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Interacting lattice systems with quantum dissipation: A quantum Monte Carlo study
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Quantum dissipation arises when a large system can be split in a quantum system and an environment to which
the energy of the former flows. Understanding the effect of dissipation on quantum many-body systems is of
particular importance due to its potential relationship with quantum information. We propose a conceptually
simple approach to introduce dissipation into interacting quantum systems in a thermodynamical context, in
which every site of a one-dimensional (1D) lattice is coupled off-diagonally to its own bath. The interplay
between quantum dissipation and interactions gives rise to counterintuitive interpretations such as a compressible
zero-temperature state with spontaneous discrete symmetry breaking and a thermal phase transition in a 1D
dissipative quantum many-body system as revealed by quantum Monte Carlo path-integral simulations.
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I. INTRODUCTION

Almost all quantum systems are inevitably coupled to their
surroundings. Understanding a quantum system immersed
in an environment is not only of immense practical signif-
icance in quantum simulation and information processing
[1], but also in understanding fundamental questions such
as the quantum measurement process, quantum-to-classic
crossover/transitions, and the mechanism of decoherence
[2-11]. The scenario is further complicated if the open
quantum system itself is a (strongly) interacting many-body
system, which is indeed the case for the majority of current
quantum computing systems, including trapped ions, Rydberg
atoms, and solid-state quantum computers/simulators. In such
systems, the interplay between the quantum many-body effects
and the dissipation gives rise to a plethora of novel phenomena
[12-29] in fields as diverse as solid-state physics, quantum
information, and atomic physics.

A variety of theoretical and numerical methods for open
quantum systems has been employed. Most of them take the
environment into account in an exact or approximate way
through deriving an effective action by integrating out the
bath degrees of freedom [4-10]. Despite its great success,
this treatment is difficult—or at least impractical in dealing
with the complex situations in which the system itself is a
quantum many-body system. Except for some special cases
[30], often in the field of open quantum systems, tracing out
the bath degrees of freedom produces an effective action with
unequal-time (retarded) interactions in imaginary or real time.
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This complicates the quantum many-body system usually to
such a degree that numerical methods currently used in strongly
correlated physics can no longer be applied [31]. A different
route to study open quantum many-body systems follows the
strategy of quantum optics by generalizing the Born-Markov
master equation to the many-body case, which is restricted to
those open quantum systems with a weak system-bath (SB)
coupling to a Markovian environment, neglecting the time
delay in the interactions.

In this paper, we propose a conceptually simple approach
to study the dissipative interacting quantum system by treating
the bath degrees of freedom on the same footing as the system
variables, even though we are only interested in the properties
of the quantum system. An essential ingredient of this approach
is the separation of a global system into a quantum subsystem
and a bath, where the choice of the bath Hamiltonian needs to
be simple enough to be tractable by conventional many-body
numerical methods, yet complicated enough to capture the
essential physics of such environments occurring in nature.
Motivated by a recent intriguing proposal of modeling the
environment by an engineered spin chain [32,33], we perform a
numerically exact quantum Monte Carlo (QMC) path integral
simulation with the worm algorithm [34] (here in the imple-
mentation of Ref. [35]) and the stochastic series expansion
algorithm [36] to study a composed quantum many-body
system with a special lattice geometry, which is interpreted
as an interacting lattice system with quantum dissipation.

The main points of our results are highlighted as follows.
The phase diagram of an interacting lattice system with quan-
tum dissipation is investigated by a numerically exact method.
At zero temperature, it is shown that the dissipation can
fundamentally alter the properties of the one-dimensional (1D)
system and induce a novel state that is absent as a ground state
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FIG. 1. Setup of an interacting lattice model with a local quantum
dissipation mechanism: an interacting hard-core boson chain (orange)
is off-diagonally and uniformly coupled to independent bath chains
(green).

in typical 1D closed quantum systems. At finite temperature,
we find that even though both the dissipation and the thermal
fluctuations are individually detrimental to long-range order,
together they can facilitate it and give rise to a finite-T phase
transition in this 1D dissipative quantum many-body system.
Our results also show that spontaneous symmetry breaking
can only occur in a subsystem spatially embedded in a larger
system with an inhomogeneous Hamiltonian.

II. MODEL AND METHOD

The Hamiltonian describing a dissipative system contains three
parts: Hyr = Hy + Hp, + Hyyp,. For the system Hamiltonian H;
we choose a prototypical example of an interacting quantum
model: a 1D hard-core boson chain with nearest-neighboring
density-density interactions (or, equivalently, an X X Z model
in the spin language), which reads

1 1
I—IS = Z —J(Cljai+1 + H.C.) + V(n[ - 5) <n[+l - z)a

ey
where af (a;) is the creation (annihilation) operator of a hard-
core boson on site i, J is the tunneling amplitude, and V > 0
denotes the repulsive interaction strength.

Apart from the intrinsic difficulties in solving strongly
correlated physics, a proper modeling and dealing with a
realistic environment is also a theoretical challenge. For many
realistic quantum systems, we do not have a proper understand-
ing of the microscopic origin of dissipation. A desired bath
model consists of a quantum system with a gapless excitation
spectrum, and its number of degrees of freedom should be
much larger than that of the system to which it is coupled. In
addition, we devise the baths surrounding different system sites
in such a way that they do not influence each other, reflecting
the situation in scalable quantum computing with solid-state
devices. Finally, the bath model needs to be as simple as
possible to be tractable by numerical methods. A minimal bath
model satisfying the above requirements is a set of independent
chains of hard-core bosons, each coupled to a system site as
shown in Fig. 1, with the Hamiltonian

H, = — Z Jb(bj’jbiyjﬂ +H.c), 2)

iJj

where bi ; (bi,;) denotes the creation (annihilation) operator
of a hard-core boson at site j of the bath linked to the system

on site i. However, we should emphasize that the bosons in
the bath need not have the meaning of physical particles, nor
the 1D structure of the real geometry of the baths in nature.
H, in Eq. (2) plays the role of a quantum reservoir with a
continuum spectrum that can absorb extra energy from the
system. In passing, we note that the idea of independent baths
for composite systems was first introduced in laser theory and
later in modeling heat conduction [37]. In mesoscopic physics,
Buttiker proposed the idea of using a local reservoir to study
environment-induced inelastic scattering in quantum transport
[38,39]. However, in none of the above cases have interactions
been considered.

Regarding the SB coupling, a system can interact either
diagonally with the bath preserving its particle number, or
off-diagonally, exchanging both energy and particles simul-
taneously. The former case has been investigated previously
by two of us using a different algorithm [21]. We therefore
focus here on the off-diagonal, particle exchange SB coupling
with the following Hamiltonian:

Hsg ==Y J'(albio+He). 3)

i

We assume that each system site couples only to the central site
J = 0 of the bath chain with coupling strength J'. In spite of
their simplicity, Egs. (2) and (3) capture some of the essential
physics and represent at least part of the physical reality in both
a quantum optics and solid-state context; e.g., the spectrum
of the bath resembles that of a photonic band-gap material,
whereas the SB coupling, after a proper transformation, is
reminiscent of the matter-light interaction in quantum optics. In
addition, both the SB coupling strength and the bath properties
(e.g., the memory time) are highly tunable, which enables
us to investigate both Markovian and non-Markovian physics
ranging from weak to strong SE coupling regimes in a unified
picture.

The most obvious advantage of using Egs. (2) and (3)
to mimic dissipation is that it enables us to treat the bath
on the same footing as the system. In the following, we
use quantum Monte Carlo (QMC) simulations to study the
composed quantum system in the comblike geometry, in
which the 1D subsystem is regarded as a “system” and the
remainder are regarded as “bath(s).” Even though we solve the
global system, we focus only on the properties of the system.
In our simulations, we assume that the composed system
(system + bath) is weakly coupled to a superbath with working
temperature 7 and is thus in thermal equilibrium even though
the system is entangled with the bath. In all simulations, we
focus on half-filling for the composed system. Without loss of
generality, we assume that the system and bath chain have the
same length L. Periodic boundary conditions are used. Both
the ground state and the finite-temperature properties of the
composed system are investigated.

II1. PHASE DIAGRAM AT ZERO TEMPERATURE: AN
INFINITELY COMPRESSIBLE INSULATING PHASE WITH
DENSITY MODULATIONS

We first focus on the ground state (7 = 0) of the composed
system. In the QMC simulations, we scale the inverse temper-
ature as 8 = L, as is relevant for Luttinger liquids, thus setting
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FIG. 2. (a) The superfluid density of the system as a function of
V for various system sizes and $; (b) the finite-size scaling of the
DW structure factor for various V [J’ = 0.2J for (a) and (b)]; (c)
the zero-temperature phase diagram of the system with three different
phases: the Luttinger liquid (LL), the Mott-insulating phase (MI) with
CDW order, and the dissipative density wave (DDW) state. Inset (i)
ps as a function of J' in the LL phase with V = 0; inset (ii) finite-size
scaling of « in the compressible DW phase with parameters V = 4J,
J' = 0.2J. The inverse temperature is scaled as 8 = L in (a)—(c).

the dynamical critical exponent z = 1. The thermodynamic
limit is approached in the limit L — oco. Without the SB cou-
pling (J' = 0) it is known that 1D hard-core bosons with NN
interaction at half-filling undergo a Kosterlitz-Thouless (KT)
-type quantum phase transition at V = 2J from a Luttinger
liquid to a gapped Mott insulator with charge-density-wave
(CDW-MI) order. We investigate how the SB coupling changes
the above picture. To gain insight, we first discuss qualitatively
the effect of the SB coupling on the respective phases. Since a
particle that escapes into the y direction must come back to the
same site, the bath can be seen as enlarging the unit cell from a
single site to an (infinitely long) chain. Hence, we do not expect
the 1D nature of the Luttinger liquid to change substantially, but
since the system in the y direction is gapless and compressible,
the charge per unit cell does not need to be quantized.

The first quantity we analyze is the superfluid density,
defined as p; = L/B(W?) with W the winding number defined
along the x direction [40]. In Fig. 2(a), we fix the SB coupling
J' = 0.2J and plot p; as a function of V. A Weber-Minnhagen
fit [41] shows that p, exhibits a sudden drop from a finite value
o =0.228 to zero at V = 2.85/, indicating that there is still
a KT-type quantum phase transition. The non-Luttinger-liquid
phase on the other side of the transitions is also characterized
by spontaneous translational symmetry breaking through the
emergence of density-wave (DW) order characterized by the
static DW structure factor, S(m) = 1/L? C D~ {(n; —
%)(n_i — %)), as shown in Fig. 2(b). Up to now, it seems that the
dissipation does not bring any qualitative change to the system

other than shifting the position of the phase-transition point. A
striking difference can, however, be found in the compressibil-
ity of the DW phase, defined as k = ,B/L((NZ) — (N)») with N
the total particle number within the system chain (not the total
system). As shown in inset (ii) of Fig. 2(c), the compressibility
k increases linearly with L in the dissipative density wave
(DDW) phase, indicating an infinitely compressible state in
the thermodynamic limit that makes it fundamentally different
from the CDW Mott insulating state at J' = 0. The divergence
of the compressibility is due to the fact that every system site
is coupled to an infinite number of degrees of freedom; thus,
every unit cell can be doped with no energy cost. In passing,
we note that anomalously large isochoric compressibilities
have in the past been found in totally different contexts,
such as the superclimb of edge dislocations in solid *He
[42,43]. Furthermore, the vanishing of superfluid density in the
direction of the DW modulation rules out a supersolid. Such
a compressible insulating phase is absent as a ground state in
typical closed quantum spin-systems. The SB coupling allows
particles to delocalize over a larger system and is expected
to enhance the superfluid phase. Indeed, when increasing J’
at fixed V > 2J, the system goes over from the CDW-MI to
the DDW phase and finally to a superfluid, as can be seen
in Fig. 2(c). However, further increasing J’ >> J (which no
longer corresponds to a physically motivated SB coupling)
enhances singlet formation and leads to a strong suppression of
Ps» as can be seen in inset (i), but we expect no phase transition
in the thermodynamic limit.

IV. FINITE-TEMPERATURE PHASE DIAGRAM: A
THERMODYNAMIC PHASE TRANSITION IN A 1D
DISSIPATIVE INTERACTING QUANTUM SYSTEM

The most striking effect of the SB coupling on the quantum
many-body system can be found at finite temperature. On
the one hand, it is well known that there is no spontaneous
symmetry breaking at any finite temperature for a closed 1D
system with a local Hamiltonian (while long-range interactions
may change this scenario [44—49]). The argument goes as
follows, for instance for the CDW phase: Thermal fluctuations
induce pairs of kink-antikink domain walls that cost only a
finite amount of energy. At any finite temperature, the entropy
gain by deconfining the excitations overwhelms the energy
cost. The leads to a proliferation of domain walls, which
destroys the long-range CDW order. Furthermore, quantum
fluctuations induced by SB coupling are also detrimental to
the CDW order. On the other hand, the infinite compressibility
of the DW phase may alter the domain-wall proliferation
argument.

To better understand the latter, we switch off the quantum
fluctuations in the system (J = 0) and calculate the DW (stag-
gered) susceptibility of the system, defined as y = %((mz) —
(Im)?) [50], with m = L 3",(—1)'n;. We plot x as a function
of T in Fig. 3(a). Other than the upturn associated with the
ground state previously discussed, we observe a peak that keeps
growing with system size and whose peak position extrapolates
to a finite value of temperature in the thermodynamic limit
[see the inset of Fig. 3(a) for the finite-size scaling of the peak
position], which is a signature of a finite-temperature phase
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FIG. 3. (a) The staggered susceptibility x as a function of T for various system sizes L; (b) the Binder cumulant and (c) the correlation
length normalized by the size L as a function of T for increasing L [J = 0 and V = 4J’ for (a)—(c)].

transition. To verify this point, we also calculate the Binder
cumulant U, and the correlation length &, defined as

3 1 (m*
U, 5(1 - 5@)’ “4)
1 | Se)
= — | — — 1, 5
: a1\ St +q1) ©)

where S(Q) = 1/L*Y",; ¢'%0=7{(n; — 5)(n; — 3)) and g
2r/L. U, and €,/L as a function of T with different system
sizes are plotted in Figs. 3(b) and 3(c), and both have exhibited
the signature of a phase transition.

However, it is difficult to infer the universality class of the
transition from the numerical data: the lowest system sizes in
Fig. 3(a) are apparently not in the scaling regime, and the values
of x attained are rather low. Due to the presence of the bath,
we expect the finite-size effects to be more important than for
the usual spin or bosonic models with one particle. The finite-
size effects can also been seen in Figs. 3(b) and 3(c), where
we do not find a strictly size-independent (common crossing)
point. To study the universal class of this phase transition, we
need to simulate a significantly larger system within the scaling
regime. This is difficult in our current QMC simulations with a
worm-type update due to the special comblike geometry of the
system lattice, especially in the case we studied with J = 0,
where the update may be inefficient even though the model is
free from the sign problem. Also, due to the limited system
sizes we can study and the strong finite-size effects, we cannot
ignore the possibility of a crossover, where the position of
the peak in Fig. 3(a) may shift extremely slowly to zero with
increasing system size.

If we start from a system whose ground state has no DW
order (e.g., V = 2J’) and increase the temperature, there is
no finite-temperature phase transition, as shown in Fig. 4(a).
Hence, even though thermal fluctuations and SB coupling are
both detrimental to DW long-range order, they can conspire to
facilitate it. Similar phenomena have been observed before in
the finite-temperature phase transition of a quantum compass
model in a square lattice with oo , coupling along the

i+ey
horizontal bonds and ;" o7, , coupling along the vertical bonds

i Titey
playing a similar role to that of quantum fluctuations [51].
The reason behind this is that the total system we studied
has a comblike geometry in two dimensions. The domain-wall

excitations are no longer deconfined: due to the SB coupling,

separating a kink-antikink pair over some distance d will
inevitably perturb the bath chains between them, and cost an
amount of energy depending on d. In the case of models with
long-range interactions [44-49], the interactions between a
kink-antikink pair are also confined, which originates from the
long-range nature of the interactions, instead of the system-
bath couplings as in our case. In the previous discussion in
this section we set J = 0, thus all the quantum fluctuations
come from the off-diagonal SB coupling terms. To complete
our discussion, we switch on the single-particle hopping in
the system chain, and we study the finite-temperature phase
diagram of the model in the 7'-J plane with a fixed V = 4J';
the result is shown in Fig. 4(b).

V. DISCUSSION

While it is widely believed that dissipation leads to dephas-
ing, which drives a quantum system toward a classical one, here
we show an example in which the quantum dissipation induced
by an off-diagonal SB coupling to a quantum environment
can enhance the quantum fluctuations in the system and give
rise to counterintuitive phenomena. One of the most important
questions is to what extent real dissipation can be modeled
by the specific choice of the bath and SB coupling used in
this paper, which provides the simplest example of gapless
quantum modes coupling locally and off-diagonally to the
system. Usually, the randomness feature of the environment
can be absorbed into the spectrum function of the bath, while a
proper revision of the bath Hamiltonian in our model can mimic

(a) 21(b)
41 ;” V=2 o2
[t —e—V=4)' 7 .
3 ‘Q\ ‘ v=8J' High-T
n
29 | 0.1-
1 Ccbhw
0 : — 0.0 . . . r
0 1 2 TN'" 00 01 02 03 04J/J'

FIG. 4. (a) x asafunction of T with L = 64, J = 0, and different
V; (b) the finite-temperature phase diagram in the 7-J plane with
V=4J.
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more general dissipation with various spectral functions.
However, our model does not apply for those open quantum
many-body systems with nonlocal dissipation where the entire
system shares the same environment (as, e.g., in cavity QED
[52]). Also, open quantum systems coupled to a classical en-
vironment, e.g., a classical noise, involve real-time evolutions
[53-56], thus they are beyond the scope of our current scheme.

VI. CONCLUSION AND OUTLOOK

We propose a conceptually simple approach to deal with
quantum dissipation in open interacting quantum systems,
which allows us to investigate both Markovian and non-
Markovian physics ranging from weak to strong SB coupling
regimes in a unified picture. We explored the properties of
an embedded 1D quantum many-body system by numerically
solving a special comblike lattice geometry. Counterintuitive
zero-temperature and thermal behavior has been discovered,
indicating that dissipation can fundamentally alter the way
we look at the properties of quantum many-body systems:
spontaneous symmetry breaking can occur in a subsystem
of reduced dimensionality spatially embedded in a larger
system with an inhomogeneous Hamiltonian. Some avenues
for further work immediately suggest themselves. First, a
generalization to higher dimensions is straightforward. Notice
that both the bath and the SB coupling term lead to positive-
definite expansions in the path-integral formulation. Therefore,
as long as the system Hamiltonian is free from the sign
problem, the total Hamiltonian can be solved in a numerically
exact way by QMC. This allows one in principle to investigate
the effect of quantum dissipation on various systems with
long-range order (symmetry breaking) and even topological
order, but also on how quantum coherence and entanglement
properties may change. Even though in this paper we only
study the equilibrium state (for the total system), it would be
very interesting to explore the nonequilibrium dynamics of the
dissipative quantum many-body system in the current scheme,
which is beyond the scope of QMC simulations but may be
accessible by other methods (e.g., an exactly solvable quadratic
fermionic model defined on a similar comblike lattice). The
far-from-equilibrium dynamical and steady-state properties of
a driven-dissipative quantum many-body system remain an
open and elusive question [57].
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APPENDIX A: A BRIEF INTRODUCTION OF THE
QUANTUM MONTE CARLO METHOD WITH THE
WORM ALGORITHM

We consider a Hamiltonian H , which can be decomposed as
H = —T + V, where the T represents the off-diagonal terms
in the Hamiltonian and V' is the diagonal ones in the Fock
basis |i) = |nny - - - ny). The partition function Z = Tre ##
can be expanded in terms of the probability functions of space-
(imaginary-) time configurations as

> B T L5}
Z ="Tr / drn/ dt,_ / drty
; 0 0 0

xe WV fo— @1V ——t )V P —(B-t)V

[e'e} B Ty 1)
= Z Z /0 dfn'/o d'L’n_l .. A d‘L’]

n=0 [ir),...,|in)

x W(ty, ..

'sTn7|i1)1""|in))1 (Al)

where 7, is the time of the nth tunneling event in the world
line of the particles, and [i,,) denotes the particle configura-
tions between the imaginary time 7,,_; and t,, (as shown in
Fig. 5), and for a given space- (imaginary-) time configura-
tion: {ty,...,Ty,li1), --.,lin)}, the corresponding probability
W(ty,...,Tu,li1), .. .,]|ix)) can be written as

W = (i, |’]A“|l'2>e*(rzfrl)E,‘2 (i2|7"~|i3>ef(r37t2)E,v3 .

x e~ @—Tu-DEi, (in|f|il>e—(ﬁ+fl—m)5;1 , (A2)

where E; = (im|Vim) is the interaction (diagonal) energy
for the particle configuration between t,, and t,_;. As
long as 7' is a positive-definite operator, we can prove that
W(ty, ... Tusli1), - - -, lin)) is always positive, which enables
us to perform the importance sampling and evaluate the average
value of physical quantities over a limited number of space-
(imaginary-) time configurations. A worm algorithm is an
update algorithm in which the partition function in Eq. (A1) is
sampled indirectly in the extended configuration space of open
world-line configurations by performing local movement [34].

FIG. 5. A typical space- (imaginary-) time configuration in quan-
tum Monte Carlo simulations.
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APPENDIX B: PHYSICAL QUANTITIES OBTAINED BY
QUANTUM MONTE CARLO (QMC) SIMULATION

In this appendix, we will discuss the derivations of several
physical quantities from the QMC simulations. We should
emphasize that all these quantities are only defined for the
system instead of the system-+bath.

1. Superfluid density
The superfluid density p; is defined as

L o
ps = = (W7), (B1)

p
where W is the winding number along the system chain,
which can be obtained in the quantum Monte Carlo (QMC)
simulations [40]. Considering a world line of a hard-core boson
in the space -(imaginary-)time configurations, even though a
system boson can escape into the bath from a certain system
site, it will finally return to the system via the same system site,
since each bath chain is independent and a world line should
be a closed curve.

2. Compressibility

The system compressibility « is defined as the system
particle number N = ), (n;) in response to the perturbation

H' = —)". un;, which only operates in the system sites:
_ L N(w)l (B2)
K = L dl/v M)l p=0-

We assume that the bosons in the bath chain do not feel the
chemical potential. As we demonstrated in the main text, the
bosons in the bath chains do not necessarily mean the real
bosonic particles as in the system. They can be any bosonic
energy reservoir, e.g., a phonon, a photon, and so on, which
is insensitive to the external fields operating on the system
bosons. We can prove that k = %AN, where § = 1/T is the
inverse temperature, L is the system size, and AN = (1\7 2y —
(N2 is the variance of the system particle number. Notice that

1 * .
Tr A e PHatPr Do (B3)
Z(w) (Xl: )

with Z(p) = Tre AHotBr X thug

N(u) =

AN _ B TrN2e—FlotBu s, i
du Z(w)
B 21 8Z(H)Tr](]e—ﬂlflm+ﬁuﬁ
Z2(n) ou
= BN?) — (N)?). (B4

In the numerical simulation, the particle number fluctuations
can be derived from the histogram of the system particle num-
ber distributions in the QMC simulations, which is assumed
to be a Gaussian distribution for a sufficiently large system.
We fit the distribution of the particle number by a Gaussian

2

distribution as P(N) = \/2177764»121 = and the system particle

number fluctuation is the width of the continuous Gaussian
distribution (in the thermodynamic limit), AN = o.
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FIG. 6. Analysis of the KT phase transition for J' = 0.2J and
V = 2.85J using the Weber-Minnhagen fitting form of Eq. (C1). The
average error of the fitting is shown in the inset as a function of V for
fixed J/ =0.2J.

3. Charge-density-wave susceptibility

The charge-density-wave (CDW) susceptibility of the sys-
tem is defined as the static linear susceptibility of the CDW
order parameter m = %(Z(—l)in;) in response to the per-
turbation H' = —ps >_;(—1)'n; only operating on the system
sites:

()l mo = 2 () = (m)?)
dﬂs s)pus=0 — T .

X = (B5)

For any finite system size (m) = 0, thus in the QMC simula-
tion, we use a revised CDW susceptibility x’ defined as

L
x = ?(<m2> — (Im|)*), (B6)

which agrees with x in the thermodynamic limit.

APPENDIX C: THE KOSTERLITZ-THOULESS
TRANSITION

At the Kosterlitz-Thouless (KT) phase transition point, the
superfluid density flows as a function of L as [41]

ps(L) = pg(L — OO)(l + m), (C1)

where p{(L — oo) is the critical value of the superfluid
density at the transition point in the thermodynamic limit,
and C is a nonuniversal constant. To determine the p; and
the critical point V., we use the Weber-Minnhagen fit of
Eq. (C1) to obtain the superfluid density calculated in our QMC
simulations, pQMC(L), and we calculate the average error of
the fit, § = i >, 1ML — pME(L)| with L = 32,48,64,96,
for different interaction strengths V. Since the flow equation
(C1) is only valid at the phase-transition point, we expect that
the average error will reach its minimum at the critical point
V =V,, as shown in Fig. 6.
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