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Building blocks of topological quantum chemistry: Elementary band representations
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The link between chemical orbitals described by local degrees of freedom and band theory, which is defined
in momentum space, was proposed by Zak several decades ago for spinless systems with and without time
reversal in his theory of “elementary” band representations. In a recent paper [Bradlyn et al., Nature (London)
547, 298 (2017)] we introduced the generalization of this theory to the experimentally relevant situation of
spin-orbit coupled systems with time-reversal symmetry and proved that all bands that do not transform as band
representations are topological. Here we give the full details of this construction. We prove that elementary band
representations are either connected as bands in the Brillouin zone and are described by localized Wannier orbitals
respecting the symmetries of the lattice (including time reversal when applicable), or, if disconnected, describe
topological insulators. We then show how to generate a band representation from a particular Wyckoff position
and determine which Wyckoff positions generate elementary band representations for all space groups. This
theory applies to spinful and spinless systems, in all dimensions, with and without time reversal. We introduce
a homotopic notion of equivalence and show that it results in a finer classification of topological phases than
approaches based only on the symmetry of wave functions at special points in the Brillouin zone. Utilizing a
mapping of the band connectivity into a graph theory problem, we show in companion papers which Wyckoff
positions can generate disconnected elementary band representations, furnishing a natural avenue for a systematic
materials search.

DOI: 10.1103/PhysRevB.97.035139

I. INTRODUCTION

Stoichiometric crystalline materials in nature consist of
ordered arrays of atoms at lattice sites, with electrons in local
orbitals that hybridize and largely determine many physical
properties of the material. Because of the nonvanishing overlap
of orbitals, the real-space Hamiltonian of a crystal contains
terms coupling different lattice sites. Hence, while being local,
a crystal Hamiltonian is not diagonal in real space. Though
the chemical description and many physical properties are
local, physicists have chosen to understand crystals using band
theory because the Hamiltonian and its associated Schrödinger
equation are diagonal in momentum space. The momentum
space picture, while extremely useful, also obfuscates the local
physics present in crystals.

To remedy this disconnect, Zak [1,2] introduced the concept
of a band representation (BR) for spinless systems, with and

*Permanent address: Department of Physics, Princeton University,
Princeton, New Jersey 08544, USA.

without time-reversal symmetry. These band representations
are, roughly, mathematical vehicles that relate the orbital
representation of the electrons on sites in real (direct) space to
the momentum space description of the electron bands in the
Brillouin zone. Zak realized that band representations can be
decomposed into what he called “elementary building bricks,”
[1] which are themselves band representations, but which
cannot be further subdivided while preserving the symmetry
operations of the system. Twenty years later, in a series of
papers, Zak and Michel examined the connectivity of these
elementary band representations (EBRs) for spinless systems
[3–5]. Physically, the EBR connectivity represents the number
of energy bands that are connected together in the Brillouin
zone (BZ), and which cannot be disconnected without breaking
the space-group symmetry of the crystal.

While Zak and Michel sought to prove that EBRs were
connected, in this article we show that disconnected EBRs
do exist. A disconnected EBR consists of disconnected bands
that together form the EBR. We have previously introduced
these concepts as part of a much broader paper [6]. In that
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paper we argued that several ingredients, one of them being the
EBRs, can be used to define a new field, topological quantum
chemistry, which offers an unprecedented understanding and
predictive power about topological materials. In the current
paper we extend and fill in all the necessary proofs in the theory
of band representations. Our main result is that topological
bands are exactly bands that do not form band representations.
Among these, a particularly important set of topological bands
are those that form one connected component (subpart) of a
disconnected EBR. These bands must always be topological.
Such connected groups of bands that cannot result from a local-
ized set of atomic orbitals that obey the crystal symmetry—i.e.,
which lack an “atomic limit”—were studied in a related context
in Refs. [7,8].

The study of systems with spin-dependent terms in the
Hamiltonian require double space groups and their single-
and double-valued irreps [9,10]. In this article, when we refer
to space groups, we are implicitly referring to double space
groups, unless specified otherwise. We generalize Zak’s the-
ory to double-valued group representations with and without
time-reversal (TR) symmetry. We also derive necessary and
sufficient conditions for band representations to be elementary,
and highlight certain “exceptional cases.” We tabulate these
exceptions for spinful systems with and without TR and fill in
some cases missed in the original table of exceptions provided
by Michel and Zak for spinless systems. With this information
we can find the minimum set of Wyckoff positions necessary
to generate all EBRs, for single and double groups, with and
without TR, an enormous task that we tabulate in related
manuscripts [11,12]. When the EBRs are connected, we show
that they are related to exponentially localized Wannier orbitals
that respect the symmetries of the crystal (plus, when applica-
ble, time reversal). When they are fractionally filled, connected
EBRs represent protected (semi-)metals. Our theory, along
with the tables presented in Ref. [12], gives a full analysis
of the possible fillings of protected metals that exist in nature.
By charge transfer, fillings such as 1/16, 1/8, and 1/24 exist,
the last being the lowest possible filling. When a connected
EBR is fully filled, it represents a group of topologically trivial
bands, which describe an atomic limit. As a corollary, we show
there exist different atomic limits, not adiabatically continuable
to each other, but all described by symmetric, exponentially
localized Wannier states; they can be differentiated by the value
of their Berry phases [13–16] (Wilson loops [17–20]) or Berry
phases of Berry phases [21], etc. When an EBR is disconnected,
i.e., when it is formed by bands separated from each other by
an energy gap, then we show that at least one of those groups
of bands must be topological.

Our theory provides a crucial first step in an informed
search for topological materials: namely, searching for ma-
terials whose orbitals, especially at the Fermi level, induce
disconnected EBRs. To this end, in a series of related works,
we have defined, categorized, and given the representation
data for all the possible EBRs in all space groups: single- and
double-valued representations [which describe systems with
and without spin-orbit coupling (SOC)] and with and without
TR symmetry [6,9,11,12]. We find that there are 10 403 of these
different EBRs (3383 single-valued and 2263 double-valued
without TR and 3141 single-valued and 1616 double-valued
with TR imposed). The EBRs and their irreps at high-symmetry

points are freely available on the Bilbao Crystallographic
Server [9].

We now describe the connection to previous works clas-
sifying topological crystalline materials. Starting with the
inversion eigenvalue characterization of topological insulators
[22], eigenvalues of crystal symmetry operations have been
used to characterize Z2 topological insulators [23] and to
compute the Chern number of a set of bands [24,25]. It was
later shown that crystal symmetries can enhance the Altland-
Zirnbauer classification of topological insulators [23,26–42]
and protect semimetallic phases [34,43–57]. Most recently,
groups of bands have been classified by their irreducible
representations (irreps) at all high-symmetry points in the
Brillouin zone [58–60]. As noted in Ref. [60], irreps are a
sufficient, but not necessary, condition to diagnose topological
phases. We explore the relationship between this type of
classification and our classification in Appendix C 3, using the
Kane-Mele model of graphene as an example.

Our approach goes beyond existing works by introducing
a homotopic definition of equivalence; i.e., two sets of bands
are topologically equivalent not only if they have the same
irreps at all high-symmetry points, but also if and only if they
can be smoothly deformed into each other without breaking
any symmetries. The latter requirement preserves all Wilson
loop invariants [20]. Classifications of topological crystalline
materials can also be obtained using K theory [37,61–64].
While our method shares some phenomenological similarities
to the K-theory approach, we emphasize that we have very
different goals: instead of attempting to enumerate the topo-
logical classes mathematically permitted with a given set of
symmetries, we instead derive how topological phases arise
from atomic orbitals in physical systems.

Our paper is organized as follows: in Sec. II we review
the terminology of crystal lattices and derive how the sym-
metry of local orbitals determines the symmetry of the entire
group of bands originating from those orbitals. In Sec. III
we introduce the elementary band representation (EBR) and
derive the conditions under which bands originating from a
set of orbitals are elementary. We then prove in Sec. IV that
disconnected elementary band representations are topological.
Last, in Sec. V, we introduce time-reversal symmetry and
derive the conditions under which bands originating from local
orbitals are both elementary and time-reversal symmetric. In a
companion paper [65] we develop several applications of these
results to find topological materials.

II. FROM ATOMIC ORBITALS TO BAND
REPRESENTATIONS

To begin, we review the concepts necessary to define a
band representation, as was introduced by Zak in Ref. [1].
Here we start by following the canonical reference on space
groups, Ref. [66], and then follow the derivation of a band
representation from Ref. [67]. In order to adopt a constructive,
chemistry-friendly approach to the problem, we organize the
discussion to show how a local description (or, mathemati-
cally, a site-symmetry group representation) of atomic orbitals
induces a global description of the band structure that deter-
mines a local k · p description at every point in momentum
space.
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FIG. 1. Lattice basis vectors (a) and Wyckoff positions (b) of the
hexagonal lattice. The (maximal) 1a, 2b, and 3c Wyckoff positions
are indicated by a black dot, blue squares, and red stars, respectively.
The nonmaximal 6d and 6e positions are indicated by purple crosses
and green squares, respectively. The multiplicity is determined by
the index of the stabilizer group with respect to the point group C6v

(6mm). The general position 12f , corresponding to the orbit of a
generic point, is not explicitly indicated.

A. Wyckoff positions and stabilizer groups

A crystal structure consists of an arrangement of atoms that
is described by a Bravais lattice and which is invariant under
a group of symmetry operations, the space group (SG) G of
the crystal. We denote an element g ∈ G that acts in real space
by r → Rr + v by {R|v}; the Bravais lattice translations are
denoted {E|t}.

We use q to denote a position in the unit cell, whether
occupied by an atom or not. A crystal with an atom at q must
also have an atom at each site in the orbit of q, {gq|g ∈ G}.

Definition 1. The set of symmetry operations g ∈ G that
leave the site q fixed is called the stabilizer group or site-
symmetry group of q, and is denoted Gq ≡ {g|gq = q} ⊂ G.

The site-symmetry group Gq can include elements {R|v}
with v �= 0. Nonetheless, a site-symmetry group is, by its
definition, always isomorphic to a crystallographic point
group.

As an often-used example, we consider the two-dimensional
plane group p6mm, which is generated by {C3|0}, {C2|0},
{m11̄|0}, and translations, and which describes the honeycomb
lattice, are shown in Fig. 1(b). Now consider the site q =
(e1 − e2)/2. The mirror operation {m11|0}, which is a reflection
across the line perpendicular to the e1 + e2 axis [i.e., {m11|0}
sends e1 + e2 → −(e1 + e2)], leaves q invariant, as does a
π rotation about the origin followed by a translation by
e1 − e2. Hence, Gq is generated by {m11|0} and {C2|11̄} and
is isomorphic to the point group C2v .

The site-symmetry groups of any two points in the orbit of
q are conjugate to each other and are hence isomorphic. More
generally,

Definition 2. Any two sites whose site-symmetry groups
are conjugate are said to lie in the same Wyckoff position. Given
a site in the Wyckoff position, the number of sites in its orbit that
lie in a single unit cell defines the multiplicity of the position.

We always define the lattice translations relative to the
primitive (not conventional) unit cell. The Wyckoff positions
of p6mm are shown in Fig. 1.

Given a site q that is part a Wyckoff position of multiplicity
n, we label the points in the orbit of q that lie in the same
unit cell as q by qα , where α = 1, . . . ,n and q1 ≡ q. For each
α > 1 there exists an element gα /∈ Gq, which is not a pure
lattice translation, such that gαq = qα . The stabilizer group of
qα is given by

Gqα
≡ {

gαhg−1
α

∣∣h ∈ Gq
}
. (1)

The gα furnish the following coset decomposition of G:

G =
n⋃

α=1

gα(Gq � Z3), (2)

where Z3 is the group of Bravais lattice translations and g1 is
the identity element. The � denotes the semidirect product:
Gq � Z3 is the symmorphic space group which contains
the elements of Gq and which has the same Bravais lattice
as G.

We again consider p6mm and use the site q = (e1 − e2)/2
as an example. Since {C6|0} /∈ Gq

∼= C2v , the other two sites
in the orbit of q in the unit cell are given by q2 ≡ {C6|0}q and
q3 ≡ {C6|0}−1q; the red stars in Fig. 1(b) indicate the three
sites. All other symmetry operations in p6mm acting on q
take it to a position that differs from one of these sites by a
pure lattice translation.

It will be important in what follows to understand how each
site symmetry group Gq fits into the space group G. To this
end, we define:

Definition 3. A site-symmetry group is nonmaximal if there
exists a finite group H �= Gq, such that Gq ⊂ H ⊂ G. A site-
symmetry group that is not nonmaximal is maximal. A Wyckoff
position containing q is maximal if the stabilizer group Gq is
maximal.

A word of caution: if Gq
∼= P and Gq′ ∼= P ′, where P

and P ′ are abstract point groups, it is possible for P ⊂ P ′
even though Gq �⊂ Gq′ . For example, in P 6mm, taking q =
(e1 − e2)/2, Gq

∼= C2v , while G0
∼= C6v . Even though Gq �⊂

G0 (because, for example, {C2|11̄} ∈ Gq and {C2|11̄} �∈ G0),
C2v ⊂ C6v .

We can quickly find the maximal Wyckoff positions of
p6mm by using a sufficient, although not necessary, condition
for a site-symmetry group Gq to be maximal. The condition
is the following: if q is the unique point which is fixed by
each operation in Gq, i.e., there does not exist a second point
q′ �= q, which is also fixed by each element of Gq, then Gq is
maximal (we derive this condition in Appendix A). Since in two
dimensions, rotations about the axis perpendicular to the plane
keep only a single point fixed, any site-symmetry group which
contains a rotation about an axis perpendicular to the plane
is a maximal site-symmetry group. The Wyckoff positions of
p6mm are shown in Fig. 1(b). Since the 1a, 2b, and 3c positions
are invariant under six-, three-, and twofold rotations about the
ẑ axis, respectively, these three positions are maximal. The
nonmaximal positions 6d and 6e lie on mirror planes; they are
nonmaximal because their site-symmetry group is contained in
those of the two maximal positions that lie on the same mirror
plane (1a and 3c or 1a and 2b).
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B. Induction

Suppose nq orbitals reside on the site q, which belongs to a
Wyckoff position of multiplicity n. The wave functions of these
orbitals transform under an nq-dimensional representation ρ of
the site-symmetry group Gq. If the wave functions represent
spinless electrons, then ρ will be a single-valued representation
of Gq; if the the wave functions are spinful, then ρ will
be a double-valued representation (s = 1/2), such that a 2π

rotation results in a phase of e2πis = −1. For now, ρ may
be reducible or irreducible; we later show that we only need
concern ourselves with irreducible representations. On an
equivalent site qα , the orbitals transform under the conjugate
representation defined by ρα(h) = ρ(g−1

α hgα) for each h ∈
Gqα

; Eq. (1) shows that h ∈ Gqα
implies that g−1

α hgα ∈ Gq
for gαq = qα .

The nq orbitals on site q can be described by a set of Wannier
functions Wi1(r), i = 1, . . . ,nq , localized on q. For each g ∈
Gq, the functions transform as

gWi1(r) = [ρ(g)]jiWj1(r). (3)

Without loss of generality, choose the sites qα to be in the
same unit cell as q. Then the Wannier functions localized
on qα are defined by Wiα(r) = gαWi1(r) = Wi1(g−1

α r), where
α = 1, . . . ,n and n is the multiplicity of the Wyckoff position.
The Wannier functions on other unit cells are defined by
{E|tμ}Wiα(r) = Wiα(r − tμ), where tμ is a Bravais lattice
vector. As shown in Appendix B, the n × nq × N functions
Wiα(r − tμ), where N → ∞ is the number of unit cells in
the system, are closed under the symmetries of the full space
group G.

C. Local to global

We define the Fourier transformed Wannier functions:

aiα(k,r) =
∑

μ

eik·tμWiα(r − tμ). (4)

This exchanges our infinite n × nq × N -dimensional basis for
a finite n × nq basis for each of the N k’s in the first Brillouin
zone, corresponding to n × nq energy bands. The induced
representation in momentum space is defined as follows [1];
we derive it from the action of the space group elements on the
real space Wannier functions in Appendix B:

Definition 4. The band representation ρG, induced from the
nq-dimensional representation ρ of the site-symmetry group
Gq of a particular point q whose orbit contains the sites {qα ≡
gαq} in the unit cell, is defined by the action

[ρG(h)a]iα(k,r)

= e−i(Rk)·tβα

nq∑
i ′=1

ρi ′i
(
g−1

β {E| − tβα}hgα

)
ai ′β(Rk,r), (5)

for each h = {R|v} ∈ G, where for each choice of α the index
β is determined by the unique coset of G in Eq. (2) that contains
hgα:

hgα = {E|tβα}gβg, (6)

for some g ∈ Gq, coset representative gβ , and Bravais lattice
vector tβα .

The choice of coset representatives gα must be kept fixed
throughout the construction. The translation tβα is found as
follows: by moving gα to the right-hand side of Eq. (6),
it is evident that hqα = {E|tβα}gβgg−1

α qα = {E|tβα}gβgq =
{E|tβα}gβq = {E|tβα}qβ (the second and fourth equalities
follow from the definition of qα,β and the third equality follows
from g ∈ Gq), which yields

tβα = hqα − qβ. (7)

The matrix form of ρG(h) consists of infinitely many
(n · nq) × (n · nq) blocks. Each block is labeled by a pair
(k′,k), where k′ is a row index and k is a column index,
and corresponds to a mapping between Fourier transformed
Wannier functions labeled by these k,k′. For each h = {R|v} ∈
G and each set of columns corresponding to k, there is exactly
one nonzero block, which corresponds to k′ = Rk. We denote
this block by ρk

G(h), whose matrix elements are given by

ρk
G(h)jβ,iα ≡ e−i(Rk)·tβαρji

(
g−1

β {E| − tβα}hgα

)
. (8)

The full set of matrices ρk
G(h), for each k in the first BZ, contain

all of the nonzero elements of ρG(h) and thus completely
determine the band representation.

D. Global to k · p

For each k in the first BZ, the little group of k, Gk, is defined
by Gk = {h = {R|v}|Rk ≡ k,h ∈ G}, where the equivalence
relation Rk ≡ k is defined by equality up to a reciprocal lattice
vector. Gk is infinite because if h ∈ Gk, the operation of h

followed by any Bravais lattice translation is also in Gk. The set
{ρk

G(h)|h ∈ Gk} furnishes an (n · nq) × (n · nq) representation
of Gk, whose matrix elements are given by Eq. (8). We denote
this representation by ρG ↓ Gk; this is a subduction of ρG onto
Gk, projected onto the Wannier functions at k. Although the
little group Gk is infinite, the representation of two space group
operations {R|v} and {R|v + t1}, which differ by a full lattice
translation t1, will differ only by an overall phase e−i(Rk)·t1 =
e−ik·t1 in ρG ↓ Gk. Hence, ρG ↓ Gk is a “small representation”
[10].

The characters of ρG ↓ Gk are given by, for h ∈ Gk,

χk
G(h) ≡

∑
α

e−i(Rk)·tαα χ̃
[
ρ
(
g−1

α {E| − tαα}hgα

)]
, (9)

where

χ̃ [ρ(g)] =
{
χ [ρ(g)] if g ∈ Gq,

0 if g /∈ Gq,
(10)

and χ [ρ(g)] denotes the character of the matrix representative
of g in the representation ρ.

We would like to know how many times each irrep σ k
i of Gk

appears in ρG ↓ Gk, i.e., we would like to find the coefficients
mk

i which satisfy

(ρ ↑ G) ↓ Gk
∼=

⊕
i

mk
i σ

k
i , (11)

where we have used ∼= to denote the equivalence of represen-
tations and introduced the shorthand

miσi ≡ σi ⊕ σi ⊕ · · · ⊕ σi︸ ︷︷ ︸
mi

. (12)
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TABLE I. The character table for the group C6v . (In this table and
hereafter each of the conjugacy classes is represented by a symmetry
operation belonging to the class; conjugacy classes whose members
are obtained from those listed combined with Ē are not shown, e.g.,
C̄3z = C3zĒ and C̄6z = C6zĒ are not shown.) The irreps �1-�6 are
all single valued, while �̄7, �̄8, and �̄9 are double valued. �̄7 is
the |S = 3/2,mz = ±3/2〉 representation, �̄8 is the |S = 5/2,mz =
±5/2〉 representation, and �̄9 is the spin- 1

2 representation.

Rep E C3z C2z C6z m C6zm Ē

�1 1 1 1 1 1 1 1
�2 1 1 1 1 −1 −1 1
�3 1 1 −1 −1 −1 1 1
�4 1 1 −1 −1 1 −1 1
�5 2 −1 2 −1 0 0 2
�6 2 −1 −2 1 0 0 2
�̄7 2 −2 0 0 0 0 −2
�̄8 2 1 0 −√

3 0 0 −2
�̄9 2 1 0

√
3 0 0 −2

The multiplicities mk
i are determined by the linear indepen-

dence and completeness of the characters: they are the unique
solution to the set of equations,

χk
G(h) =

∑
i

mk
i χ

k
σi

(h), ∀ h ∈ Gk, (13)

where χk
σi

(h) denotes the characters of σ k
i .

This general formalism explains how energy bands in
momentum space inherit their properties from the real-space
orbitals on Wyckoff positions in the unit cell. An example of
how to compute the characters χk

G(h) is given in Appendix C 1.

E. Example: Induction from 1a

We now show how to induce a band representation from
the site q = (0,0) in the 1a Wyckoff position in p6mm. All
operations in p6mm of the form {R|0} leave this position
invariant; thus, the site-symmetry group Gq is generated by
{C3|0}, {C2|0}, and {m11̄|0}; Gq is isomorphic to C6v . The
character table for the irreps of C6v is shown in Table I [9].

For each irrep, �j (or �̄j ) in Table I, we can induce a band
representation according to Eq. (5). Since the Wyckoff position
has multiplicity one, the index α in Eq. (5) is trivial, and we
omit it. Consequently, in Eq. (6), since there is only one coset,
gα = gβ = E (E is the identity operator) and for each h =
{R|t} ∈ G, Eq. (6) simplifies to h = {E|t}{R|0}, using the fact
that {R|0} ∈ Gq and tαβ = t. Then Eq. (5) yields the band
representation:

[ρG,j ({R|t})a]i(k,r) = e−i(Rk)·t ∑
i ′

[�j (R)]i ′iai ′ (Rk,r), (14)

where the indices i,i ′ = 1, . . . ,nq = |�j | and the representa-
tion dimension |�j | is exactly equal to the character of E in
Table I. Equation (14) shows that each element {R|t} in the
space group is represented in the band representation by an
infinite matrix, due to the fact that k takes N → ∞ values,
where N is the number of unit cells. That infinite matrix
transforms the Fourier transformed Wannier function at k to
one at Rk, transforms the orbital i to i ′ with the coefficient

[�j (R)]
i ′i , and gives an overall phase e−i(Rk)·t. It is evident

that the infinite dimensional representation can be reduced
into finite dimensional space group representations that act
on the finite set of Fourier transformed Wannier functions
{ai(Rk,r)|i = 1, . . . ,|�j |,{R|t} ∈ G} for fixed k [9,10].

This procedure generalizes to Wyckoff positions with mul-
tiplicity greater than one by including the index α in Eq. (5).
The only additional difficulty is that gα and gβ in Eq. (6) are
nontrivial: α is determined by the left-hand side of Eq. (5)
(qα = gαq) and β must be found from the coset decomposition
in Eq. (2); tαβ is then obtained from Eq. (7). An example is
shown in Appendix C 1.

III. ELEMENTARY BAND REPRESENTATIONS

We would like to determine when a band representation can
be decomposed into smaller, unique, band representations. To
this end, it is necessary to define an equivalence relation of
band representations, which we first introduced in Ref. [6]:

Definition 5. Two band representations ρG and σG are
equivalent iff there exists a unitary matrix-valued function
S(k,t,g) smooth in k and continuous in t such that for all
g ∈ G

(1) S(k,t,g) defines a band representation according to
Eq. (8) for all t ∈ [0,1],

(2) S(k,0,g) = ρk
G(g), and

(3) S(k,1,g) = σ k
G(g).

This definition implies that ρk
G and σ k

G restrict to the same
little group representations at all points in the BZ. However, it is
necessary to have a stronger definition of equivalence because
it is possible for two EBRs to have the same representations at
all points in the BZ but be physically distinguishable by a Berry
phase [6,13–15,68]. We work out examples in Appendixes D
and C 3. In these cases, even though S(k,0,g) and S(k,1,g)
restrict to the same little group representations at all points in
the Brillouin zone, any mapping S(k,t,g) between them will
not be a band representation—it will either break a crystal
symmetry or break time reversal locally—and in this case
S(k,0,g) and S(k,1,g) will be inequivalent.

Definition 5 preserves any quantized Wilson loop [20]
invariant, which is understood as follows: since S is continuous
in t , any property of a band representation evolves continuously
under the equivalence S. In particular, the Wilson loop matrices
computed from the bands in the representation ρk

G evolve
continuously into the Wilson loop matrices computed in the
representation σ k

G. As such, two equivalent band representa-
tions cannot be distinguished by any quantized Wilson loop
invariant. This includes the recent case of invariants formed
from Wilson loops of Wilson loops [21].

We now explain how to construct the homotopy utilized in
Definition 5, given two distinct sites q and q′ with respective
site-symmetry groups Gq and Gq′ that have intersection G0 =
Gq ∩ Gq′ , where G0 is itself a stabilizer group of some
site q0 [69]. Then q0 has a free parameter that interpolates
between q and q′; for example, if q,q′ are high-symmetry
points, then q0 describes a line that connects them. Given any
representation σ of G0, we can induce a band representation
in two different ways, either (σ ↑ Gq) ↑ G or (σ ↑ Gq′) ↑ G,
which are equivalent. Then the free parameter in q0 is exactly
the parameter t in Definition 5 that continuously tunes the band

035139-5



JENNIFER CANO et al. PHYSICAL REVIEW B 97, 035139 (2018)

representation between q and q′. This establishes a sufficient
condition for equivalence:

Proposition 1. Given two sites q �= q′ and representations
ρ and ρ ′ of Gq and Gq′ , respectively, the band representations
ρ ↑ G and ρ ′ ↑ G are equivalent if there exists a site q0 and
representation σ of Gq0 such that Gq0 ⊂ (Gq ∩ Gq′), ρ = σ ↑
Gq, and ρ ′ = σ ↑ Gq′ .

Sufficient and necessary conditions for equivalence are
established by combining Proposition 1 with the fact that
equivalence is transitive (which follows from Definition 5.)

Using Definition 5 and following Ref. [6], we define
Definition 6. A band representation is called composite if it

is equivalent to the direct sum of other band representations. A
band representation that is not composite is called elementary.

We will now identify all the elementary band representa-
tions associated with a given space group. We first derive two
necessary but not sufficient conditions for a band representa-
tion to be elementary when time-reversal symmetry is ignored.
We then add time-reversal symmetry, and discuss its effects
on the theory of band representations. By construction, all
band representations admit a description in terms of localized
Wannier functions, as they are induced from the representation
of some site-symmetry group Gq (associated with the space
group G) under which the wave functions of local orbitals
transform.

First, because induction commutes with direct sums, i.e.,

(ρ1 ⊕ ρ2) ↑ G = (ρ1 ↑ G) ⊕ (ρ2 ↑ G), (15)

we deduce that
(1) reducible representations of Gq induce composite band

representations.
From this we conclude that we need only examine the

irreps of the stabilizer groups in order to enumerate all EBRs.
Second, induction is transitive: given groups K ⊂ H ⊂ G, and
a representation ρ of K , it follows that

(ρ ↑ H ) ↑ G = ρ ↑ G. (16)

From this it follows that
(2) all elementary band representations can be induced

from irreducible representations of the maximal site symmetry
groups.

This reduces the search for EBRs to bands induced from
the maximal Wyckoff positions (cf. Definition 3).

A. Exceptions

However, there are cases where an irrep of the site-
symmetry group of a maximal Wyckoff position induces a
composite band representation. This can happen because the
decomposition of an infinite dimensional representation into
elementary representations is not necessarily unique [69].
Given a maximal Wyckoff position {q}, and an irrep ρ of
Gq, ρG will be equivalent to a composite band representation
induced from a different maximal Wyckoff position {q′} if there
exists

(1) a path l which connects q and q′, such that the site-
symmetry group of each point in l is equal to G0 ≡ Gq ∩ Gq′ ,
and

(2) a representation σ of G0 such that ρ = σ ↑ Gq is
irreducible, while σ ↑ Gq′ is reducible.

Then ρG is equivalent to the composite band representation
(σ ↑ Gq′) ↑ G. The equivalence is furnished by inducing the
band representations from each point in l, using the irrep σ .
Since every point in the line l has the same site-symmetry
group, this indeed gives an equivalence as per Definition 5.
We give an example of such an equivalence in Appendix F.
We will refer to the irreps of maximal site symmetry groups
that do not induce EBRs as exceptions. Band representations
induced from irreps of maximal site symmetry groups that are
equivalent to exceptions are also exceptions.

We now describe how to determine which irreps of maximal
site symmetry groups induce exceptions. This is a crucial step
towards our goal of enumerating all EBRs, because such irreps
do not induce EBRs, even though they satisfy the necessary
(but not sufficient) Condition 2 below Eq. (16). To do this,
we first note that all single-valued point group representations
have dimension one, two, or three, while all double-valued
representations have dimension one, two, or four [only the
single and double cubic point groups have irreps of dimension
three and four, corresponding to the (single-valued) vector
spin-1 and (double-valued) spin-3/2 irrep, respectively]. Next,
given a representation σ of some G0 = Gq ∩ Gq′ , the induced
representation ρ = σ ↑ Gq will have dimension

dim(ρ) = dim(σ )[Gq : G0] ∈ dim(σ )Z, (17)

where [Gq : G0] denotes the index of G0 as a subgroup of Gq,
which, by Lagrange’s theorem, is always a positive integer
greater than one, if G0 �= Gq. In order for ρ both to be an
irrep of Gq and to be equivalent to an induction of a represen-
tation σ ↑ Gq, it must have dimension larger than 1. Hence,
dim(ρ) = 2 or 3 for single-valued representations, or dim(ρ) =
2 or 4 for double-valued representations. We now focus on
the double-valued group representations; the single-valued
exceptions were considered in Refs. [5,69]. Since dim(σ ) must
divide dim(ρ), we deduce that either dim(σ ) = 1,dim(ρ) = 2
or 4 or dim(σ ) = 2, dim(ρ) = 4. We show in Appendix E that
in the groups where Gq has a four-dimensional irrep and an
index two subgroup G0 that there is no site q0 which has G0

as its site-symmetry group. Thus, exceptions can only occur
when dim(σ ) = 1. After enumerating all point group triplets
Gq, Gq′ , G0, where Gq, Gq′ are maximal subgroups of G;
G0 = Gq ∩ Gq′ ; and [Gq : G0] = 2 or 4, we have found all
1D irreps of G0 which induce irreps of Gq, and reducible reps
of Gq′ and matched these cases to site-symmetry groups of
maximal Wyckoff positions for the 230 space groups [6].

For the classical space groups (those that permit only
single-valued representations), the list of all Wyckoff positions
for which these exceptions occur are tabulated in Refs. [5,69],
which we repeat for convenience in Table III; we have com-
puted the analogous list for the double space groups, shown in
Table IV, which we first presented in Ref. [6]. We have thus
established:

Proposition 2. A band representation ρG is elementary if
and only if it can be induced from an irreducible representation
ρ of a maximal site-symmetry group Gq, and if it is not listed
in Tables III or IV.

Thus, an algorithmic listing of all band representations
[11,12] does not need to include the irreps in Table III or IV.
Band representations induced from the site-symmetry groups
Gq listed in these tables are composite. They reduce into a sum
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of elementary band representations induced from Gq′ , listed in
the second column of Table III or IV. We give an example of
such a band representation in Appendix F. Proposition 2 and
Tables III and IV accomplish our goal of identifying all the
EBRs associated with a given SG.

IV. BAND CONNECTIVITY AND
TOPOLOGICAL SYSTEMS

We have so far established the conditions under which
a band representation induced from an irrep of the site-
symmetry group of a maximal Wyckoff position is elementary.
In this section we establish the connection between EBRs and
topological bands, which we define as follows:

Definition 7. A set of bands are in the atomic limit of a space
group if they can be induced from localized Wannier functions
consistent with the crystalline symmetry of that space group.
Otherwise, they are topological.

Band representations, by their construction, describe a
system in the atomic limit [67]. Thus, topological bands
must be groups of bands that satisfy the crystal symmetry in
momentum space, but nevertheless do not transform as a band
representation. In other words, they cannot be induced from
localized Wannier orbitals that obey the crystal symmetry [18].

A. Compatibility relations and quasiband representations

A set of Bloch wave functions that obey the crystal symme-
try will, at each point in the BZ, transform as a sum of irreps of
the little group at that point. However, the irreps at each point in
the BZ cannot be chosen independently [6,11,12]. In particular,
given a high-symmetry line emanating from a high-symmetry
point, the little group of the line is a subgroup of the little group
of a point. It follows that each irrep that appears in the band
decomposition at the point can be subduced to a sum of irreps
that appear on the line; in this way, the irreps along the line are
completely determined by the irreps that appear at the point.
This decomposition is referred to as a “compatibility relation”
between the high-symmetry point and line [10]. Compatibility
relations also exist for planes and volumes emanating from
lines and planes, respectively.

Every band representation yields a solution to the com-
patibility relations by construction. On the other hand, there
exist solutions to the compatibility relations that are not band
representations. Following Bacry [14] and Ref. [6], where we
also explored some of these ideas, we define

Definition 8. A quasiband representation (qBR) is any
solution to the compatibility relations.

As we mentioned above, band representations describe the
atomic limit. The reverse is also true: any set of atomic orbitals
induces a band representation. We are thus motivated to define:

Definition 9. A qBR that is not a (composite or elementary)
band representation is a topological quasiband representation
(tqBR).

Because they are not band representations, tqBRs cannot
describe bands with localized, crystal-symmetric Wannier
functions: if they existed, such Wannier functions would reside
on some Wyckoff position and transform under a represen-
tation of the site-symmetry group of that position, thereby
inducing a band representation. This is the natural extension

to crystal-symmetric systems of the results by Soluyanov
and Vanderbilt [18,70], which showed that Z2 topological
insulators lack time-reversal symmetric Wannier functions.

B. Connectivity of EBRs

Now let us consider a Hamiltonian H constructed from
localized orbitals whose eigenstates transform in an elementary
band representation ρG associated with a space group G; G

may be a classical, double, or even magnetic space group in
any number of dimensions. Next, assume that the energy bands
corresponding to the representation ρG can be divided into two
disconnected components, which are separated by an energy
gap 	, which can vary as a function of k, but which is always
finite. Let P1 (P2) be the projector onto the disconnected group
of bands with lower (higher) energy. Then P1 (P2) commutes
with all the symmetry generators g in G. Thus, the projected
Hamiltonian H1 ≡ P1HP1 commutes with all the symmetries
of G. Now suppose that the nonzero eigenstates of P1 and
P2 transform according to band representations ρ

(1)
G and ρ

(2)
G ,

respectively, induced from a set of orbitals that transform
into each other under the symmetries of G. This implies
ρG = ρ

(1)
G ⊕ ρ

(2)
G , which contradicts the hypothesis that ρG is

elementary. Thus, there are two possibilities: either the bands
that correspond to ρG are connected or the nonzero eigenstates
of P1 or P2 do not both transform like a band representation
of G and hence cannot be derived from a set of orbitals that
transform into each other under the crystal symmetries, i.e.,
they do not correspond to a symmetry-preserving atomic limit.
We consider the latter case to be topological. We conclude,

Proposition 3. All elementary band representations are ei-
ther connected (as an energy graph), or (if disconnected) yield
at least one group of bands that is a (weak, strong, or crystalline)
topological insulator.

Reference [71] provides an example of a Hamiltonian where
an EBR splits into two groups of bands separated by an energy
gap such that one of the two groups of bands allows for
symmetric, localized Wannier functions, while the irreps that
appear in the other group of bands forbid their existence. This
possibility was overlooked in Ref. [6], although it is contained
in our theory of elementary band representations. It follows
from Proposition 3 that

Corollary 1. Any isolated set of bands that is not equivalent
to a band representation (composite or elementary) gives a
strong, weak, or crystalline topological insulator.

We conclude from Corollary 1 that when tqBRs occur in the
spectrum of a Hamiltonian, that Hamiltonian is in a topological
phase. This is a band property, independent of where the Fermi
level sits in a particular system. In addition, Corollary 1 is much
more powerful than the existing ad hoc approach to computing
topological crystalline invariants: even without knowledge of
a particular invariant, it determines whether a set of isolated
bands is topological. Furthermore, a list of distinct tqBRs
would themselves define a topological index.

It also follows from Proposition 3 that tqBRs arise follow-
ing a topological metal-to-insulator phase transition, where
single connected elementary band representation becomes
disconnected into two or more tqBRs. Similarly, tqBRs can
occur in a phase transition between a topologically trivial
and topologically nontrivial insulator when a gap closes in a
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composite band representation made up of two (without loss of
generality) elementary band representations and re-opens it to
give rise to two tqBRs. This possibility, where two elementary
band representation combine and give rise to two tqBRs, is not
followed further: although our theory identifies and charac-
terizes those situations as topological, additional quantitative
information is necessary to predict them—those topological
situations occur if the spin-orbit coupling is stronger than some
critical value and are hence quantitative by nature. In contrast,
the disconnected EBRs, where two tqBRs form one EBR, is
much stronger: The tqBRs are topological irrespective of the
quantitative parameters of the model.

The preceding logic leads us to one of the most important
consequences of this work: we can identify candidate topolog-
ical crystalline insulator (TCI) phases by forming all possible
solutions to the compatibility relations [9] and then looking
for disconnected energy graphs that are not EBRs. We develop
this search further in forthcoming work [6,11,12].

C. Obstructed atomic limit

We remarked (below Definition 9) that tqBRs do not have
crystal-symmetric Wannier functions. Yet, “topological insula-
tors” in one dimension present no obstruction to the formation
of symmetric localized Wannier functions [72,73]. Similarly,
the subclass of weak topological phases in two and three
dimensions that inherit their topology from one-dimensional
systems also allow for a Wannier description [63]. These cases
are considered “topological” because they display a quantized
polarization invariant. Similarly, the quadrupole insulators
proposed in Ref. [21] in higher dimensions, even though not
decomposable into one-dimensional wires, also have crystal-
symmetric Wannier states, despite being different from the
trivial atomic limit (in that they exhibit a quantized quadrupole
moment). In the nontrivial state, symmetric, localized Wannier
functions exist, but do not reside on the atomic sites and, fur-
thermore, cannot be continued back to the atomic sites without
either closing the gap to other bands or breaking a symmetry.

Since these phases possess symmetric, localized Wannier
functions, they can be continuously deformed to an atomic
limit; however, this limit does not describe the position of the
ions. Hence, these phases describe hybridization transitions.
This is very different from the tqBRs we defined in Definition 9,
which cannot be continuously deformed to any atomic limit.
In Ref. [6] we proposed the following definition to distinguish
these two cases:

Definition 10. A set of bands is in the obstructed atomic
limit when they possess symmetric, localized Wannier func-
tions that reside on a Wyckoff position distinct from the
Wyckoff position of the underlying ions and which cannot be
smoothly deformed to the ionic position.

A specific example of this situation was discussed in
Sec. V of Ref. [6].

D. How to determine whether a set of bands
is a band representation

From Corollary 1 we know that an isolated set of bands
is topological if it is not equivalent to a band representation.
We now seek to answer the following question on a practical

level: given an isolated set of bands, how does one determine
whether they are equivalent to a band representation?

As explained below Definition 5, the notion of equivalence
preserves the set of irreps that appear at each high-symmetry
point in the BZ and any quantized Wilson loop invariant. While
the latter are difficult to compute—a full list of all Wilson loop
invariants is not enumerated anywhere in the literature—the
former is straightforward.

Thus, a practical route to determining whether a set of bands
B is not a band representation is as follows: first, enumerate
all EBRs for the particular space group and list the irreps that
appear in each EBR at each high-symmetry point [6,9]. Next,
compute the irreps at each high-symmetry point for the bands
in B. If the set of irreps that have been computed for the bands
inB cannot be obtained from a linear combination of the EBRs
in the space group, then the bands in B do not comprise a band
representation and, by Corollary 1, are topological.

If the irreps that appear in B can be obtained from a linear
combination of the EBRs of the space group, then one must
compute symmetric and localized Wannier functions for the
bands in B to confirm that they are equivalent to the atomic
limit defined by the linear combination of EBRs or compute
a Berry phase that will distinguish the two. This is because,
as shown in Appendixes C 3 and D (motivated by examples in
Refs. [13–15]), it is possible for two distinct groups of bands
to have the exact same irreps at all high-symmetry points, but
different Berry phases (recall, this is exactly why we require
the homotopic notion of equivalence, as in Definition 5). If
the orbitals and atoms that contribute to B are known, this
information can be sufficient to exclude the existence of a
homotopy between the band representation induced from the
orbitals that contribute to B and the linear combination of
EBRs if there does not exist a symmetry-preserving path along
which their corresponding atomic orbitals can be continuously
deformed into each other, i.e., an equivalence between the band
representations is forbidden according to Proposition 1. An
example is discussed at the end of Appendix D.

We note, as shown in Appendix C 3, that it is possible that
the irreps that appear at high-symmetry points in the valence
bands can be obtained from a linear combination of EBRs
while those in the conduction bands cannot; in this case, the
conduction bands must be topological by Corollary 1.

V. TIME-REVERSAL SYMMETRY

In a time-reversal invariant system, the Wannier functions
must respect time-reversal symmetry in real space. For spinless
systems this means the Wannier functions must either be real
or come in complex-conjugate pairs. For spinful systems,
the Wannier functions must always come in spin up and
spin down pairs. We now characterize band representations
in the presence of time-reversal symmetry. We will see that
imposing time-reversal symmetry affects the properties of band
representations in both real space and momentum space.

A. Physically irreducible representations

Mathematically, the Wannier functions at a site q will
obey local time-reversal symmetry precisely when they trans-
form according to a time-reversal invariant representation of
the site-symmetry group Gq. Let ρ denote an irrep of the
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site-symmetry group. To determine whether ρ is time-reversal
invariant requires computing the Frobenius-Schur indicator
(reviewed in Appendix G), which labels ρ as real, quaternionic,
or complex. If ρ is real and single valued or quaternionic and
double valued, then there exists an antiunitary time-reversal
operator that squares to +1 or −1, respectively. In any other
case, ρ is not time-reversal symmetric. Then, to restore time-
reversal symmetry in real space, ρ must be paired with its
complex conjugate ρ∗.

Representations that cannot be decomposed as a sum of
other time-reversal-preserving representations are commonly
referred to as physically irreducible [74]. Thus, if ρ is an irrep
of Gq which is real and single valued or quaternionic and
double valued, then it is physically irreducible. Otherwise,
ρ ⊕ ρ∗ is physically irreducible: even though ρ ⊕ ρ∗ is a
reducible representation of Gq (without TR), it cannot be
decomposed into irreps that respect time-reversal symmetry.

We will later want to know which point group irreps are
time-reversal invariant; to this end, we have computed the
Frobenius-Schur indicator [Eq. (G1)] for all representations
of all 32 point groups (as tabulated in Ref. [10]) and found the
following:

(1) All point group irreps with dimension greater than
one are either real and single valued or quaternionic and
double valued, except for six complex irreps (two of the three
double-valued irreps of T and four of the six double-valued
irreps of Th).

(2) The one-dimensional double-valued irreps are either
real or complex (consequently, they are never time-reversal
invariant, which constitutes Kramers theorem).

(3) The one-dimensional single-valued irreps are either
real or complex.

B. Time-reversal symmetric band representations

Band representations induced from a time-reversal invariant
representation of the site-symmetry group will be endowed
with a time-reversal symmetry operator, which can be found
by generalizing the induction procedure in Eq. (5), as follows:
let ρ(T ) denote the antiunitary representative of the time-
reversal operator; ρ(T ) is the product of a unitary matrix
and the complex conjugation operator K . Since time reversal
commutes with all space group operations, it is does not mix
Wannier functions on different sites, i.e., in Eq. (6), α = β and
tβα = 0; consequently, Eq. (5) yields the band representation
of the time-reversal operator:

[ρG(T )a]iα(k,r) =
nq∑

i ′=1

ρi ′i(T )ai ′α(−k,r). (18)

We will refine our definition (Definition 6) of an EBR in
the presence of time-reversal symmetry. Following the logic
of Sec. III, we first define

Definition 11. Two band representations ρk
G and σ k

G are
physically equivalent if they are equivalent (in the sense of
Definition 5), and if, for all t , the homotopy S(k,t,g) between
them (cf. Definition 5) is a band representation induced from
a sum of some time-reversal invariant site-symmetry group
representations.

In other words, physically equivalent band representa-
tions are related by a homotopy that preserves real-space

time-reversal symmetry. Generalizing Definition 6 for elemen-
tary band representations, we then define [6]

Definition 12. A band representation is physically elemen-
tary iff it is induced from a (locally) time-reversal invariant
representation of a site-symmetry group, and if it is not physi-
cally equivalent to a direct sum of other band representations.
Otherwise, a band representation induced from a locally time-
reversal invariant representation of a site-symmetry group is
physically composite.

In other words, physically elementary band representations
(pEBRs) are the building blocks for band structures which re-
spect time-reversal symmetry in momentum space, and whose
Wannier functions respect time-reversal symmetry locally in
real space.

C. Exceptions

According to Definition 12, physically elementary band
representations are induced from time-reversal invariant repre-
sentations of maximal site-symmetry groups. Because Condi-
tion (1) also applies in the presence of time-reversal symmetry,
we further deduce that pEBRs are induced from physically
irreducible representations of maximal site-symmetry groups.
However, a physically irreducible representation of a maximal
site symmetry group does not always induce a physically
elementary band representation [the induced band represen-
tation will always be time-reversal symmetric, per Eq. (18),
but it might be composite]. This phenomenon was discussed
without time-reversal symmetry in Sec. III A and resulted in
Tables III and IV. We now consider the conditions under which
physically irreducible site-symmetry group representations
induce pEBRs.

If ρ is a time-reversal symmetric irrep of a site-symmetry
group and ρ ↑ G is an EBR, then ρ ↑ G will also be a pEBR by
definition (for, suppose not: then ρ ↑ G would be physically
equivalent to a direct sum of other band representations, which
violates the assumption that it is an EBR). Thus, real and single-
valued or quaternionic and double-valued irreps (i.e., irreps
that are time-reversal symmetric) that induce EBRs will also
induce pEBRs.

Consequently, there are two situations in which a physically
irreducible representation of a maximal site-symmetry group
Gq may induce a composite physical band representation: first,
if the physically irreducible representation of Gq, ρ, is also an
irrep of Gq and ρ ↑ G is a composite band representation,
i.e., an exception. This is exactly the mechanism described
in Sec. III A and the cases where this can occur are listed in
Tables III and IV; we describe how these lists change with
time-reversal symmetry in Sec. V C 1. The second is when the
physically irreducible representation is not an irrep of Gq, in
which case the physically irreducible representation is of the
form ρ ⊕ ρ∗, where ρ is an irrep of Gq. This is a generalization
of the mechanism in Sec. III A, which we detail in Sec. V C 2.

1. When an irrep of a maximal site-symmetry group
is time-reversal invariant, but induces a physically

composite band representation

Here we consider the case where an irrep ρ of a maxi-
mal site-symmetry group Gq is time-reversal symmetric. We
proved in the previous section that ρ ↑ G can only fail to
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be a pEBR if it fails to be an EBR, which can only happen
for the irreps listed in Table III or IV. The exceptional band
representations appearing in Tables III and IV are precisely
those band representations induced from irreps of Gq that are
equivalent to composite band representations induced from the
site-symmetry group Gq′ . In all cases, the equivalence S(k,t)
is via band representations induced from one-dimensional
representations of the lower-symmetry group Gq0 (we proved
this in Sec. III A). Thus, the homotopy between an exceptional
band representation at position {q} and a composite band
representation at position {q′} has Wannier functions localized
on a line with site-symmetry group G0 and transforming in
a one-dimensional representation. To determine whether that
one-dimensional representation respects time-reversal symme-
try, we distinguish between the single-valued (spinless) and
double-valued (spinful) group representations. As explained
in Sec. V A, one-dimensional double-valued site-symmetry
representations necessarily break time-reversal symmetry in
real space; thus, this homotopy violates time-reversal symme-
try in real space for the double-valued groups. Consequently,
none of the spinful exceptions listed in Table IV are physically
equivalent to composite representations. We conclude that
if ρ is a double-valued irrep of Gq and ρ is time-reversal
symmetric, then ρ ↑ G is always a pEBR.

Unlike the spinful case, a one-dimensional spinless rep-
resentation can be time-reversal invariant if it is real. We
have checked that this is the case for those exceptions with
G0 = C2v , which appear below the double line in Table III.
For all other exceptions in Table III, the relevant representation
ρ0 of Gq0 is complex and hence not time-reversal invariant
(specifically, in C3, �2,3 ↑ D3 = �3; in C6, �5,6 ↑ D6 = �5,
while �2,3 ↑ D6 = �6; and in C4, �3,4 ↑ D4 = �5 [75]). Thus,
the homotopy between ρ ↑ G and the composite band repre-
sentation induced from a representation of Gq′ breaks time
reversal and is not a physical equivalence when G0 �= C2v .
We conclude that if ρ is a single-valued irrep of Gq and ρ

is time-reversal symmetric, then ρ ↑ G is a pEBR unless it
appears below the double line in Table III.

2. When an irrep of a maximal site-symmetry group
is not time-reversal invariant

We now consider a new class of exceptions with spinless
systems with time-reversal symmetry that do not appear in
Table III (at the end of this section, we address why they do
not occur in the spinful case): it may be the case that there
exist sites q, q′, and q0 with Gq ∩ Gq′ = Gq0 , such that a real
irrep ρ0 of Gq0 induces a representation ρ ⊕ ρ∗ of Gq, which is
physically irreducible (but reducible without TR), and that the
induced representation ρ0 ↑ Gq′ is physically reducible. Then
the induced band representation (ρ ⊕ ρ∗) ↑ G is an exception
in the presence of TR because it is physically equivalent to the
composite band representation (ρ0 ↑ Gq′) ↑ G. This situation
would not be an exception without TR because, without TR,
ρ ⊕ ρ∗ is a reducible representation of Gq and, hence, induces
a composite band representation per Eq. (15).

We have listed the exceptions where ρ0 ↑ Gq = ρ ⊕ ρ∗ is
physically irreducible but ρ0 ↑ Gq′ is physically reducible in
Table II. We now explain how to find the entries in this table: as
noted above Eq. (17), all single-valued (spinless) point group

TABLE II. Additional exceptional band representations with time
reversal. In all cases, the exceptional representation is the physically
irreducible two-dimensional representation of Gq = S4. For the space
groups listed in this table, this band representation decomposes
through Gq0 = C2 into a composite band representation induced from
the reducing group G′

q. The first column gives the reducing group,
while the second column gives the associated space groups for which
the exception occurs.

Reducing group (Gq′ ) SGs

C2h 84,87,135,136
D2 112,116,120,121,126,130,

133,138,142,218,230
D4 222
D2d 217
T 219,228

representations ρ are one, two, or three dimensional. However,
we explained in Sec. V A that all 2D and 3D representations
are real, and hence time-reversal invariant. Thus, if ρ ⊕ ρ∗ is a
physically irreducible representation of Gq, then dim(ρ) = 1
and, consequently, dim(ρ ⊕ ρ∗) = 2. Since G0 is a proper
subgroup of Gq, dim(ρ ⊕ ρ∗ = ρ0 ↑ Gq) > dim(ρ0); conse-
quently, dim(ρ0) = 1 [this dimension counting explains why
we do not need to consider yet another type of exception where
ρ ⊕ ρ∗ is induced from a physically irreducible representation
of the form ρ0 ⊕ ρ∗

0 , where ρ0 is an irrep of G0: because
dim(ρ0 ⊕ ρ∗

0 ) � 2 and G0 is a proper subgroup of Gq, ρ0 ⊕ ρ∗
0

could not induce a representation of Gq of dimension 2]. For
ρ ⊕ ρ∗ to be physically irreducible, ρ must be a complex irrep
of Gq (recall from Sec. V A that there are no quaternionic 1D
irreps). The only point groups with single-valued complex 1D
irreps are C4, C4h, S4, C3, C3i , C6, C6i , C6h, T , and Th; we now
consider these cases:

Gq
∼= C3, C3i , C6, C6i , C6h, T , or Th : In these cases,

Gq contains a threefold rotation C3. Since Gq0 is an index-
two subgroup of Gq, Gq0 must also contain C3. Since are
interested in a real representation ρ0 of Gq0 , χρ0 (C3) = 1,
where χσ (g) denotes the character of g in the representation
σ . Since Gq0 is an index-two subgroup of Gq, there must
exist an element h ∈ G, h /∈ Gq0 such that h2 ∈ Gq0 . We
now deduce the character of C3 in the induced representation
χρ0↑G(C3) using the Frobenius formula, which says that if
hC3h

−1 /∈ Gq0 , then χρ0↑G(C3) = χρ0 (C3), while if hC3h
−1 ∈

Gq0 , then χρ0↑G(C3) = χρ0 (C3) + χρ0 (hC3h
−1). In the first

case, χρ0↑G(C3) = 1. In the second case, (hC3h
−1)3 = E

implies [χρ0 (hC3h
−1)]3 = 1 and since ρ0 is a real represen-

tation, χρ0 (hC3h
−1) = 1. Consequently, in the second case,

χρ0↑G(C3) = 2. However, we deduced above that ρ is a
complex 1D representation; this means that χρ(C3) = e±2πi/3

and, consequently, χρ⊕ρ∗
(C3) = −1. Thus, if Gq contains a

threefold rotation, the representation induced from ρ0 will not
be of the form ρ ⊕ ρ∗ where ρ is a complex 1D irrep of G;
hence, it does not contribute to an exception in Table II.

[Gq
∼= C4 or C4h] C2(h) is an index two subgroup of C4(h).

However, we have checked on the Bilbao Crystallographic
Server [76] that there is no Wyckoff position q′ distinct from
q such that Gq ∩ Gq′ ∼= C2(h). Thus, if Gq

∼= C4(h), it does not
contribute to an exception in Table II.
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TABLE III. Single-valued irreps of maximal site-symmetry groups that yield composite band representations and thus do not need to be
considered in a search for EBRs; computed by Bacry, Michel, and Zak [5,69]. Point group symbols are given in Schoenflies notation [10]. Irreps
are listed in the notation of Ref. [10] and, parenthetically, the notation of Ref. [80]. The first column gives the irrep of the maximal site-symmetry
group Gq, listed in the second column. This irrep induces a composite band representation. The third column gives the site-symmetry group Gq′ ,
into whose band representations this composite representation can be reduced. The fourth column gives the intersection group G0 = Gq ∩ Gq′ .
The fifth column gives the dimension of the irrep of Gq which induces the composite band rep. The sixth column indicates the space groups
for which this occurs by their sequential numbers. Groups that appear below the double line are also physically equivalent to a composite band
rep, while those above the double line are not; see Proposition 4 and surrounding text.

Irrep Site symm. grp. Reducing grp. Intersection grp.
(ρ) (Gq) (Gq′ ) (G0) Rep dim. SGs

�3(E) D3 C3i C3 2 163,165,167,228,230
Th C3 2 223
O C3 2 211
T C3 2 208,210,228

C3h C3 2 188,190,192,193

�5,6(E2,1) D6 C6h C6 2 192

�5(E) D4 O C4 2 207,211,222
C4h C4 2 124,140

�5(E) D2d D4h C2v 2 229
Th C2v 2 226
Td C2v 2 215,217,224
D2h C2v 2 131,132,139,140,223

[Gq
∼= S4] We see that all entries in Table II come from

the case Gq
∼= S4. The only index-two subgroup of S4 is

C2. One can easily check that the one-dimension real rep-
resentation ρ− of C2 with χρ−(C2z) = −1 induces a two-
dimensional physically irreducible representation ρ ⊕ ρ∗ of
S4, with χρ(IC4z) = i. To complete Table II, one must find all
space groups with distinct sites q, q′, and q0 such that Gq

∼= S4

and Gq ∩ Gq′ = Gq0
∼= C2. If, for the representation ρ− of

Gq0 , ρ− ↑ Gq′ is physically reducible then the space group is
listed in Table II.

We now address why this type of exception cannot occur
for spinful systems with double-valued representations: as
described in Sec. V A, the only double-valued representations
ρ ⊕ ρ∗ that are physically irreducible representations (but
reducible when TR is not present) of a site-symmetry group Gq
occur when either Gq = T or Th or when dim(ρ) = 1. In the
former case we considered every index-two subgroup Gq0 of
T and Th and checked that an irrep of Gq0 never induces a rep-
resentation ρ ⊕ ρ∗ of T or Th where ρ is complex. In the latter
case, if dim(ρ) = 1, then dim(ρ ⊕ ρ∗) = 2. Thus, if there ex-
isted an irrep ρ0 of Gq0 , such that Gq0 is an index-two subgroup
of Gq and ρ0 ↑ G = ρ ⊕ ρ∗, then dim(ρ0) = 1. However, as
discussed in Sec. V A, one-dimensional, spinful, irreps cannot
be time-reversal invariant; hence, no such ρ0 exists.

To summarize, we have the following general result:
Proposition 4. A spinless (single-valued) band representa-

tion ρG is physically elementary if and only if it can be induced
from a physically irreducible representation ρ of a maximal
site-symmetry group Gq, unless either (1) ρ appears below
the double line in Table III or (2) ρ is the two-dimensional
physically irreducible representation of Gq

∼= S4 in a SG listed
in Table II.

A spinful (i.e., double-valued) band representation ρG is
physically elementary if and only if it can be induced from

a physically irreducible representation ρ of a maximal site-
symmetry group Gq.

D. Connectivity of band structures: Physical topological
quasiband representations

In order to discuss time-reversal invariant topological
phases, we define, in analogy with Definition 12,

Definition 13. A physical quasiband representation (pqBR)
is any solution to the compatibility relations, which also
respects time-reversal symmetry in momentum space.

and
Definition 14. A pqBR that is not equivalent to any sum

of physically elementary band representations is a physical
topological quasiband representation (ptqBR).

In analogy to the discussion below Definition 9, ptqBRs
cannot have both time-reversal and crystal-symmetric Wannier
functions: if they existed, such Wannier functions would reside
on some Wyckoff position and transform under a represen-
tation of the site-symmetry group of that position, thereby
inducing a band representation.

It is straightforward to generalize Proposition 3 and Corol-
lary 1:

Proposition 5. All physically elementary band representa-
tions are either connected or, if disconnected, yield (weak,
strong, or crystalline) topological bands

and
Corollary 2. Any isolated set of bands that is not physically

equivalent to a physical band representation is a strong, weak,
or crystalline topological insulator.

It follows that when ptqBRs occur in the spectrum of a
Hamiltonian, that Hamiltonian is in a topological phase.

We now briefly comment on one route to find ptqBRs by
utilizing the exceptional band representations in Table IV.
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TABLE IV. Double-valued irreps of maximal site-symmetry groups that yield composite band representations. Irreps are listed in the
notation of Ref. [10] and, parenthetically, the notation of Ref. [80]. The first column gives the irrep ρ of the maximal site-symmetry group Gq,
listed in the second column. This irrep induces a composite band representation. Point groups symbols are given using Schoenflies notation
[10]; for example Cs is the point group generated by a single mirror. The third column gives the site-symmetry group Gq′ into whose band
representations this composite representation can be reduced. The fourth column gives the intersection group G0 = Gq ∩ Gq′ . The fifth column
gives the dimension of the irrep of Gq which induces the composite band rep. The sixth column indicates the space groups for which this occurs
by their sequential number. A sharp (
) indicates that while the band representation is disconnected in momentum space when time-reversal
symmetry is ignored, it is forced to be connected when time-reversal symmetry is included (note the refinement with respect to the asterisks in
Ref. [6]) [12,81].

Irrep Site symm. grp. Reducing grp. Intersection grp. Rep dim.
(ρ) (Gq) (Gq′ ) (G0) SGs

�̄8(F̄ ) Td D3d C3v 4 224,227
Oh C3v 4 225

�̄6(Ē1) D3 Th C3 2 223
O C3 2 211
T C3 2 208,210,228

C3h C3 2 188
,190
,192,193
C3i C3 2 163
,165
,167
,228
,230


�̄7(Ē3) D3h D3d C3v 2 193
,194


�̄9(Ē1) D6 C6h C6 2 192


�̄6,7(Ē2,1) D4 O C4 2 207,211,222
C4h C4 2 124
,140


�̄5(Ē) C2v C6v Cs 2 183
C3v Cs 2 183
C2h Cs 2 51
,63
,67
,74
,138


C4v Cs 2 99,107
D2d Cs 2 115,137

�̄6(Ē) D2 T C2 2 195,197,201,208,209,218
D6 C2 2 177,192
D3 C2 2 177,192,208,211,214,230
S4 C2 2 112
,116
,120
,121,126,130
,133
,138
,142
,218,230
D2d C2 2 111,121,132,134,224
C2h C2 2 49
,66
,67
,69,72
,124,128,132,134,135
,138
,192
D4 C2 2 89,97,124,126,211
D3d C2 2 224
O C2 2 209

Those band representations in Table IV without a sharp
(
) can be realized in momentum space with disconnected
components, while still respecting the compatibility relations
(see Sec. IV A) and time-reversal symmetry in momentum
space (by respecting time-reversal symmetry in momentum
space, we mean that for each irrep of the little group Gk that
appears at k, its complex conjugate representation appears
at G−k). Note, importantly, that this does not imply that
time-reversal symmetry is respected in real space and has a
matrix representation in the sense of Eq. (18). However, we
also know from the discussion following Definition 11 that
these ptqBRs are not physical band representations: each dis-
connected component is distinguishable from any physically
elementary band representation. Hence, the exceptional band
representations in Table IV are ptqBRs. Thus, Table IV serves
as a list of space groups (and particular Wyckoff positions) to
search for candidate TCI materials.

Physical topological quasiband representations can also be
found if ρ ⊕ ρ∗ is physically irreducible (and not listed as an
exception in Table II), but ρ ↑ G (and thus also ρ∗ ↑ G) is
time-reversal invariant in momentum space. In this case there

will generically be an energy gap between bands induced from
the band representation ρ ↑ G and those induced from ρ∗ ↑
G. Thus, ρ ↑ G and ρ∗ ↑ G describe two sets of connected
bands that do not admit crystal and time-reversal symmetric
Wannier functions, since the band representations ρ ↑ G and
ρ∗ ↑ G do not respect time-reversal symmetry in real space and
so are not separately physical band representations. It follows
from Corollary 2 that the gap between these two band groups
is (crystalline) topological [18,63]. Note, however, that it is
not always the case that ρ ↑ G is time-reversal invariant in
momentum space: the other possibility is that ρ ↑ G and ρ∗ ↑
G transform into one another under time-reversal symmetry;
in this case, the two band reps are forced to be degenerate at
the TRIM points in the BZ, and together form a connected
physically elementary band representation.

VI. ACCIDENTAL DEGENERACIES

The band structure of a particular Hamiltonian might
include bands transforming under different elementary band
representations that overlap in energy. Taking inspiration
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from Herring [77], we refer to these bands as accidentally
connected because symmetry does not require them to be
connected. It follows from the preceding arguments that we
can remove the accidental connections by adding to the
Hamiltonian a (potentially large) perturbation which respects
all crystal symmetries. However, one should not use this as an
excuse to dismiss the importance of accidental connections:
the nonuniqueness of the decomposition of composite band
representations means that accidental connections may be
physically interesting. For instance, when the stabilizer group
Gq of a nonmaximal Wyckoff position is a subgroup of two
different maximal stabilizers Gq′ and Gq′′ , the composite
band representations induced from Gq can be reduced in two
equivalent ways: either into EBRs induced from Gq′ or from
Gq′′ . The connectivities of the band representations in these
reductions can be different, and perturbing the Hamiltonian
can drive a transition between different band connectivities.
The transition region (if it represents a phase rather than a
critical point) will be dominated by an accidental connection
of these band representations. In real space, this process can
be visualized as moving the centers of the Wannier orbitals
of the crystal from Wyckoff position {q′} to Wyckoff position
{q′′}, along a line with stabilizer group Gq. We have worked
an example for a one-dimensional chain of s and p orbitals
with inversion symmetry—i.e., the Su-Schrieffer-Heeger [78]
or Rice-Mele [79] model—in Ref. [6].

VII. CONCLUSIONS

In this work we provided the theoretical framework of our
re-introduction [1] of EBRs as a natural way to determine the
topological properties of bands. The main idea, presented in
Ref. [6], is that, because EBRs unify the real and momentum
space descriptions of a crystalline solid, they can describe
both trivial and topological behavior. In particular, we showed
that disconnected EBRs yield bands that lack a local real
space description that preserves crystal (and/or time-reversal)
symmetry and hence are topological.

The connection to real space will also be useful to find
topological materials: namely, by searching for materials
whose orbitals at the Fermi level induce disconnected EBRs.
Similarly, semimetal can be found by searching for materials
whose connected EBRs at the Fermi level will be partially
filled.

In addition, we have shown that all of the EBRs in a
particular space group can be generated by induction from
irreps of maximal site-symmetry groups. This significantly
reduces the amount of work necessary to enumerate all EBRs
in the space group, a task that we take on in the related
Refs. [11,12]. This result makes possible a systematic search
for topological materials [65].
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APPENDIX A: PROOF THAT A SITE-SYMMETRY GROUP
WITH EXACTLY ONE FIXED POINT IS MAXIMAL

In this Appendix we prove that a sufficient condition for
a site-symmetry group Gq to be maximal, as defined in
Definition 3, is that q is the only site which is left invariant
under all of the symmetry operations in the site-symmetry
group. We call a point which is left invariant under all of the
symmetry operations a fixed point. Note that if q1 and q2 are
part of the same Wyckoff position, then their site-symmetry
groups are isomorphic; thus, if q1 is the only fixed point of
Gq1 , then q2 is the only fixed point of Gq2 . Consequently,
if any one site in the Wyckoff position has a maximal site-
symmetry group, then the site-symmetry group of any point in
the Wyckoff position is maximal.

We first prove that a finite group acting on a vector space
always has at least one fixed point: consider a finite group K =
{k1, . . . ,kn}. Then, for any i = 1, . . . ,n, {kik1, . . . ,kikn} = K

[this is evident because kikj ∈ K by group closure and for
any kj ∈ K , kj = ki(k

−1
i kj ), where, again by group closure,

k−1
i kj ∈ K]. It then follows that, for an arbitrary vector x, the

sum
∑

i kix is invariant under all elements of K; thus,
∑

i kix
is a fixed point of K . This completes the proof that a finite
group always has at least one fixed point. It also implies the
following useful corollary:

Corollary 3. A group which has no fixed point is infinite.
(It follows that any group containing a translation, screw,

or glide symmetry is infinite.)
We can now prove that a site-symmetry group with exactly

one fixed point is maximal. Let Gq be the site-symmetry
group of q and suppose that Gq has only q as a fixed point.
Now consider g ∈ G, g /∈ Gq, and define G′

q to be the group
generated by g and the generators of Gq. Then G′

q does not
have any fixed points: because g /∈ Gq, q is not a fixed point
(else g would be in Gq), but because Gq has no fixed points
besides q, no other point can be fixed. Thus, G′

q has no fixed
points and, hence, using Corollary 3, G′

q is infinite. It follows

035139-13



JENNIFER CANO et al. PHYSICAL REVIEW B 97, 035139 (2018)

that there is no finite group H �= Gq such that Gq ⊂ H ⊂ G.
Hence, according to Definition 3, Gq is maximal.

It follows that a nonmaximal site-symmetry group leaves
at least two points fixed. Notice that if the group leaves two
points fixed, then it also leaves the path containing those points
fixed (i.e., if Gqq1,2 = q1,2 then Gq[a1q1 + a2q2] = a1q1 +
a2q2). Similarly, if the group leaves three noncollinear points
fixed, then it leaves the plane containing those points fixed.
Consequently, any nonmaximal site-symmetry group leaves
either a line or a plane fixed (or, in the trivial case where Gq
only contains the identity, it leaves all of space fixed).

We remark that it is not necessary for Gq to have a single
fixed point in order to be maximal: for example, consider SG
P 6mm, which is generated by the wallpaper group p6mm and
by a unit translation in the ẑ direction. Each Wyckoff position in
P 6mm has the same site-symmetry group as its projection onto
the x-y plane. Thus, if Gq leaves a single point invariant in 2D,
it leaves an entire line invariant in 3D: for example, G1a

∼= C6v

leaves only the origin invariant in 2D, but leaves the ẑ-axis
invariant in 3D. This is a general feature of 3D SGs generated
by a wallpaper group and translations in the ẑ direction.

APPENDIX B: TRANSFORMATIONS
OF WANNIER FUNCTIONS

Following Ref. [67], we derive how a Wannier func-
tion Wiα(r − tμ) transforms under an arbitrary element h =
{R|t} ∈ G in the band representation ρG(h) induced from a
representation ρ of Gq, for some site q:

ρG(h)Wiα(r − tμ) = h{E|tμ}Wiα(r)

= {E|Rtμ}hWiα(r)

= {E|Rtμ}{E|tβα}gβgg−1
α Wiα(r)

= {E|Rtμ + tβα}gβgWi1(r)

= {E|Rtμ + tβα}gβ[ρ(g)]jiWj1(r)

= {E|Rtμ + tβα}[ρ(g)]jiWjβ(r)

= [ρ(g)]jiWjβ(r − Rtμ − tβα), (B1)

where we have used the decomposition of Eq. (6); hgα =
{E|tβα}gβg, for some g ∈ Gq and coset representative gβ ; and
tβα = hqα − qβ a Bravais lattice vector.

We now derive the action of h on the Fourier-transformed
functions aiα(k,r), defined in Eq. (4):

ρG(h)aiα(k,r) ≡ ρG(h)
∑

μ

eik·tμWiα(r − tμ)

=
∑

μ

eik·tμ [ρ(g)]jiWjβ(r − Rtμ − tβα)

= e−i(Rk)·tβα [ρ(g)]ji

×
∑

μ

ei(Rk)·(Rtμ+tβα )Wjβ(r − Rtμ − tβα)

= e−i(Rk)·tβα [ρ(g)]jiajβ(Rk,r), (B2)

where we have used the fact that R is orthogonal. Equation (B2)
is exactly Eq. (5), remembering that g is determined by Eq. (6).

APPENDIX C: GRAPHENE pz ORBITALS WITHOUT
INVERSION: EXAMPLE OF A DISCONNECTED EBR

We choose the lattice vectors of the honeycomb lattice:

e1 =
√

3

2
x̂ + 1

2
ŷ,

e2 =
√

3

2
x̂ − 1

2
ŷ, (C1)

which are shown in Fig. 1(a). Following the notation of Ref. [6],
we choose the group generators:

C3 : (e1,e2) → (−e2,e1 − e2), (C2)

C2 : (e1,e2) → (−e1, − e2), (C3)

m11̄ : (e1,e2) → (e2,e1), (C4)

the subscript 11̄ denotes that the mirror line has normal vector
e1 − e2 = ŷ.

We consider spinful pz orbitals on the corners of the
honeycombs [the 2b position in Fig. 1(b)], as in graphene.
We define the sites q ≡ q1 ≡ ( 1

3 , 1
3 ) and q2 ≡ (− 1

3 , − 1
3 ).

The site symmetry group Gq is generated by {C3|01} and
{m11̄|00}; the group is isomorphic to C3v . We choose the matrix
representation:

ρ({C3z|01}) = e
iπ
3 sz ,

ρ({m11̄|0}) = isx, (C5)

where sx,y,z are the Pauli matrices. This choice for the repre-
sentative of m11̄ differs by a unitary transformation from the
basis where m11̄ is represented by eiπsy/2 = isy (which is the
natural basis for a π spin rotation about the e1 − e2 = ŷ axis);
we choose it here to be consistent with Ref. [82]. Comparing
the characters with Table V shows that the representation in
Eq. (C5) is the spin- 1

2 representation �̄6.

1. Characters of EBRs at high-symmetry points

We want to compute the characters at high-symmetry points
k of the band representation induced from pz orbitals on the
2b Wyckoff position. For pedagogical purposes, we explic-
itly construct the matrix representatives here using Eq. (5),
instead of skipping to the character formula in Eq. (9).
The matrix representatives were computed in Ref. [6] [see
Eqs. (S21)–(S25)] using an intuitive constructive that differs
by a unitary transformation from Eq. (5) in this paper.

TABLE V. Character table for the double-valued representations
of C3v [9]. The one-dimensional representations �̄4 and �̄5 are com-
plex conjugates of each other. The two-dimensional �̄6 representation
is the spin- 1

2 representation, while the one-dimensional �̄4 and �̄5

representations act in the space of spin |S = 3/2,mz = 3/2〉 ± i|S =
3/2,mz = −3/2〉, respectively.

Rep E C3 m Ē

�̄4 1 −1 −i −1
�̄5 1 −1 i −1
�̄6 2 1 0 −2
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We first choose the coset representatives: g1 = {E|0}, g2 =
{C2|0}, which satisfy gαq = qα . The next step is to evaluate
Eq. (6), which we rewrite here for convenience:

hgα = {E|tβα}gβg. (6)

We can then compute the band representation matrices using
Eq. (5). Given h and gα ∈ {g1,g2} on the left-hand side of
Eq. (6), we need find the lattice translation tβα , gβ ∈ {g1,g2},
and g ∈ Gq that satisfy Eq. (6). We now do that for each
generator h of the honeycomb lattice: [h = {C3|0}] In this case,
Eq. (6) is written as

{C3|0}g1 = {E|01̄}g1{C3|01},
{C3|0}g2 = {E|01}g2{C3|01}. (C6)

Because {C3|0} does not mix the two sites in the Wyckoff
position (instead, it shifts q1,2 by lattice vectors), α = β in
both lines of Eq. (C6); this will be true for any h which differs
from an element of Gq by a lattice translation.

To find (ρ ↑ G) ↓ Gk when {C3|0} ∈ Gk (recall, Gk con-
sists of all space group operations which leave k unchanged up
to a reciprocal lattice vector), we apply Eqs. (5) to (C6), which
yields

ρk
G({C3|0}) =

(
eik·e2 0

0 e−ik·e2

)
⊗e

iπ
3 sz . (C7)

[h = {m11̄|0}] In this case, Eq. (6) yields

{m11̄|0}g1 = {E|0}g1{m11̄|0},
{m11̄|0}g2 = {E|0}g2{m̄11̄|0}, (C8)

where the m̄11̄ denotes the combined operation m11̄ followed
by a 2π spin rotation; notice that the 2π rotation is the product
of two consecutive operations of {m11̄|0}, which makes it an
element of Gq. It is nontrivial because it imparts an overall
minus sign in our double-valued (spinful) representation. Thus,

ρk
G({m11̄|0}) =

(
isx 0
0 −isx

)
=σz⊗ isx, (C9)

when {m11̄|0} ∈ Gk.
[h = {C2|0}] In this case, Eq. (6) yields

{C2|0}g1 = {E|0}g2{E|0},
{C2|0}g2 = {E|0}g1{Ē|0}, (C10)

which yields the subduced representation when {C2|0} is in the
little group of k:

ρk
G({C2|0}) =

(
0 −I
I 0

)
= −iσy ⊗ σ0, (C11)

where we have again used the fact that ρ({E|0}) =
−ρ({Ē|0}) = I.

We will now compute the characters of the matrix repre-
sentations in Eqs. (C6), (C8), and (C10) at the high-symmetry
points � = (0,0), K = ( 1

3 , 2
3 ), M = ( 1

2 ,0), defined with respect
to the reciprocal lattice vectors shown in Fig. 2. We compare
to the characters in Tables I, V, and VII to determine the mul-
tiplicity of each little group irrep in the appropriate subduced

FIG. 2. Reciprocal lattice basis vectors and high-symmetry points
of the hexagonal lattice.

representation; this method corresponds to Eq. (13) in the main
text. The results are shown in Table VI.

The little co-group at � is isomorphic to C6v . We know
χ�

G({E|0}) = 4 and χ�
G({C3|0}) = 2 [per Eq. (C6)]. Since

{C6|0} /∈ Gq, we also know that χ�
G({C6|0}) = 0. Comparison

to Table I shows that ρ�
G = �̄8 ⊕ �̄9 (�̄8,9 are both 2D irreps).

The little co-group at K is generated by C3 and C2m11̄.
We know χK

G ({E|0}) = 4. Per Eq. (C6), χK
G ({C3|0}) = −1.

Furthermore, since {C2m11̄|0} /∈ Gq (which follows from
{m11̄|0} ∈ Gq, {C2|0} /∈ Gq), χK

G ({C2m11̄|0}) = 0. Compari-
son to Table V shows that ρK

G = K̄4 ⊕ K̄5 ⊕ K̄6 (notice that in
character tables we use the notation �̄4,5,6 to refer to the irreps
of an abstract group—in this case C3v—but the notation K̄4,5,6

to refer to the irreps of the little group at K).
Finally, since the little co-group of M is isomorphic to C2v ,

which has only one double-valued irrep, as shown in Table VII,
the fact that ρM

G is four-dimensional is enough to tell that ρM
G =

2M̄5 (again, we use �̄5 to refer to the irrep of the abstract group
C2v , but the notation M̄5 to refer to the irrep of the little group
at M .)

While we omit it here for brevity, we can repeat the
induction procedure for any irrep of the site-symmetry group
of any Wyckoff position and then subduce to the little groups
of the high-symmetry points in the Brillouin zone. The results
for the double-valued irreps of the other maximal Wyckoff
positions of the honeycomb lattice are shown in Table VIII.

TABLE VI. Irreps of the little groups that appear at high-
symmetry points �, K , and M in graphene, labeled by the irreps
of the corresponding little co-groups, which are isomorphic to C6v ,
C3v , and C2v , respectively. The character tables for these groups are
given in Tables I, V, and VII. While all irreps of the abstract point
groups are denoted by �̄n, we label the irreps at K and M by K̄n

or M̄n.

k Irreps

� �̄8 ⊕ �̄9

K K̄4 ⊕ K̄5 ⊕ K̄6

M M̄5 ⊕ M̄5
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TABLE VII. Character table for the double-valued irrep of C2v

[9]. �̄5, is the two-dimensional spin- 1
2 representation. In terms of the

Pauli matrices, it is given concretely as �̄5(C2) = iσz, �̄5(m) = iσy .

Rep E C2 m C2m Ē

�̄5 2 0 0 0 −2

2. Connectivity of the EBRs

We want to know whether the EBR induced from pz

orbitals on the honeycomb lattice (derived in the previous
section) is connected. To this end, we derive the compatibility
relations introduced in Sec. IV A. At each high-symmetry
point (�, K , M), we will decompose the little group irreps
that appear at that point into a sum of irreps of the little
group of each high-symmetry line emanating from that point.
There are three high-symmetry lines [6,9]: �-K , �-M , and
K-M . Although the little group of each line is distinct, all
three groups are isomorphic to Cs � Z2, generated by a single
mirror and two primitive lattice translations. Table IX provides
the character table of Cs . By comparing to the character tables
of C6v , C3v , and C2v , we see that the two-dimensional
irreps of C6v , C3v , and C2v always subduce to �̄3 ⊕ �̄4,
while the one-dimensional irreps �̄4,5 of C3v subduce to the
one-dimensional irreps �̄3,4, respectively, of Cs .

We now consider the band representations in Table VIII;
the last column of the table gives the dimension of the band
representation. Since M̄5 is two dimensional (cf. Table VII),
any band representation that is two dimensional must be
connected, since its bands at least connect at M̄5. Hence, the
first five EBRs listed in Table VIII are connected.

However, as we now show, the compatibility relations allow
for the band representation induced from �̄6 on the 2b position
(as well as from �̄5 on the 3c position) to be disconnected

TABLE VIII. EBRs induced from double-valued irreps [9] of
the maximal site-symmetry groups in p6mm. As explained in
Appendix F, the band representation induced from the 3c position is
composite—it furnishes an exception—unless time-reversal symme-
try is present. The first column lists a maximal Wyckoff position and
the point group isomorphic to its site-symmetry group. The second
column gives the irrep of the maximal site-symmetry group Gq, from
which the band representation is induced. The third column gives
the little group representations which appear in the induced EBR at
the � point, as defined in Table I. The fourth column gives the little
group irreps that appear at the K point, as defined in Table V. The
fifth column gives the little group irreps that appear at the M point,
as defined in Table VII. The last column gives the dimension of the
EBR, which is also the connectivity of the elementary band rep.

WP ρ � K M Dim.

1a(C6v) �̄7 �̄7 K̄4 ⊕ K̄5 M̄5 2
�̄8 �̄8 K̄6 M̄5 2
�̄9 �̄9 K̄6 M̄5 2

2b(C3v) �̄4 �̄7 K̄6 M̄5 2
�̄5 �̄7 K̄6 M̄5 2
�̄6 �̄8 ⊕ �̄9 K̄4 ⊕ K̄5 ⊕ K̄6 2M̄5 4

3c(C2v) �̄5 �̄7 ⊕ �̄8 ⊕ �̄9 K̄4 ⊕ K̄5 ⊕ 2K̄6 3M̄5 6

TABLE IX. Character table for the double-valued irreps of Cs [9].

Rep E m Ē

�̄3 1 −i −1
�̄4 1 i −1

[6,11,12]. In this case, the bands can split into two disconnected
components, the first consisting of �̄8, K̄4, K̄5, and M̄5 and
the second consisting of �̄9, K̄6, and M̄5. The situation is
depicted in Fig. 3(a). According to Proposition 3, at least one
of the groups of bands that comprise the disconnected EBR is
topological.

The topological bands are protected by C2 symmetry, which
can be deduced by checking on the BCS server [9,81]. The
space group R3m (SG 160), generated by C3z and m11̄, which
is a subgroup of the space group P 6mm (SG 183) that describes
layers of graphene, does not have any disconnected EBRs with-
out time-reversal symmetry. Thus, if C2z symmetry is removed,
then the bands are topologically trivial. One can also check that
the topological protection is independent of the mirror symme-
try, since the band representation induced in space group P 6
(SG 168), generated by C3z and C2z, from the 2b position also
yields a disconnected EBR identical to that in P 6mm.

It is also possible for the bands to be connected, as depicted
in Fig. 3(b). Whether the bands are connected or disconnected
depends on energetics and the strength of the different spin-
orbit coupling terms present in the sample. A similar situation
is true for the band representation induced from �̄5 on the 3c

position.

Γ̄8

Γ̄9

K̄4

K̄5

K̄6

M̄5

M̄5

Γ̄8

Γ̄9

K̄4

K̄5

K̄6 M̄5

M̄5

(a)

(b)

FIG. 3. Two possible connectivities for the EBR induced from
the 2b position, �̄6 ↑ G with little group irreps labeled. In (a) the
bands are disconnected and thus the band structure contains a group
of topological bands, while in (b) they are connected. Energetics
determine which phase occurs in a particular system.
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3. Comparison to eigenvalue classification

We now specify the Kane-Mele model of graphene [82] with
sublattice symmetry, time-reversal symmetry, and inversion
symmetry-breaking Rashba SOC:

H = ti
∑
〈ij〉

c
†
i cj + iλSO

∑
〈〈ij〉〉

νij c
†
i s

zcj

+ iλR

∑
〈ij〉

c
†
i (s × d̂ij )zcj . (C12)

Since this model is derived from pz orbitals on the 2b position,
its bands are described by the EBR �̄6 ↑ G. The band structure
is shown in Fig. 3(a) in the Z2 nontrivial phase.

It is immediately evident that the two connected upper bands
(which contain the irreps �̄8, K̄4, K̄5, and M̄5) are topological
because they cannot be decomposed into any of the EBRs in
P 6mm, given in Table VIII. In contrast, the irreps that appear
in the lower bands (�̄9, K̄6, and M̄5) are identical to the irreps
that appear in the EBR induced from the 1a position �̄9 ↑ G,
as can also be seen in Table VIII. Both sets of bands have
a nontrivial Z2 invariant, even though the irreps that appear
in the lower bands match those in �̄9 ↑ G. This example was
also given in Ref. [6] as an example of a disconnected EBR that
yields topological bands, although it was not directly stated in
that paper that we were referring to the Kane-Mele model. (It
is also possible to construct a different Hamiltonian where the
bands exhibit the same irreps, but have a trivial Z2 index [71].)

Recent works [59,60] have classified noninteracting
fermionic phases by using a vector v to describe a group
of bands, where each component of the vector indicates
the number of times a particular irrep of a particular high-
symmetry point appears in that group of bands. For example,
the number of times the �j irrep appears in the subduction
of the band representation at � would be denoted by v�,j .
The compatibility relations restrict the set of allowed vectors.
Heuristically, these classification schemes consider the set of
vectors that satisfy the compatibility relations for a particular
space group modulo a set of “trivial” vectors, where a trivial
vector is one which can be obtained from an atomic limit.
Notice that this classification scheme is contained within our
theory of elementary band representations, since the elemen-
tary band representations define the irreps that appear at each
high-symmetry point in the Brillouin zone.

Such a classification will assign the lower bands in Fig. 3(a)
a trivial index, even though the bands are topological, because
their irreps match those of �̄9 ↑ G. In addition, the upper
bands will also be assigned a trivial index because their irreps
can be obtained from a subtraction of the irreps in �̄9 ↑ G

from the irreps in �̄6 ↑ G, even though the irreps in the upper
bands cannot be decomposed into any of the EBRs in P 6mm,
given in Table VIII. This is consistent with the discussion and
observation in Ref. [60].

APPENDIX D: EXAMPLE OF TWO EBRS THAT SHARE
THE SAME IRREPS AT EACH k POINT

BUT ARE NOT EQUIVALENT

In this Appendix we explicitly work out an example of
two EBRs that at each point k decompose into the same
irreps of Gk, but which differ by a Berry phase; this example

has been examined in Refs. [13–15], but we write it here
in modern notation. This example motivates the need for a
stronger definition of equivalence than comparing the irreps
of Gk. Definition 5 ensures that equivalent EBRs share all the
same Wilson loop invariants.

We consider the space groupF222 (SG 22), which describes
a face-centered cubic lattice whose symmetries are generated
by {C2x |0}, {C2y |0}, {C2z|0}. We define the primitive unit cell
lattice vectors ei and reciprocal lattice vectors gi by

e1 = 1
2 (1,1,0), g1 = 2π (1,1, − 1),

e2 = 1
2 (1,0,1), g2 = 2π (1, − 1,1), (D1)

e3 = 1
2 (0,1,1), g3 = 2π (−1,1,1).

We consider the sites q = (0,0,0) and q′ = (0,0,1/2),
which are described by the 4a and 4b Wyckoff posi-
tions, respectively. Each Wyckoff position contains four
sites in the conventional unit cell, depicted in Fig. 4(a),
and one site in the primitive unit cell. Their site-
symmetry groups are Gq = {{C2x |0},{C2y |0},{C2z|0}} and
Gq′ = {{C2x |tz},{C2y |tz},{C2z|0}}, where tz indicates a trans-
lation by −e1 + e2 + e3 = (0,0,1). The two site-symmetry
groups are isomorphic to each other.

We take ρ to be the trivial representation of Gq and ρ ′
the trivial representation of Gq′ . This corresponds physically
to, for example, spinless s orbitals on the relevant Wyckoff
position. Inducing the band representations ρG,ρ ′

G according
to Eq. (5) is simplified by the fact that the indices i and α

are trivial (i is trivial because there is one orbital on the site
and α because there is one site in the Wyckoff position). Thus,
given h = {R|th}, an arbitrary element in SG F222, Eq. (5)
simplifies to

ρk
G(h) = e−i(Rk)·th , (D2)

(0, 0,
1
2
)

(0, 0, 0)

ẑ

x̂

ŷ

(a) (b)

FIG. 4. (a) Conventional unit cell for F222 (SG 22). The solid
blue atoms sit at the 4a position (0,0,0) and the solid red atoms at
the 4b position (0,0,1/2). (b) Examining the ẑ axis shows that it is
impossible to move the blue atoms to the positions of the red atoms
while continuously preserving C2x symmetry because the symmetry
requires them to move in pairs (depicted by the blue dashed circles)
that transform into each other under C2x . However, there are not
enough atoms for this symmetry-preserving process to occur (or,
equivalently, the dimensionality of the site-symmetry group irrep is
not big enough).
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where we have used the decomposition in Eq. (6) with α =
β = 1, which simplifies to h = {E|th}{R|0}, since all rotations
{C2x,2y,2z|0} are in Gq. Similarly,

(ρ ′)k
G(h) = e−i(Rk)·t′

h , (D3)

where

t′
h =

{
th if R = C2z,

th − tz if R = C2x,2y.
(D4)

Equation (D4) follows from the decomposition in Eq. (6)
with α = β = 1; explicitly, if R = C2z, then {C2z|th} =
{E|th}{C2z|0} (notice {C2z|0} ∈ Gq′) and if R = C2x,2y ,
then {C2x,2y |th} = {E|th − tz}{C2x,2y |tz} (notice {C2x,2y |tz} ∈
Gq′).

We now prove that the characters defined in Eq. (9),

χk
G(h) =

{
e−ik·th if h ∈ Gk,

0 else,
(D5)

and

(χ ′)k
G(h) =

{
e−ik·t′

h if h ∈ Gk,

0 else,
(D6)

are equal for all k and h. We have used the fact that since R ∈
Gk and th is a lattice vector e−i(Rk)·th = e−ik·th ; the same holds
for t′

h. Equations (D5) and (D6) show that χk
G(h) = (χ ′)k

G(h)
when either R = C2z (in which case th = t′

h) and/or R /∈ Gk
(in which case both characters are zero).

It remains to show that χk
G(h) = (χ ′)k

G(h) when R = C2x,2y

and R ∈ Gk. Lets take R = C2x ; an analogous proof applies
when R = C2y . The condition R ∈ Gk implies C2xk = k mod-
ulo a reciprocal lattice vector. Utilizing Eq. (D1), C2xg1,2 =
g2,1 and C2xg3 = −(g1 + g2 + g3). Thus, writing k = kigi ,
where k1,2,3 are defined mod Z, the condition h ∈ Gk requires

k1 = k2 − k3, k2 = k1 − k3. (D7)

Thus, k · tz = ki(gi · tz) = 2π (−k1 + k2 + k3) = 0 mod 2π ,
where the last equality follows from Eq. (D7). Consequently,
when R = C2x , e−ik·th = e−ik·t′

h and χk
G(h) = (χ ′)k

G(h).
We have shown that for all h and k, χk

G(h) = (χ ′)k
G(h). It

follows that the band representations ρG and ρ ′
G share the

decomposition into irreps of the little group Gk at all points k
in the BZ (even though they are distinct EBRs).

Zak showed in Ref. [83] that because ρG and ρ ′
G are induced

from distinct Wyckoff positions, they have distinct Berry
phases. Namely, the holonomy of the Bloch wave function
along a particular direction in momentum space gives the
center of the Wannier function in the corresponding direction
in real space [84].

Thus, the band representations ρG and ρ ′
G are physically

distinguishable, which motivates the need for Definition 5, a
definition of equivalence that distinguishes them. Physically,
the reason these band representations are distinguishable is
because there is no way to continuously move a single s

orbital from the 4a position at (0,0,0) to the 4b position at
(0,0,1/2) while preserving the crystal symmetry because all
of the nonmaximal Wyckoff positions with sites immediately
adjacent to the 4a position have a multiplicity greater than one;
for example, a generic point on the ẑ axis with coordinates
(0,0,z), where z �= 0, 1

2 , belongs to a Wyckoff position with
multiplicity two, which also contains (0,0, − z), as depicted

in Fig. 4(b). Thus, these two EBRs are not equivalent per our
Definition 5.

APPENDIX E: FOUR-DIMENSIONAL IRREPS
OF MAXIMAL SITE-SYMMETRY GROUPS

In this Appendix we prove that if ρ is a four-dimensional
irrep of a maximal site-symmetry group Gq, then there does
not exist a point q0, whose site-symmetry group is an index
two subgroup of Gq.

There are only three point groups that have four-
dimensional irreps:O,Td , andOh.O andTd have one subgroup
of index two T , while Oh has three subgroups of index two Td ,
O, and Th. All of the index two subgroups we have listed (T , Td ,
O, and Th) have a single fixed point, that is, given one of these
subgroups, there is only one point which is left invariant by all
of the operations in the subgroup. We proved in Appendix A
that a site-symmetry group with a single fixed point must be
maximal. It follows that if there exists a point q0, which has
T , Td , O, or Th as its site-symmetry group, then these groups
are a maximal subgroup of the space group.

Now consider a space group G, such that there exists
a site q, whose site-symmetry group Gq is isomorphic to
O, Td , or Oh. Further suppose that there exists a point q0,
whose site-symmetry group is given by one of the index two
subgroups of Gq; call this subgroup G0. We explained in the
previous paragraph that G0 must be a maximal subgroup of the
space group. However, this directly contradicts the definition
of maximal (Definition 3), since G0 ⊂ Gq ⊂ G and G0 �= Gq.
Thus, by contradiction, we have shown that if there exists a
point q, whose site-symmetry group Gq is isomorphic to O, Td ,
or Oh, then there does not exist a point q0 whose site-symmetry
group is an index-two subgroup of Gq. Since these are the only
point groups with four-dimensional irreps, this completes the
proof.

APPENDIX F: EXAMPLE OF AN EXCEPTION
IN THE HONEYCOMB LATTICE

Consider a band representation induced from the site q =
(e1 − e2)/2, which belongs to the Wyckoff position 3c of the
honeycomb lattice, shown in Fig. 1(a). Utilizing the symmetry
actions in Eq. (C4), the site-symmetry group Gq is generated
by {C2|11̄} and {m11̄|11̄} and is isomorphic to C2v , which has
only one double-valued irrep �̄5.

Since Gq is maximal (cf. Definition 3), an irrep of Gq will
induce an EBR, consisting of six bands, unless it is an excep-
tion, in the sense of Sec. III A. All exceptions for double-valued
representations of three-dimensional space groups are listed in
Table IV; since the honeycomb lattice is two dimensional, we
consider its layered counterpart P 6mm (SG 183), which does
appear in Table IV. Hence, according to Table IV, the band
representation induced from the �̄5 irrep on q is equivalent (in
the sense of Definition 5) to a composite band representation
induced from either the 1a or 2b position, whose site-symmetry
groups are isomorphic to C6v and C3v , respectively.

We now prove explicitly that the band representation in-
duced from q in the absence of TR is equivalent to a composite
band representation induced from the q′ = (0,0) position by
constructing the homotopy described in Sec. III A.
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The site-symmetry group Gq′ of q′ contains all symmetry
operators that leave the origin invariant. The only nontrivial
element that leaves the origin invariant in Gq is {m11|0}
(the product of {C2|11̄} and {m11̄|11̄}). Thus, the intersection
of the two site-symmetry groups is given by G0 ≡ Gq ∩
Gq′ = {{E|0},{m11|0}}, which is isomorphic to Cs . G0 is the
site-symmetry group of the line connecting q and q′. The
character tables for C6v , C2v , and Cs are shown in Tables I,
VII, and IX. Per the construction in Sec. III A, we show
that the representation of Gq induced from an irrep of Cs ,
�̄5 = �̄4 ↑ Gq is irreducible, while the representation of Gq′

induced from an irrep of Cs , �̄4 ↑ Gq′ is reducible (we could
also have induced representations from �̄3 and found the same
result). First, since Cs is an order 2 subgroup of C2v , �̄4 will
induce a two-dimensional representation of C2v; since there is
only one two-dimensional representation of C2v , which is the
irrep �̄5, we conclude that �̄4 ↑ C2v = �̄5.

Since Cs is an order 6 subgroup of C6v , �̄4 will induce a six-
dimensional representation of C6v , which is clearly reducible,
as there is no 6D irrep of C6v; however, this is not enough
to uniquely determine the irreps into which it decomposes.
Instead, we compute the character of C3 and C6 in the induced
representation �̄4 ↑ C6v , both of which are equal to zero using
the Frobenius character formula [85]. Specifically, we choose
Cn

6 , n = 0, . . . ,5, to be the coset representatives of C6v/Cs ,
and since C−n

6 C3,6C
n
6 = C3,6 /∈ Cs for all n, the character of

C3,6 in the induced representation is zero. Knowing that �̄4 ↑
C6v is six dimensional, this is enough to deduce from Table I
that �̄4 ↑ C6v = �̄7 ⊕ �̄8 ⊕ �̄9 (in particular, �̄8 and �̄9 must
appear equally in the decomposition because the character of
C6 is zero and �̄7 must also appear the same number of times
as �̄8 ⊕ �̄9 because the character of C3 is zero). Thus, we have
shown that �̄4 ↑ C2v is an irreducible representation of C2v

while �̄4 ↑ C6v is a reducible representation of C6v .
We now notice that the line segment αq with 0 < α < 1 has

G0 as its site-symmetry group and, furthermore, that the end
points of the line are (0,0) and q. Thus, the band representations
induced from points on this line furnish a homotopy that
smoothly connects the band representations induced from �̄5

on the 3c position and �̄7 ⊕ �̄8 ⊕ �̄9 on the 1a position. Since
the latter representation is composite (by Condition 1), the
former is also composite. This explicitly shows why �̄5 ↑ G

induced from the 3c position is composite, even though the
3c position is maximal. However, if time-reversal symmetry is
imposed, �̄5 ↑ G is a pEBR because the 1D homotopy does
not obey time-reversal symmetry in real space, as discussed
in Sec. V C. Thus, in a time-reversal symmetric system, if the
bands induced from the 3c position are gapped, then the gap
is topological.

APPENDIX G: FROBENIUS-SCHUR INDICATOR:
TIME-REVERSAL SYMMETRY IN REAL SPACE

The reality of an irreducible representation ρ of a group
G is determined by computing the Frobenius-Schur indicator
[86]:

(ρ) = 1

|G|
∑
g∈G

χ (g2) =
⎧⎨
⎩

1 if ρ is real,
0 if ρ is complex,

−1 if ρ is quaternionic,
(G1)

where the sum is over all elements in G, including the identity.
If ρ is real, then there exists an antiunitary time-reversal

operator T+ that commutes with all unitary symmetry op-
erations and satisfies T 2

+ = 1. If ρ is a single-valued group
representation, this means it is time-reversal invariant. On
the other hand, if ρ is a double-valued representation, this
precludes the possibility of finding a T− satisfying T 2

− = −1
(this follows from Schur’s lemma, cf. Ref. [86]); in order
to have a time-reversal invariant system we must double the
representation to ρ ⊕ ρ. We can then define T− = T+ ⊗ (iσy).

The situation is reversed for (ρ) = −1. In this case, ρ

comes equipped with an antiunitary time-reversal operator
T− satisfying T 2

− = −1. Thus, if ρ is a double-valued group
representation, it is time-reversal invariant. But, if ρ is a
single-valued group representation, we must double it to ρ ⊕ ρ

in order to define T+ = T− ⊗ (iσy) satisfying T 2
+ = 1.

Lastly, no time-reversal operation can be defined for com-
plex representations, which satisfy(ρ) = 0. For either single-
or double-valued representations, the presence of time reversal
requires the representation to double to ρ ⊕ ρ∗. This doubled
representation is time-reversal invariant: for single group repre-
sentations we then take T = K ⊗ σx , while for double-valued
group representations we take T = K ⊗ iσy .
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