energy, the magnetic moments,
or the electronic density of states. Indeed, if the criteria for
the applicability of the DLM is fulfilled, i.e., T � J max

ij , the
self-averaging extensive physical properties can be calculated
from the arithmetic average of different magnetic configura-
tions. In other words, DLM-MD is about obtaining the right
averages rather than right trajectories in the phase space. A very
detailed description of the DLM-MD method can be found in
Ref. [38].

In order to obtain the density of states, we have chosen
a series of 25 uncorrelated samples from our DLM-MD and
calculated the DOS for each of them separately. The resulting
electronic structure is the average DOS of these calculations.
A similar averaging procedure has been adopted in the DLM-
MSM calculations. Note that we do not include the Fermi
smearing effects in the DOS plots to focus the discussion on
the effects of lattice vibrations.

The AFM phase is simulated using a four-atom rhombo-
hedral unit cell with AFM ordering consisting of alternating
(111) planes with collinear spin up and spin down orientations.
A Monkhorst-Pack 23 × 23 × 23 k-point grid is used to sample
the Brillouin zone and the energy cutoff is set to 500 eV.

For the PM phase, we have used a 2 × 2 × 2 conventional
cubic supercell containing 32 Ni atoms with collinear up and
down spins randomly oriented on Ni atoms, and 32 O atoms.
The Brillouin zone is sampled using a Monkhorst-Pack 3 ×
3 × 3 k-point grid and the energy cutoff is set to 500 eV.

To maintain the temperature during our DLM-MD simula-
tions we have used a canonical ensemble (NVT) and the Nosé
thermostat with the default mass as implemented in the Vienna
ab initio simulation package (VASP) [39]. Thermal expansion
is included in our calculations using the experimental lattice
spacings [40].

To extract the vibrational frequencies of the high tempera-
ture PM NiO phase from the molecular dynamics simulations
we have used the temperature dependent effective potential
(TDEP) method recently developed by Hellman et al. [41,42]
and combined it with the DLM-MD method by Shulumba
et al. [34]. In the framework of this method we have calculated
the temperature dependent dynamical matrices by least square
fitting of the forces of the harmonic Hamiltonian [41,42]
to forces from DLM-MD, calculated at the proper atomic
displacements. The procedure included the information col-
lected at each of the 5000 MD time steps. It was carried out
at 500 and 1000 K. Moreover, we have corrected the long
range interaction of the macroscopic electric field induced
by polarization of collective ionic motions near the � point,
adding a nonanalytical term [43–45] to the dynamical matrix
and in this way obtaining the LO-TO splitting. In order to
obtain the complete dynamical matrix at q = 0 including
the nonanalytical terms, we determined the Born effective
charges [Z∗(Ni),Z∗(O)] and dielectric (ε∞) tensors by means
of the density functional perturbation theory as implemented
in VASP. For averaging values of [Z∗(Ni),Z∗(O)] and (ε∞),
six zero temperature calculations have been made for the
ideal NaCl-type supercell crystal structures, each with a ran-
dom magnetic configuration, that has allowed us to obtain

FIG. 1. Time evolution of the potential energy of the cubic
paramagnetic NiO at T = 600 K (blue dashed line) extracted from
the DLM-MD calculation. The accumulated average of the potential
energy is shown with a red solid line. The equilibration time of 1 ps is
not included in calculations of the running average. The potential
energy is stable and well converged as is seen from the running
average.

the tensors in the right form corresponding to the cubic
symmetry.

III. RESULTS

A. The potential energy

One way to check the reliability of the calculations is to
check if the energy of the system from the DLM-MD is stable
and that its mean value converges. Figure 1 shows the behavior
of the potential energy from the DLM-MD calculation of the
PM NiO at T = 600 K (blue dashed line) for all the MD steps.
The energy shows rather large variation in the beginning but
after about 1 ps the fluctuations in the potential energy become
quite small. The accumulated average (red solid line) of the
potential energy after equilibration (∼1 ps) is also shown and
it is apparent the potential energy of the system is stable and
the mean value is well converged. Similar behavior is observed
for other temperatures (not shown here).

B. Magnetic moments

During DLM-MD calculations, the magnitude of the local
magnetic moments are allowed to vary in accordance with the
self-consistent solution of the electronic structure problem at
each step of the MD simulation. Strictly speaking, the magnetic
moments are allowed to flip and there is no restriction on
their orientations. However, in this work they can only align
in up and down directions (collinear spin configurations).
In any case, it is important to check the net magnetization
of the system to make sure it remains near zero, indicating
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FIG. 2. Time evolution of the net magnetic moment per supercell
(blue dashed line), its accumulated average (red solid line), and the
local magnetic moment of a single Ni atom (green dots) for the cubic
paramagnetic NiO at T = 600 K from the DLM-MD calculation.

that the simulated system remains in the DLM state during
the whole simulation. Figure 2 shows the time evolution of
the net magnetic moment per supercell (blue dashed line) in
μB extracted from DLM-MD calculations of the PM NiO at
T = 600 K. The accumulated average of the net magnetization
(red solid line) is also shown. For further information, we
also demonstrate the variation of the local magnetic moment
of a single Ni atom as a function of simulation time (green
dots). As mentioned earlier, the spins are aligned in up and
down directions having equal positive and negative values.
This is shown in Fig. 2 by two series of green dots with the
average absolute value of 1.759 μB . We observe a similar
behavior in the magnetization via DLM-MD calculations at
other temperatures (not shown here).

From our calculations, the average local magnetic moment
of Ni ions in the AFM phase is 1.764 μB . These values are
in very good agreement with other experimental [46] and
theoretical studies [4,47] for both phases, and correspond
to the high-spin magnetic state of the Ni2+ (3d8) ions in a
cubic crystal field. We can therefore conclude that neither
the magnetic disorder and the AFM-PM phase transition nor
explicit lattice vibrations have a prominent impact on the value
of the local magnetic moment, in line with our previous studies
on the localized magnetic moments on Cr atoms in a CrN
ceramic system [48] but in contrast to the case of more itinerant
elemental pure Fe [49].

C. Phonon dispersion relations

We have calculated the phonon dispersion relations of
the PM NiO at two different temperatures, just below its
magnetic ordering temperature at 500 K and well above it
at 1000 K. For the LO-TO splitting we used the following
calculated static dielectric properties: Z∗

xx(Ni) = Z∗
yy(Ni) =

Z∗
zz(Ni) = 2.158 ± 0.006e, Z∗

xx(O) = Z∗
yy(O) = Z∗

zz(O) =
−2.151 ± 0.008e, ε∞

xx = ε∞
yy = ε∞

zz = 5.002 ± 0.009, all
off-diagonal tensors components are almost equal to zero, as

FIG. 3. Phonon spectra of PM NiO at 500 K (green lines) and
1000 K (red lines), filled circles represents DMFT results [50].
Experimental data for AFM phase measured at 297 K [51] presented
as open circles.

it must be in a cubic crystal. The results for both temperatures
are shown in Fig. 3.

We see that the PM phase is dynamically stable in the whole
investigated temperature range, giving additional justification
to the reliability of our computational approach. Interestingly,
the PM phase of NiO is dynamically stable even at a tem-
perature where the AFM phase is found experimentally. This
means that there are no dynamical instabilities or phonon
softening in the PM phase of NiO that are directly responsible
for a simultaneous magnetic and structural transition observed
in NiO at the Néel temperature. In fact, a strong softening
is observed in our calculations with increasing temperature,
especially in the optical part of the spectrum.

Unfortunately, we are not aware of any high-quality experi-
mental measurements of the phonon dispersion relations in the
PM NiO. However, the phonon spectra of the AFM NiO phase
were measured by Coy et al. [51] at 297 K. They observed a
well-defined band gap of approximately 1.6 THz. In addition,
Coy et al. mentioned the preliminary measurements above the
Néel temperature at 600 K. The authors of Ref. [51] indicated
that they did not expect large effects of the magnetic transition
on the phonon spectrum of NiO, besides a general temperature-
induced softening with lattice frequencies reduced typically
by about 3%. This conclusion is generally supported by good
agreement that can be seen for acoustic branches of the phonon
spectrum between our calculations for the PM NiO and Coy
et al. [51] measurements for the AFM samples. On the other
hand, our paramagnetic optical dispersion relations differ from
the experimental AFM ones to a larger degree.

Our calculated value of ε∞ = 5.002 is close to the experi-
mental value of 5.7 for the AFM phase [52]. The low-frequency
dielectric constant ε0 can be calculated from the Lyddane-
Sachs-Teller relation [53] for the cubic system: ω2

LO/ω2
TO =

ε0/ε∞. The calculated value at T = 500 K (ε0 = 12.6) is close
to the experimental ε0 = 11.75 value for the AFM phase [52].

Phonon spectra of the PM phase of NiO was calculated in
the framework of DMFT in Ref. [50]. As expected, the latter
reproduce the experimental results more accurately, because
of a more accurate description of the electronic structure of
NiO within the DMFT in comparison with LDA+U calcu-
lations, which we discuss below in more detail. Still, our
DLM-MD-LDA+U results satisfactory reproduce DMFT
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FIG. 4. Electronic structure of antiferromagnetic NiO from exper-
iment (top panel, red circles from Ref. [1] and blue dots from Ref. [13])
and theory (middle panel, green solid line denotes results of this
work, blue dashed line is from Ref. [20]) as well as for paramagnetic
NiO extracted from DLM-MSM calculations (bottom panel). The
theoretical calculations in this work are carried out at T = 0 K using
the LDA+U method with U eff = 8 eV (note that calculations in
Ref. [20] were carried out with U eff = 7 eV). The lattice constant
used in the calculations is the same as the 0 K experimental value
a = 4.17 Å. The zero energy point corresponds to the top of the
valence band.

phonon dispersion relations. In comparison with the exper-
iment, our calculations underestimate the experimental fre-
quencies while the DMFT in general overestimates them,
though to a smaller degree. Partly this disagreement can be ex-
plained by the softening of the lattice with temperature, which
is revealed in our calculations. Indeed, DMFT results were
obtained at zero ionic temperature, experimental data were
taken at 297 K (in magnetically ordered state), while our cal-
culations were carried out at 500 and 1000 K. In fact, it would
be desirable to carry out more accurate measurements of the
phonon dispersion relations in the paramagnetic phase of NiO.

D. The electronic structure

We have calculated the electronic structure of both AFM
and PM phases of NiO. The results at 0 K for both phases
are shown in Fig. 4. The experimental XPS-BIS data for the
AFM phase at room temperature is also shown for comparison.
One can see that our results for both AFM and PM phases are
in reasonable agreement with the experimental data. The band
gap of the AFM and PM phases from our calculations are about
4.6 and 4.3 eV, respectively, in qualitative agreement with the
experimental value of 4.3 eV [13]. The valence bandwidth
of ∼8 eV is in agreement with other theoretical [18,20,54]

studies. Our calculated results for AFM NiO demonstrate that
the LDA+U approach with the chosen set of parameters can
be used to study the electronic structure of paramagnetic NiO
using our DLM-based methods.

Let us start with static calculations using the DLM-MSM
method which mimics as close as possible state-of-the art
calculations for the ordered AFM phase, as well as calculations
carried out using the DFT+DMFT. Indeed, the DLM-MSM
calculations are performed nominally for static though mag-
netically disordered supercells. In this respect, the DLM-MSM
calculations purify the effect of magnetic disorder.

It is generally believed that the magnetic disorder does not
affect the electronic structure of NiO [55,56] and the electronic
structure of the PM NiO is often compared to that of the
experimental low-temperature AFM phase. In general, our
calculations support this conclusion. However, considering the
results shown in Fig. 4 in detail one can see that the band
gap is affected by the magnetic phase transition in NiO and
becomes smaller in the PM phase. Even though the difference
between the AFM and PM electronic structures is not huge
and the band gaps differ by only about 0.3 eV, for quantitative
calculations, it is important to consider the specific magnetic
state of relevance for the particular temperature of interest.
Within our DLM-MSM calculations, this effect is taken into
account and we can therefore successfully distinguish this
small difference. A very interesting point to note here is that
our DLM-MSM method shows certain effects of the magnetic
disorder when the lattice temperature is T = 0 K.

An additional check for the validity of our calculations can
be done by comparing our obtained electronic structure using
the DLM-MSM method with the results obtained from other
theoretical methods such as LDA+DMFT. This comparison is
of interest because the effect of magnetic disorder is included
in both approaches. However, within DMFT, the magnetic
disorder is treated in a formally correct though single site and
mean-field way while in the DLM-MSM it is included within
the concept of the temporarily broken ergodicity including
magnetically different local environments. Figure 5 (top panel)
displays the results from such a comparison. It is seen that
the LDA+DMFT method gives a more accurate description
of the electronic structure of NiO in terms of, e.g., valence
band width and the spectral weight between different peaks
in the spectra. In fact, there is a qualitative difference in the
orbital resolved spectra obtained by the two approaches. In
Fig. 5 (bottom panel) we show DOS of NiO projected onto
t2g , and eg orbitals of Ni, as well as on p orbitals of O. Note
that the results of our static LDA+U calculations agree well
with recent static DLM calculations by Trimarchi et al. [57].
While DMFT exhibits a Ni-d peak at low binding energy [11],
LDA+U with Ueff = 8 eV places the Ni d-band weight at
high binding energy. This effect is more pronounced for the
t2g orbitals with weaker p-d hybridization. Still, the main
features of the DOS essential for this study, including the
presence of the band gap in the paramagnetic state, are well
reproduced in our LDA+U calculations combined with the
DLM-MSM description of magnetic disorder. We note that
the plane LDA+U method is believed to be unsuitable for the
description of the paramagnetic state. We therefore conclude
that although not as accurate as LDA+DMFT calculations, the
approach proposed here is robust and gives a qualitatively good
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FIG. 5. Top panel: Comparison of the density of states (DOS) of
paramagnetic NiO from DLM-MSM calculations (blue dot-dashed
line) with the DOS from the LDA+DMFT calculations from Ref. [19]
(red solid line). Bottom panel: DOS of NiO calculated with the DLM-
MSM method (Ueff = 8 eV) projected onto t2g and eg orbitals of Ni,
as well as on p orbitals of O. The zero energy point corresponds to
the top of the valence band.

picture of the electronic density of states for such a prototypical
strongly correlated paramagnetic solid as NiO.

Let us next proceed towards a more detailed study of the
effects of the lattice vibrations coupled to the magnetic disorder
at higher temperatures. The DLM-MD method combined with
the LDA+U technique provides us with the opportunity to
study these effects simultaneously. We have used DLM-MD
at different temperatures to check the impact of the lattice
vibrations and the temperature on the electronic structure of
the PM phase of NiO.

Figure 6 compares the results from the static DLM-MSM
calculations at T = 0 K and the electronic structure from the
DLM-MD calculations at T = 600 K taking, in addition to
the atomic vibrations of the MD, the thermal expansion effect
into account through the experimental temperature dependence
of the lattice constant. As it is observed and expected, a
relatively small temperature increase, up to 600 K, does not
have a large influence on the electronic structure of NiO.
However, at higher temperatures (Fig. 7) the effect of lattice
vibrations becomes more prominent. Indeed, the band gap
becomes visibly smaller at T = 2000 K, just below the NiO
melting temperature of 2230 K [58]. One would wonder
whether this apparent change comes from the lattice vibrations
or is it due to the thermal expansion of the crystal lattice. To
answer this question, we run a DLM-MSM calculation with
atoms on static lattice positions but with the lattice constant
from T = 2000 K, i.e., a = 4.28 Å and compared it with our

FIG. 6. Comparison of the density of states (DOS) of paramag-
netic NiO at T = 600 K obtained from the DLM-MD calculation with
the static DLM-MSM calculations at T = 0 K. The thermal expansion
is included via experimental lattice spacing at different temperatures.
The zero energy point is set to the top of the valence band.

DLM-MSM result obtained for the zero temperature lattice
constant a = 4.17 Å. The comparison is shown in Fig. 8. What
is seen from the obtained density of states plots in Fig. 8
suggests that the impact from the thermal expansion is not

FIG. 7. Comparison of the density of states (DOS) of paramag-
netic NiO obtained from the DLM-MD at three different temperatures:
T = 600 K (red dot-dashed line), T = 1000 K (green dashed line),
and T = 2000 K (blue solid line). The thermal expansion is included
via experimental lattice spacing at different temperatures. The zero
energy point is set to the top of the valence band.
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FIG. 8. Comparison of the density of states (DOS) of paramag-
netic NiO obtained from the DLM-MSM calculations at T = 0 K
using two different lattice spacings, 0 K lattice parameter a = 4.17 Å
(blue dashed-dot line) and 2000 K lattice parameter a = 4.28 Å (red
solid line). The zero energy point is set to the top of the valence band.

large and therefore we conclude that the change in the spectrum
obtained at temperatures around the melting temperature from
the DLM-MD simulations should be attributed explicitly to
lattice vibrations. In other words, including lattice vibrations
at higher temperatures along with the magnetic excitations
has a prominent impact on the electronic structure of the PM
phase of NiO and hence cannot be ignored in predictions of its
high-temperature properties.

IV. CONCLUSION

We have combined the LDA+U approach with two recently
developed methods based on the disordered local moment
picture, the DLM in combination with the magnetic sampling
method with atoms sitting at a static lattice, and the DLM-MD
with atoms moving at finite temperature to simultaneously treat
the magnetic disorder and lattice vibrations in the paramagnetic
phase of NiO.

We have calculated the electronic structure of both anti-
ferromagnetic and paramagnetic phases of NiO. We observed
that the electronic structure of the PM phase neglecting lattice
vibrations, does not differ too much from that of the AFM
phase. However, certain effects of the magnetic disorder can

be observed even without an explicit consideration of lattice
vibrations and they should be taken into account for a more
exact and detailed study. In particular, we observe that the
magnetic disorder can have a visible effect on the band gap.

To obtain the electronic structure at finite temperatures, we
used the DLM-MD method. As expected, we see that changes
in the temperature up to 1000 K does not affect the spectrum
with more than a smear out effect but at a higher temperature of
2000 K, still well below the melting temperature of ∼2230 K,
the magnetic and lattice excitations have a strong impact. The
band gap becomes smaller and the fine structure of the peaks
in the density of the state disappears. This change is mostly
associated with the explicit effect of lattice vibrations and
to a lesser degree with the effect of the thermal expansion.
We conclude that in order to obtain the electronic structure
of PM NiO at lower and intermediate temperatures, it is safe
to use static lattice calculations with the thermal expansion
coefficient of the crystal lattice taken into account. As the
temperature increases and gets closer to the melting point of
NiO, the change in the density of states due to explicit lattice
vibrations becomes more apparent and therefore cannot be
ignored in the calculations.
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