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Band connectivity for topological quantum chemistry: Band structures as a graph theory problem
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The conventional theory of solids is well suited to describing band structures locally near isolated points
in momentum space, but struggles to capture the full, global picture necessary for understanding topological
phenomena. In part of a recent paper [B. Bradlyn et al., Nature (London) 547, 298 (2017)], we have introduced
the way to overcome this difficulty by formulating the problem of sewing together many disconnected local k · p
band structures across the Brillouin zone in terms of graph theory. In this paper, we give the details of our full
theoretical construction. We show that crystal symmetries strongly constrain the allowed connectivities of energy
bands, and we employ graph theoretic techniques such as graph connectivity to enumerate all the solutions to
these constraints. The tools of graph theory allow us to identify disconnected groups of bands in these solutions,
and so identify topologically distinct insulating phases.
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I. INTRODUCTION

The fundamental assumption of the textbook approach to
the theory of solids is that one reaps enormous benefit by trad-
ing the dependence of wave functions on real-space position
for a dependence on crystal momentum k. Through Bloch’s
theorem, this has led to the development of the k · p expansion,
allowing for tractable approximations to material Hamiltonians
near isolated points in momentum space. This approach found
extraordinary successes throughout the 20th century in the un-
derstanding of and predicting the behavior of semiconductors,
metals (and their Fermi surfaces), and insulators.

However, an essential shortcoming of this approach is that
it is local in momentum space. This renders obscure the
global properties of wave functions in momentum space. It
is for precisely this reason that topological insulators appear
foreign in the k · p approach to solid state physics. Isolated
k · p Hamiltonians at various points in the Brillouin zone
(BZ) are a priori completely independent, and so extracting
global (topological) data from such a local momentum-space
picture seems hopeless at first sight. Such global data could,
if existent, be used to characterize all possible band structures
(materials) in nature. In particular, one useful outcome of such

*Permanent address: Department of Physics, Princeton University,
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a characterization would be that it contains both topologically
trivial and topologically nontrivial band structures.

In a part of a recent paper [1], we have introduced, amongst
several other concepts, a way of providing such a global classi-
fication of band structures using graph theory, thereby updating
band theory with its last missing ingredient. In this paper, we
fill in the mathematical details necessary for a full and complete
description of our theory. We map the problem at hand, patch-
ing together isolated k · p expansions into consistent global
band structures, to a tractable problem in graph theory. We first
reinterpret the k · p expansion as a representation subducing
technique, and identify representations with the nodes of a
“band” graph. We then show that band structures consistent
with the symmetries of a crystal can be put in one-to-one
correspondence with graphs that incorporate the symmetries as
constraints on how different edges can be joined together. We
show that there are often multiple distinct allowed graphs, with
different numbers of connected components corresponding to
(disconnected) groups of energy bands. In tandem with results
of Refs. [1,2], we will argue that these different connectivities
correspond to topologically distinct phases. Thus, we will show
that the physics of topological insulators can be captured by
the connectivity of band structures, without the need to invoke
the tools of differential geometry. This generalizes the known
eigenvalue- and K-theory-based approaches to computing
topological indices [3–23], unifying them all through the lens
of graph theory.
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The structure of this paper is as follows. First, in Sec. II we
review how space-group symmetries constrain Hamiltonians
locally in momentum space, recasting k · p perturbation theory
as a phenomenological approach to local band structure. In
striving to make this paper self-contained, we will also review
here the basic properties of crystal symmetry groups and their
representations. Next, in Sec. III, we approach the problem of
extending locally defined expansions of energy bands to global
band structures. We show that crystal symmetries place strong
constraints on how different local expansions are allowed to
connect to one another. This allows us to map the problem
of band connectivity to one of constructing certain types of
abstract graphs. In Sec. IV, we will show how to construct the
solutions to this graph problem. The graph mapping allows
us to leverage the tools of spectral graph theory, which gives
an immediate way to decompose graphs into disconnected
components. Reinterpreting this in terms of band structures,
we will show how to enumerate the disconnected groups of
bands allowed in a global band structure. Finally, in Sec. VI,
we will show how the graph approach, along with the theory
of band representations developed in Refs. [1,2,24–28], allows
us to reinterpret topological phase transitions as connectivity
transitions in graphs. We outline how this mapping, while being
an elegant solution of the problem of finding global band theory
structure, also allows us to design a constructive algorithm for
finding new topological insulators, as was briefly demonstrated
in Ref. [1].

II. THE k · p METHOD: MOMENTUM-SPACE LOCALITY

The k · p method has been enormously successful in the
study of band structures near special points in the Brillouin
zone, especially when one is only interested in a few isolated
bands at a time. Traditionally, this method has been employed
to fit effective masses and coupling constants to real band
structures. Here, however, we will focus on the constraints
placed on k · p by symmetries and reinterpret the k · p method
into a problem of subducing representations away from a
high-symmetry point onto high-symmetry lines. Unlike most
textbook treatments [29,30], our discussion will apply not only
to expansions around the origin of the Brillouin zone (the �

point), but rather to any and every high-symmetry k vector.

A. Symmetric Bloch Hamiltonians

Let us consider the Bloch Hamiltonian H (k) for a crystal
with the symmetries of some space group G. The symmetry
of the crystal implies that H (k) transforms as a scalar under
some representation � of G, such that for all g ∈ G,

�(g)H (k)�(g−1) = H (gk). (1)

We will be interested in the behavior of H near some high-
symmetry point k0 in the BZ. Let us introduce the little group
Gk0 of k0, defined as

Gk0 ≡ {{R|t} ∈ G|Rk0 = k0 + K}, (2)

where K is a reciprocal lattice vector. This is the subgroup
Gk0 ⊂ G of the space group which leaves k0 invariant up to
a reciprocal lattice vector. The little group plays a privileged
role in constraining the k · p theory near k0. Restricted to the

little group, the representation � subduces to

�k0 ≡ � ↓ Gk0 =
⊕

i

ρi, (3)

where the ρi are irreducible representations acting on vector
spaces Vi . Using Eq. (1) we see that[

�k0 (g),H (k0)
] = 0 (4)

for all g ∈ Gk0 : the matrix representatives of the elements of
Gk0 commute with H (k0). Schur’s Lemma then tells us [31]
that the matrixH (k0) in the representation space of�k0 is a sum
of constants εi for each irrep ρi in the decomposition Eq. (3),

H (k0) =
⊕

i

εiPρi
, (5)

where Pρi
is the projector onto the representation space Vi of

ρi . For those representations which occur with multiplicity
larger than one, Schur’s Lemma implies only that the
Hamiltonian is block diagonal; we assume here that we have
carried out any additional diagonalization needed to put the
Hamiltonian in the form Eq. (5). Thus, electronic states at k0

come in degenerate sets of energies εi and degeneracy given
by the dimension of the representations ρi .

We thus see that at the high-symmetry point k0 the structure
of the Hamiltonian is almost trivial. Things become more in-
teresting, however, when we look slightly away from k0. Here,
the representatives of the little group Gk0 no longer commute
with H (k), although they still place strong constraints. Writing
k = k0 + δk, we may expand H (k) in powers of δk:

H (k) = H (k0) + δkμH (1)
μ + δkμδkνH (2)

μν + · · · , (6)

where we have introduced the matrix-valued expansion coef-
ficients H (i). We use μ,ν = 1,2, . . . ,D to index the primitive
basis directions in the BZ, and repeated indices are summed;
H (k0) is given by Eq. (5). We now observe that, if the energy
spacings εi − εj are the largest scales in the problem, which
is always the case for small δk, the matrices H (α) appearing
in the expansion (6) are approximately block diagonal in the
carrier space ⊕iVi of irreducible representations of Gk0 . More
precisely, we may write in perturbation theory

H (α)
μ1μ2...μn

=
⊕

i

H (α),i
μ1μ2...μn

Pρi
+ O(δε−1), (7)

where δε = mini �=j (|εi − εj |). Note that although each H (α),i

acts only within the space Vi , they are not diagonal matrices
within this space; rather, from Eq. (1) we deduce that for each
g ∈ Gk0 ,

ρi(g)H (α),i
μ1μ2...μn

ρi(g
−1)δkμ1δkμ2 · · · δkμn

= H (α),i
μ1μ2...μn

(gδk)μ1 (gδk)μ2 . . . (gδk)μn
. (8)

The practical consequence of this, of course, is that near to k0,
we may truncate the expansion (6), ignore mixing of degenerate
groups of bands at k0, and for small but nonzero δk faithfully
reproduce the spectrum and eigenstates of the full Hamiltonian
H (k). Away from k0, the points k0 + δk have their own little
groups Gk0+δk ⊂ Gk0 . Bands and eigenstates away from k0

thus transform under representations of Gk0+δk0 which are
subduced [32] from representations of Gk0 (as we will explore
further in Sec. III A). Because the representations ρi of the
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little group Gk0 play a special role in the k · p method, we
shall explore their properties in more detail. We will confine
the discussion, however, only to what we will need for writing
and patching together k · p Hamiltonians; a full account of the
theory may be found in Ref. [33].

B. Little groups and their representations

We now delve into the structure and representation theory
of the little groups. Recall that a space group G consists of
elements of the form {R|d}, where R is a rotation or rotoinver-
sion, and d is a translation. Each space group contains a lattice
generated by {E|ti}, i = 1, . . . ,D, in D dimensions (we use
E to denote the identity element). The BZ in momentum space
is a unit cell of the reciprocal lattice, with basis vectors gi

satisfying gi · tj = 2πδij .
The little group Gk of a point k consists of all elements

{R|d} ∈ G in the space group G such that Rk ≡ k, where
equivalence is defined up to a reciprocal lattice vector. Note
in particular that the little group contains all pure lattice
translations {E|t} since real-space (direct space) translations
are local in momentum space and do not change k, and so Gk
is itself a space group. The point group of the little group Gk
is known as the little cogroup, denoted by Gk.

Turning to representations, we recall the (somewhat obvi-
ous) fact that the momentum k is the quantum number for the
action of translations on Bloch states. As such, when looking
at Bloch Hamiltonians, we only consider those irreducible
representations ρ of Gk such that

ρ({E|t}) = e−ik·tI, (9)

where I is the identity matrix. Representations of this type are
conventionally called allowed representations [33]. However,
since we will never be speaking of “disallowed” representa-
tions (those in which lattice translations are not represented
by phases, for instance via augmented matrices [34]), such
representations occur in the theory of band representations
[1,2,26,35]; we shall omit the word “allowed” without risk
of confusion.

At the � point in the BZ, k = 0, and so all representations
ρ�

i of G� ≈ G satisfy ρ�
i ({E|t}) = I. Because of this, we may

identify representations of G� with representations of the little
cogroup G�; representations of G� are the same for all space
groups G that share the same point group Ḡ, regardless of
whether they are symmorphic or nonsymmorphic.

Away from the � point, however, the situation is more
interesting. The phases in Eq. (9) do not in general vanish at
high-symmetry points other than �, and so the representations
of Gk, and in particular their degeneracies, are sensitive to
the symmorphicity of the space group G. In particular, screw
rotations and glide reflections in nonsymmorphic groups yield
pure translations when raised to appropriate powers. While
these are represented as the identity at �, they yield nontrivial
phases at other k points. As such, in nonsymmorphic groups
and for k �= 0 lying on a screw axis, in a glide plane, or at the
boundary of the BZ, the representations of the little group Gk
are projective representations of the little cogroup Gk. This has
profound consequences on the k · p Hamiltonian, as we shall
see in the example in Sec. II C.

Additionally, we must distinguish between the transfor-
mation properties of spinless and spin- 1

2 (or colloquially,
“spinful”) particles. For spinless particles, we know that a
rotation by 2π should leave the wave function invariant,
while for spin- 1

2 particles, a rotation by 2π multiplies the
wave function by −1. To accommodate this in the theory of
little group representations, we introduce the double space
groups and their representations [32,33]. The double groups
are central extensions of the space group, obtained by adjoining
an element E which commutes with all elements of Gk. This
element signifies a 2π rotation, and so we extend the groups so
that every n-fold rotation, when raised to the nth power, yields
E. Representations of the double groups are termed single or
double valued based on their value on E. In particular, we have

ρ({ER|d}) =
{
ρ({R|d}), ρ is single valued
−ρ({R|d}), ρ is double valued.

(10)

For the remainder of this work, we will focus solely on the
double groups; we will follow the accepted convention [36,37]
of distinguishing double-valued representations with the use of
an overbar.

Finally, we will often be interested in systems with time-
reversal (TR) symmetry. Space groups with time-reversal
symmetry contain an additional antiunitary element T , which
commutes with all other elements of the space group, leaves
real space (direct space) invariant, and maps k to −k. With
TR, it is important to distinguish between three different types
of k vectors and little groups.

First, there are those vectors k0 such that −k0 ≡ k0. In
this case, T ∈ Gk0 . In spinless representations ρ of Gk0 , we
have ρ(T 2) = ρ(T )2 = I, while for spinful representations
ρ(T )2 = −I. Second, it may be the case that −k0 �≡ k0, but
that some element g ∈ G maps k0 to −k0. In this case,
both gT and g2 are in the little group Gk0 . We then have
for spinless representations ρ(gT )2 = ρ(g2), and similarly
ρ(gT )2 = −ρ(g2) for double-valued representations. Lastly,
it may be the case that −k0 �≡ k0, and no element of the space
group relates k0 and −k0 in this case, TR does not affect the
local representation properties of the little group Gk0 . It will,
however, relate globally representations at k0 and −k0 in a
k · p expansion.

C. Example: Cubic crystals

As an example of the above ideas, let us examine the
k · p Hamiltonian for two closely related cubic crystals: the
symmorphic group I432 (211) and the related nonsymmorphic
group I4132 (214), which share the same point group. We take
as a basis for the bcc lattice the three vectors

e1 = 1
2 (−x̂ + ŷ + ẑ),

e2 = 1
2 (x̂ − ŷ + ẑ),

e3 = 1
2 (x̂ + ŷ − ẑ). (11)

Both space groups have point group O (432), the octahedral
group, consisting of all orientation-preserving symmetries of
the cube. However, in I4132, the fourfold rotation C4x about
the x axis is embedded into the space group as a screw rotation
{C4x |00 1

2 }, a difference which has profound consequences
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on the properties of little group representations. [Here and
throughout, we give translations with respect to the primitive
lattice as defined in Eq. (11). However, when convenient, we
will label rotations by their Cartesian axes (for instance, C4x).]
To see this, let us examine simple four-band k · p expansions
about both the � point, located at the origin of the BZ, and
the P point at the corner of the BZ, with reduced coordinates
1
4 g1 + 1

4 g2 + 1
4 g3 ≡ ( 1

4
1
4

1
4 ) in terms of the reciprocal lattice

vectors gi , with Cartesian components

g1 = 2π

a
(0,1,1), g2 = 2π

a
(1,0,1), g3 = 2π

a
(1,1,0).

(12)

In both of these space groups (SGs), the little cogroup G�

of the � point is given by the point group O, while the little
cogroup GP of the P point is the tetrahedral group T , the

subgroup of O obtained by removing all fourfold rotations, as
well as removing the twofold rotations along the diagonals.

Let us first examine the Hamiltonian near the � point.
As remarked above, by Eq. (9), the representations’ matrices
for symmetry elements corresponding to the same point-
group operation in the little group of � are identical for
both space groups I432 and I4132, and follow trivially from
the representation theory of the little cogroup G� ≈ O. The
spinful irreps of the octahedral group are obtained directly
from subduction of the half-integer spin-J irreps of SU(2), and
the representation spaces are spanned by {
 = 0,J = 1

2 }, {
 =
1,J = 1

2 }, or {
 = 1,J = 3
2 } basis functions. We focus on

four bands transforming in the J = 3
2 representation, which

is conventionally denoted �8 in both space groups. Enforcing
the symmetries on the four-band k · p Hamiltonian in this
representation yields in both cases [38]

H (211)(δk) = H (214)(δk) ≈ ε0I +

⎛
⎜⎜⎜⎜⎜⎝

aδkz 0 − a+3b
4 δk+

√
3

4 (a − b)δk−

0 bδkz

√
3

4 (a − b)δk− − 3a+b
4 δk+

− a+3b
4 δk−

√
3

4 (a − b)δk+ −aδkz 0
√

3
4 (a − b)δk+ − ‘3a+b

4 δk− 0 −bδkz

⎞
⎟⎟⎟⎟⎟⎠

, (13)

in terms of two real-valued phenomenological parameters a

and b, and where we have defined δk± = δkx ± iδky . This
describes a fourfold degeneracy at � that disperses linearly, and
corresponds to the “spin- 3

2 ” fermion introduced in Ref. [38].
Looking next at the P point, we find a very different

situation. Without TR, the little cogroup GP ≈ T of P in
both cases is generated by a C3 rotation about the cubic
body diagonal, and a twofold rotation C2x . With TR, in
both cases the little cogroup is augmented by the antiunitary
operation A = C2,x̂−ŷT , which maps the P point to itself.
The little cogroup GP both with and without A has only
two-dimensional (2D) spinful representations since it contains
the Pauli group of C2x, C2y, C2z, E, and their squares (a
fourfold rotation is needed to make the spin- 3

2 representation
irreducible). For the following, we will consider a TR-invariant
system, so that the little cogroup contains A. For SG I432
the representations of the little cogroup determine uniquely
the representations of the little group acting on the k · p
Hamiltonian. Focusing still on J = 3

2 states, we find that they
transform in the reducible representation of the little group
conventionally denoted P 6 ⊕ P 7. The representation space of
P 6 is spanned by the states | 3

2 , 1
2 〉 − i| 3

2 , − 3
2 〉 and | 3

2 , 3
2 〉 +

i| 3
2 , − 1

2 〉. Similarly, the P 7 representation is spanned by states
|J,m〉 of the form | 3

2 , 1
2 〉 + i| 3

2 , − 3
2 〉 and | 3

2 , 3
2 〉 − i| 3

2 , − 1
2 〉.

Note that the antiunitary element A does not couple these two
representations. Enforcing these symmetries on the expansion
(6) about k0 = kP yields the block-diagonal Hamiltonian

H (211)(kP + δk) ≈
(

ε1 + v1δk · σ 0
0 ε2 + v2δk · σ

)
, (14)

where σ is the vector of Pauli matrices. This describes a pair
of twofold degeneracies at KP with different energies that

disperse linearly away from P , i.e., a pair of Weyl fermions at
energies ε1 and ε2.

Turning now to SG I4132, we find a completely different
phenomenon. Although the little cogroup GP is unchanged, the
nonsymmorphic character of the space group manifests itself
in the little group GP : this group is generated by the rotation
{C3|000} about the cubic body diagonal, and also the twofold

screw rotation {C2x | 1
2

1
2 0}; these two generators fully determine

the extension of GP by the group of lattice translations. In any
representation ρ of GP we must have1

ρ
({

C2x

∣∣ 1
2

1
2 0

}2) = ρ({E|011}) = e−iπρ({E|000}). (15)

We recognize the three-band lower-right block of the Hamilto-
nian as the “spin-1” Weyl Hamiltonian of Ref. [38]. From this
equation, we see that for spin- 1

2 systems, the representative
of the C2x screw in the little group GP squares to +I. In
effect, double-valued representations of the little group GP

are isomorphic to single-valued representations of the little
cogroup ḠP . Thus, as was discussed extensively in Sec. I of
the Supplemental Material of Ref. [38], bands at the P point in
SG I4132 transform in the sum of a one-dimensional represen-

tation P 4 and a three-dimensional (3D) representation P
(NS)
7

of GP ; we have added the superscript “(NS)” to distinguish
this representation from the 2D representation in space group
I432. For the k · p expansion for the four bands considered

1We remind the reader that the translation part of group operations
is given with respect to the primitive basis.
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here, this yields to linear order

H (214)(kP + δk) ≈

⎛
⎜⎝

ε1 0 0 0
0 ε2 aδkx a∗δky

0 a∗δkx ε2 aδkz

0 a∗δkz aδky ε2

⎞
⎟⎠. (16)

We can see from this example that the degeneracies and
structure of local Bloch Hamiltonians depend strongly on the
symmorphicity of the crystal symmetry group. This is also
expected to be the case at points in-between � and P . At this
point, however, we have no way of connecting the expanded
k · p Hamiltonians at � and P to form a consistent global
band structure. In the next section, we will develop the tools
necessary to do so.

III. PATCHING TOGETHER k · p HAMILTONIANS:
GLOBAL BAND STRUCTURES

In order to patch together the local band structures obtained
from the k · p expansions at various points, we will make use of
the constraints imposed by crystal symmetry. Having just refor-
mulated the traditional k · p theory in terms of group represen-
tations, we will be able to show how the compatibility between
little group representations along high-symmetry lines and
planes strongly constrains the allowed connections between
bands near different k points. In order to solve these constraints,
we will map the problem to a problem in graph theory.

A. Compatibility relations

To begin, we examine the symmetry constraints on energy
bands at different k vectors k1 and kt , where the little group
Gkt

is a proper subgroup of the little group Gk1 . This occurs,
for instance, when k1 is a high-symmetry point in the BZ, and
kt is a point on a high-symmetry line with end point k1. For
instance, in the example of SG I432 in Sec. II C, we could
take k1 as the � point, and kt = (kt ,kt ,kt ), which lies on the
high-symmetry line �, with little cogroup generated only by
the C3 rotation about the cubic body diagonal. In all such cases,
the relation Gkt

⊂ Gk1 implies that each irrep ρ of Gk1 ⊃ Gkt

restricts to (subduces) a direct sum of (generally more than
one) irreps

⊕
i σi of Gkt

, which we denote by

ρ ↓ Gkt
≈

⊕
i

σi . (17)

The restriction is obtained by removing from ρ the matrices for
those elements not inGkt

, and viewing the group representation
formed by the remaining matrices as a (in general reducible)
representation of Gkt

.
At this point in the argument, we remark that there exists a

whole manifold (line, or plane) of k vectors with little group
Gkt

, which we denote {kt }. In the example of SG I432, for
instance, all k points of the form {kt } = { t

4 (g1 + g2 + g3),t ∈
[0,1]} have the same little group G� (the end points have
the larger little groups G� and GP , both of which contain
G�). In these situations, the restriction ρ ↓ Gkt

of little group
representations holds along the entire manifold of points
{kt }. This has two main consequences for k · p Hamiltonians.
First, we know that the k · p Hamiltonian H (kt + δk) around
point kt transforms according to the same representation (and
therefore takes the same form) along the entire manifold {kt }.

Second, we know that if we focus on a Hamiltonian near
k1 transforming in some representation ρ of Gk1 , we know
that for k1 + δk‖ ∈ {kt }, the Hamiltonian H (k1 + δk‖) must
transform in the restricted representation ρ ↓ Gkt

. Thus, the
compatibility relations (17) between representations of the
little groups Gk1 and Gkt

constrain the representation space
of Bloch functions that may appear in a band structure.

B. Global band structures

The compatibility of k · p band structures gives us our first
clue on how to piece spectra at different k points together: along
lower-symmetry manifolds emanating from high-symmetry k
vectors, the representations of electronic states appearing in
the Hamiltonian must be compatible. We can complete the
picture by noting that the closure of manifolds {kt } of points
with little group Gkt

contain more than one high-symmetry k
vector k1 and k2, namely, the points at the boundary of {kt}. For
example, in our cubic crystal, with Gkt

= G�, we have that k1

is the � point, and k2 is the P point. Not only do we have Gkt
⊂

Gk1 , but also Gkt
⊂ Gk2 . This allows us to patch together k · p

expansions about the points k1 and k2, along the manifold {kt }.
If we have a Hamiltonian near k1 that transforms according
to a representation ρ1 of Gk1 , and a Hamiltonian near k2 that
transforms according to a representations ρ2 of Gk2 , then these
can be consistently connected only if the representations

ρ1 ↓ Gkt
≈ ρ2 ↓ Gkt

≈
⊕

i

σi (18)

restricted to the manifold {kt } are equivalent. Furthermore,
along the manifold {kt } we can trace bands carrying each
representation σi from an irrep of Gk1 at k1 all the way to
an irrep of Gk2 at k2.

Extending this logic to all k vectors in the BZ, we can say
that patching together k · p Hamiltonians consistently requires
ensuring that the set of little group representations appearing in
the spectrum at each k-vector manifold are compatible. Even
once this is ensured, however, there still may be an ambiguity
on how bands join together. This happens when there is a
representation σn that appears in the subductions ρ1 ↓ Gk1

and ρ1 ↓ Gk2 with multiplicity mn > 1. In this case, multiple
bands along the the manifold {kt } carry the representation
σn. If these bands are nondegenerate at both k1 and k2, then
there are different inequivalent ways of connecting the band
structure consistent with the symmetries. We illustrate this
schematically in Fig. 1, where the representation σn appears
with multiplicity 2, allowing for the two distinct connectivities
shown in Figs. 1(a) and 1(b). More complicated examples
quickly arise in other space groups.

We thus seek a method to find all distinct ways of patching
together local band structures to form global spectra, consistent
with the compatibility constraints of crystal symmetry. In
order to do this efficiently, we will map this to a graph
theory problem: vertices in the graph will correspond to
irreps of the little group at each symmetry-distinct (manifold
of) k vector(s), and two vertices can be joined by an edge
only if the corresponding bands connect (implying that the
representations are compatible). We will formalize this in the
following section, and show how it allows us to fully classify
and enumerate allowed band structures.
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E

k1 k2kt

ρ1
1

ρ2
1 ρ2

2

ρ1
2

σn

σn

E

k1 k2kt

ρ1
1

ρ2
1

ρ2
2

ρ1
2

σn

σn

(a) (b)

FIG. 1. Two distinct allowed global band structures along the line
k1 ↔ kt ↔ k2. ρ1

1 and ρ2
1 are two distinct representations of Gk1 , and

ρ1
2 and ρ2

2 are two distinct representations of Gk2 . All four of these
representations subduce the representation σn of the little group Gkt

of
the line {kt }. Because of this, global energy bands may be connected
in two ways. In the band structure (a), the states transforming in
representation ρ1

1 at k1 connect to the states transforming in the
representation ρ1

2 at k2. Contrarily, in (b), the states transforming
in representation ρ1

1 at k1 connect to the states transforming in the
representation ρ2

2 at k2.

IV. CONSTRUCTING CONNECTIVITY GRAPHS

In order to map the problem of finding global band structures
to graph theory, we first introduce some basic terminology
and concepts in Sec. IV A. We then define in Definition 1 the
precise mapping from band structures to “connectivity graphs,”
and show how global band structures can be constructed by
analyzing these graphs one subgraph at a time. We then revisit
our cubic crystal example from Sec. II C, and show how to
patch together the k · p band structures at the � and P points
in both the symmorphic (I432) and nonsymmorphic (I4132)
cases. Finally, we show how spectral graph theory allows us to
analyze the connectivity of global band structures directly in
graph theoretic language.

A. Review of graph theory

We start by reviewing some basic notions about graphs
which will be useful throughout the text. A complete treatment
of graph theory can be found in Refs. [39,40].

A graph G consists of two sets: a set of nodes (or ver-
tices) N (G), and a set of edges E(G). Each edge e ∈ E(G)
connects two distinct nodes n1,n2 ∈ N (G). If two nodes n1

and n2 are connected by 
 > 0 edges, we label the edges
as (n1,n2,α), where α ∈ {1, . . . ,
n1n2} (note that if 
n1n2 > 1,
the graph contains 
n1n2 − 1 loops connecting nodes n1 and
n2); furthermore, since n1 and n2 are by hypothesis distinct,
our graphs do not contain self-loops. We will be exclusively
concerned with undirected graphs, meaning that the edges
(n1,n2,α) and (n2,n1,α) are not distinguished (the edges do
not have directional “arrows” associated to them). In Fig. 2 we
show a pictorial representation of a graph with eight nodes,
labeled n1 through n8, and denoted by blue diamonds, black
circles, and a red square. This graph also has eight edges. In
particular, nodes n7 and n8 are connected by two edges labeled
(n7,n8,α), with α ∈ {1,
n7n8 = 2}.

A partition of a graph is a subset Pi ⊂ N (G) of nodes of
G such that for all p,q ∈ Pi, (p,q,α) �∈ E(G). In words, this

n1

n2

n3

n4

n5

n6

(n1, n4, 1)

(n 2
, n

4
, 1

)

n7 n8

(n7, n8, 1)

(n7, n8, 2)
(n

2 , n
5 , 1)

(n3, n5, 1)

(n
6 , n

7 , 1) (n
6
, n

8
, 1

)

FIG. 2. Example of a graph. There are eight nodes labeled n1

through n8, indicated by blue diamonds, black circles, and red squares.
There are eight edges, shown as solid black lines connecting pairs of
nodes. Nodes in the graph can be placed (amongst other options)
in following three partitions: {n1,n2,n3,n8}, {n4,n5,n6}, and {n7},
since there are no edges connecting nodes within each of these sets;
the different colors and symbols for the nodes correspond to this
partitioning. This graph has two connected components: the first is
the subgraph on the left consisting of the nodes {n1,n2,n3,n4,n5}, and
the four edges connected to them. The second connected component
consists of the three nodes {n6,n7,n8} and the four edges connected
to them.

says that a partition is a subset of nodes such that no two nodes
in the subset are connected by edges. Note that in any graph,
each node lies in a trivial partition containing itself only (and
so the decomposition of a graph into partitions is not unique).

Finally, a subgraph H ⊂ G,2 of a graph G, is a graph
such that the set of nodes N (H) ⊂ N (G), the set of edges
E(H) ⊂ E(G), subject to the restriction that for each edge
(p,q,α) ∈ E(H), we have p,q ∈ N (H). In words, a subgraph
of a graph consists of a subset of nodes, and a subset of edges
connecting those nodes only. In the graph shown in Fig. 2, for
example, one subgraph H has N (H) = {n1,n2,n4}, E(H) =
{(n1,n4,1),(n2,n4,1)}. This subgraph is called 2-partite (or
bipartite) since all nodes can be placed into the two partitions
P1 = {n1,n2} and P2 = {n4}. Note also that in general a
subgraph containing nodes n1 and n2 need not contain all the
edges connecting these two nodes. However, for our purposes,
we will only make use of subgraphs H ⊂ G which contain all
edges from E(G) connecting nodes in N (H).

We now show that band structures in momentum space
map to N -partite graphs, where the N partitions correspond
to high-symmetry k vectors in the BZ. Groups of bands
isolated in energy from all others will map to connected
components of a graph G, subgraphs whose points are not
connected to other nodes in the graph by any edges. Math-
ematically, we define subgraphs H ⊂ G such that for all
hi ∈ N (H) and all gi ∈ N (G) \ N (H), (hi,gi,α) �∈ E(G). For
example, the graph shown in Fig. 2 has two connected
components H1 and H2, where N (H1) = {n6,n7,n8} and

2We will use the subset symbol to denote the graph subgraph
relationship. As graphs will always be denoted by calligraphic letters,
no confusion should arise.
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E(H1) = {(n6,n7,1),(n6,n8,1),(n7,n8,1),(n7,n8,2)}; H2 con-
tains all the remaining nodes and edges. We will refer to each
connected component of a graph as a disconnected subgraph.

B. Mapping to graph theory

We are now in a position to map the problem of forming
global band structures to a graph theory problem. We start
with a space group, and a set of little group representation at
high-symmetry k vectors. We will define a connectivity graph,
such that each valid connectivity graph yields a solution of the
compatibility relations. First, we identify all symmetry-distinct
k vector manifolds throughout the BZ. For symmorphic groups
this list corresponds with the list of k vectors found on
the Bilbao Crystallographic Server [41]. For nonsymmorphic
groups, there is the additional subtlety that the little group
representation according to which a Bloch function transforms
may change upon following an energy band smoothly through
a full cycle across the BZ [42]. The details of how we
identify k manifolds in the nonsymmorphic case can be found
in Ref. [43]. Each k manifold will label a partition of our
connectivity graph. In each partition ki (where the index i

runs over different k manifolds in the BZ), we will place a
node labeled by the irreps ρa

ki
of the little group Gki

which
appear in the k · p expansion. We allow edges between nodes
in partitions ki and kj only if either Gki

⊂ Gkj
or Gkj

⊂ Gki
;

these edges represent the continuation of energy bands from
a high-symmetry k vector to a lower-symmetry k manifold.
Finally, we would like to enforce the compatibility relations
as a constraint on allowed edges. In particular, given a pair
of partitions ki and kt such that Gkt

⊂ Gki
, we look at each

node ρa
i in the partition ki . We would like to demand that the

restriction

ρa
i ↓ Gkt

≈
N⊕

b=1

σb
t (19)

is respected by the edges connecting ρa
i to nodes in the

partition kt .
Formalizing the preceding discussion, we define the follow-

ing:
Definition 1. Given a collection of little group representa-

tionsM (i.e., bands), forming a (physical) band representation
for a space group G, we construct the connectivity graph CM
as follows: we associate a node pa

ki
∈ CM in the graph to

each representation ρa
ki

∈ M of the little group Gki
of (the

closure of) every high-symmetry manifold (point, line, plane,
and volume) ki . If an irrep occurs multiple times in M, there
is a separate node for each occurrence.

The degree of each node pa
ki

is Pki
· dim(ρa

ki
), where Pki

is the number of high-symmetry manifolds connected to
the point ki : dim(ρa

ki
) edges lead to each of these other k

manifolds in the graph, one for each energy band. When the
manifold corresponding to ki is contained within the manifold
corresponding to kj , as in a high-symmetry point that lies on a
high-symmetry line, their little groups satisfy Gkj

⊂ Gki
. For

each node pa
ki

, we compute

ρa
ki

↓ Gkj
≈

⊕
b

ρb
kj

. (20)

We then connect each node pb
kj

to the node pa
ki

with dim(ρb
kj

)
edges.

We have thus reduced the problem of constructing all glob-
ally consistent band structures consistent with space-group
symmetries to the problem of constructing all valid connec-
tivity graphs. This is an enormous simplification: instead of
looking at the whole continuum of k vectors, we need here only
look at the finite set (typically around 20) of symmetry-distinct
k manifolds. We have explained how to tabulate the minimal
set of k manifolds for each of the 230 space groups in Ref. [43].
The data are available through the BANDREP program on the
Bilbao Crystallographic Server [44]. It is convenient here
to make a distinction between maximal and nonmaximal k
manifolds. We call a k vector k0 maximal if the little cogroup
Gk0 (the point group of the little group Gk0 ) of the k manifold
{k0} containing k0 is not a proper subgroup of the little cogroup
of any k manifold connected to {k0} [43]. While we must
consider in our connectivity graphs all partitions corresponding
to maximal k manifolds, it happens that some nonmaximal k
manifolds give only redundant constraints on the connectivity
graph. For instance, all space groups have a k manifold labeled
GP , the general position with lowest possible symmetry. In
centrosymmetric crystals with time-reversal symmetry, the
little cogroup of GP contains the composition of inversion
and time-reversal symmetries, while in all other cases it is the
trivial group. In either case, the little group of a generic k point
in GP has exactly one single-valued and one double-valued
representation. Furthermore, in every space group, we have that
GGP ⊆ Gk for every k manifold {k}. Thus, every k manifold
is compatible with the general position, and the compatibility
relations are entirely trivial. As such, we can consistently
remove the manifold GP from our connectivity graphs without
loss of generality.

A similar redundancy comes from considering closed cycles
between compatible k manifolds, as depicted in Fig. 3. Suppose
that we have six k manifolds k1, . . . ,k6. Suppose also that
the little groups of these k manifolds satisfy the following
group-subgroup relations:

Gk6 ⊂ Gki
∀ i, (21)

Gk5 ⊂ Gk3 , Gk5 ⊂ Gk2 , (22)

Gk4 ⊂ Gk1 , Gk4 ⊂ Gk2 . (23)

k1 k2

k3

k4

k5k6

FIG. 3. Schematic depiction of a trianglelike redundancy. The
high-symmetry k points k1, k2, and k3 are connected by the symmetry
lines k4 and k5. The plane labeled k6 contains all of these k
manifolds. Because of this, the compatibility relations along any path
connecting k1 and k3 through k6 provide no additional symmetry
constraints beyond what we get from considering the path k1 →
k4 → k2 → k5 → k3. We can thus safely neglect the manifold k6

in our construction of compatibility graphs.
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Visually in Fig. 3 this has the interpretation that k1, k2, and k3

are high-symmetry points. k4 is the symmetry line connecting
k1 and k2, and similarly k5 is the symmetry line connecting
k2 and k3. Finally, k6 is the symmetry plane containing
all of these. In this configuration, it is easy to see that the
compatibility relations along k6 are trivially satisfied if they
are satisfied along k4 and k5. As such, we can remove the
partition corresponding to k6 from our connectivity graphs.
We summarize all such redundancies, and the algorithms we
use to remove them, for every space group in Ref. [43].

With these simplifications in hand, we can now begin to
systematically construct valid connectivity graphs, and hence
valid global band structures. The combinatorics involved with
directly carrying out this program are still quite daunting,
however, there are ways to make the task manageable. We
present a complete set of algorithms for this task in Ref. [43];
here we focus on they key conceptual insight: the reduction to
subgraphs.

C. Reduction to subgraphs

The fundamental building blocks of a connectivity graph
are subgraphs consisting of three partitions corresponding to
momenta k1, k2, and kt such that Gkt

⊂ Gk1 and Gkt
⊂ Gk2 .

These subgraphs represent, for example, energy bands at two
high-symmetry points k1 and k2 connected along a line {kt }.
The full connectivity graph is given by a union of permissible
subgraphs of this type. As described in Ref. [43], by consid-
ering every permutation of valid three-partition subgraphs, we
can assemble every allowed connectivity graph in this way.

We must take care, however, that in piecing together the
subgraphs we enumerate every connectivity graph only once.
As alluded to in Sec. III B, when there are multiple nodes p

(a)
ki

corresponding to the same representation ρki
, then permuting

these nodes in a subgraph does not result in a distinct graph,
as we illustrate in Fig. 4. Furthermore, when we account for
the fact that the energy bands represented by nodes in our
graphs come associated with energy eigenvalues, we arrive
at additional constraints from eigenvalue repulsion. Note that
the inverse map from a connectivity graph to a band structure
requires a certain choice of spatial embedding of the connec-
tivity graph. In particular, all nodes in the partition labeled by
ki map onto the manifold ki in the BZ. When this is done,
edges of the connectivity graph may cross, corresponding to
crossings of bands in the band structure. Generically, crossings

ρi

ρi

ρi

ρi

FIG. 4. The two connectivity subgraphs shown here are trivially
isomorphic if the nodes labeled ρi correspond to the same little group
representations.

k1 k2 k3k1 k2 k3

(a) (b)

FIG. 5. Permissible and nonpermissible crossings of edges in
connectivity graphs. The blue stars and circles in the k2 partition
correspond to two different irreps of Gk2 . (a) Shows a nonpermissible
crossing: when mapped back to a band structure, the energy bands
corresponding to the blue circle irreps must cross, and this crossing
is not protected. It will generically either gap or move away from
the high-symmetry line. On the other hand, (b) shows a permissible
crossing corresponding to a protected crossing of energy bands
carrying different irreps of Gk2 .

along high-symmetry lines are only protected if the two bands
carry different representations of the little group of the line.
Accidental crossings of identical representations are not stable
to perturbations: they will either gap, stay gapless over a 1D
manifold of generic k vectors (in the case of nodal lines with
both inversion and TR symmetry[45]), or in the case of Weyl
nodes (which require broken inversion symmetry), they can
be pushed away from high-symmetry lines. Because we are
interested in classifying generic, stable band structures, we
will discount connectivity graphs corresponding to accidental
crossings. In Fig. 5 we show examples of a permissible and
a nonpermissible crossing of bands. In Ref. [43] we present a
set of algorithms that we have developed to systematically rule
out unstable crossings.

D. Example: Cubic crystal revisited

To see some of this machinery at work, we now revisit the
k · p models for the cubic space groups I432 (211) and I4132
(214) which we examined locally in Sec. II C. We will now
construct the connectivity subgraph for these models along the
� ↔ � ↔ P partitions.

Let us start with the symmorphic group I432 (211). In
the connectivity subgraph, we have partitions �,P , and �.
In the � partition we have a single node corresponding to the
four-dimensional �8 little group representation, and in the P

partition we have two nodes corresponding to the representa-
tions P 6 and P 7. We would like to now find the compatibility
relations for these representations along �. There are three
distinct one-dimensional spinful representations distinguished
by their (one-dimensional) matrix value for {C3|000}, and
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given by

�4({C3|000}) = −1,

�5({C3|000}) = e−iπ/3,

�6({C3|000}) = eiπ/3. (24)

From the compatibility relations computed in Ref. [44], we
have

�8 ↓ G� ≈ �4 ⊕ �4 ⊕ �5 ⊕ �6 (25)

and

P 6 ↓ G� ≈ �4 ⊕ �6,

P 7 ↓ G� ≈ �4 ⊕ �5. (26)

Thus, in the partition labeled by �, we have a single node
�8; in the partition labeled by P we have two nodes P 6

and P 7; lastly, in the partition labeled by � we have four

nodes, labeled �
1
4,�

2
4,�5,�6. Note that the nodes �

1
4 and

�
2
4 correspond to the two copies of the �4 representation

appearing in the compatibility relations (25) and (26). We
deduce from the compatibility relations that there is a single
edge from the node �8 to each of the nodes in the � partition.
Furthermore, there must be an edge connecting the nodes
�5 and P 7, as well as an edge connecting the nodes �6

and P 6. At first sight, it appears that there are two different

ways to connect the �
1
4 and �

2
4 nodes to the P 6 and P 7

nodes: we could either have edges {(�1
4,P 6,1),(�

2
4,P

1
7,1)} or,

alternatively, {(�2
4,P 6,1),(�

1
4,P

1
7,1)}. However, because the

nodes �
i

4 correspond to identical irreps of G�, these two
choices of connectivity are isomorphic. We illustrate the full
unique connectivity subgraph in Fig. 6(a).

Turning next to the nonsymmorphic space group I4132,
we find that the construction of the connectivity graph is
phenomenologically similar, although the dimensions and
labels of the little group irreps are different. Recall from
Sec. II C that we have a four-dimensional representation �8

Γ Λ P

Λ̄2
4

Λ̄1
4

Λ̄5

Λ̄6

Γ̄8

P̄7

P̄6

Γ Λ P

Λ̄2
4

Λ̄1
4

Λ̄5

Λ̄6

Γ̄8

P̄4

P̄
(NS)
7

(a) (b)

FIG. 6. Connectivity subgraphs along the � ↔ � ↔ P line in
(a) SG I432 (211) and (b) I4132 (214). In each case, there is only
one unique subgraph.

of G� , a one-dimensional representation P 4 of GP , and a

three-dimensional representation P
(NS)
7 of GP . The little group

G� of the line � is the same as in the previous example, and
the representations are labeled as in Eqs. (24). Consulting the
Bilbao Crystallographic Server [44], we have the compatibility
relations

�8 ↓ G� ≈ �4 ⊕ �4 ⊕ �5 ⊕ �6, (27)

P 4 ↓ G� ≈ �4, (28)

P
(NS)
7 ↓ G� ≈ �4 ⊕ �5 ⊕ �6. (29)

We can now construct the connectivity subgraph in anal-
ogy with the symmorphic case. We find that the parti-
tions � and � are connected identically as in the previ-
ous example. Between the � and P partitions we have

edges {(�1
4,P 4,1),(�

2
4,P

(NS)
7 ,1),(�5,P

(NS)
7 ,1),(�5,P

(NS)
7 ,1)}.

We draw this graph in Fig. 6(b). As in the symmorphic
case, there is only one unique subgraph since the relabeling

�
1
4 ↔ �

2
4 is unobservable.

V. SPECTRAL GRAPH THEORY AND CONNECTED
BANDS

One of our main goals in analyzing global band structures
is to identify isolated groups of bands which are topologically
nontrivial. In our mapping of band structures to graphs given in
Sec. IV, interconnected groups of bands which can be separated
by a gap from any other bands map to connected components of
the connectivity graph. Thus, it will be essential to determine
all connected subgraphs of a given graph. To this end, we will
employ the tools of spectral graph theory.

A. Spectral graph theory

To manipulate and analyze graphs, we will require a more
compact representation than the pictorial or explicit enumer-
ation of node and edge sets. Let us first order and enumerate
the m nodes of G. Using this ordering as a reference basis, we
introduce the adjacency matrix AG of the graph G, an m × m

matrix where the (ij )th entry is the number of edges of the
form (i,j,α) ∈ E(G) connecting the nodes labeled by i and j ,
or zero if no such edges exist. Symbolically, we may write

(AG)ij =
{

ij if (i,j,
ij ) ∈ E(G), 
ij � 1
0 otherwise. (30)

Because our graphs contain no self-loops, the adjacency matrix
is always purely off-diagonal. Furthermore, since our graphs
are undirected, the adjacency matrix is symmetric. The sum of
the elements in the ith row of the adjacency matrix is known
as the degree of the node i, denoted by

di ≡
|N(G)|∑
j=1

(AG)ij , (31)

and gives the total number of edges containing the node ni .
This allows us to form the degree matrix

(DG)ij = diδij . (32)
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For example, the graph G in Fig. 2 has adjacency matrix

AG =

n1 n2 n3 n8 n4 n5 n6 n7⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

0 0 0 0 1 0 0 0 n1

0 0 0 0 1 1 0 0 n2

0 0 0 0 0 1 0 0 n3

0 0 0 0 0 0 1 2 n8

1 1 0 0 0 0 0 0 n4

0 1 1 0 0 0 0 0 n5

0 0 0 1 0 0 0 1 n6

0 0 0 2 0 0 1 0 n7

, (33)

where, as we will do in all cases where it is not readily
apparent, we have labeled the rows and columns of the matrix
by the corresponding node in our chosen ordering. We have
ordered the rows and columns of AG here to correspond
with our 3-partitioning of the graph G. The horizontal and
vertical lines delineate the distinct partitions. This 3-partite
structure of the graph immediately guarantees that AG to be
block-off-diagonal, and allows us to build AG iteratively by
considering the subblocks one by one. From this adjacency
matrix (33) we compute the degree matrix

DG =

n1 n2 n3 n8 n4 n5 n6 n7⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 0 0 0 0 0 0 0 n1

0 2 0 0 0 0 0 0 n2

0 0 1 0 0 0 0 0 n3

0 0 0 3 0 0 0 0 n8

0 0 0 0 2 0 0 0 n4

0 0 0 0 0 2 0 0 n5

0 0 0 0 0 0 2 0 n6

0 0 0 0 0 0 0 3 n7

. (34)

Next, let us introduce the Laplacian matrix for a graph G,
defined in terms of the adjacency matrix (30) and the degree
matrix (32) as

LG ≡ DG − AG . (35)

As we remind the reader in Appendix A, the zero eigenvectors
of the Laplacian LG give the connected components of the
graph G. To see this, we note that zero eigenvectors �f of LG
satisfy

(LG)abfb = 0, (36)
∑

c

(AG)cbfaδab − (AG)abfb = 0. (37)

For fixed a, we see that this equation is satisfied if fb = 1
whenever (AG)ab �= 0. By induction, this allows us to deduce
that the vector

fb =
{

1, a and b lie in the same connected component
0, otherwise

(38)
is a zero eigenvector of LG , as supposed. As a corollary, the
multiplicity of the zero eigenvalue of LG gives the number of
connected components of the graph G.

As an example, let us consider the Laplacian matrix for the
graph given in Fig. 2. Subtracting the adjacency matrix (33)

from the degree matrix (34), we find

LG =

n1 n2 n3 n8 n4 n5 n6 n7⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 0 0 0−1 0 0 0 n1

0 2 0 0−1 −1 0 0 n2

0 0 1 0 0 −1 0 0 n3

0 0 0 3 0 0 −1−2 n8

−1 −1 0 0 2 0 0 0 n4

0 −1 −1 0 0 2 0 0 n5

0 0 0 −1 0 0 2−1 n6

0 0 0 −2 0 0 −1 3 n7

. (39)

From Fig. 2, we see that the vectors

xT
1 =

n1 n2 n3 n8 n4 n5 n6 n7( )
1 1 1 0 1 1 0 0 (40)

and

xT
2 =

n1 n2 n3 n8 n4 n5 n6 n7( )
0 0 0 1 0 0 1 1 (41)

take the value 1 on exactly one of the connected components
of G, and zero on the other connected component. It is
straightforward to verify that

LGx1 = LGx2 = 0. (42)

Finally, since the characteristic polynomial pLG (λ) of the
Laplacian matrix is

pLG (λ) = λ2(λ − 5)(λ − 3)(λ2 − 5λ + 5)(λ2 − 3λ + 1),
(43)

we see immediately that there are only two zero eigenvectors.
Thus, two vectors xT

1 and xT
2 span the entire null space of LG

in accordance with our claim.

VI. GRAPHS AND BAND REPRESENTATIONS

We can now apply the tools of spectral graph theory to the
connectivity graphs of Sec. IV. This will allow us to identify all
of the disconnected components of a connectivity graph, and
hence under the inverse of our graph theory mapping, all of the
disconnected groups of bands in a global band structure. As
such, we can in principle use these tools to identify all possible
insulating band structures allowed in each space group. We
are primarily interested, however, in topological insulators.
To determine whether a given disconnected component of
a connectivity graph corresponds to a topological group of
bands, we will combine the graph theory mapping presented
here with the theory of band representations of Refs. [1,2].
After a brief review of the theory of band representations, we
will show how we can enumerate topological band structures
by finding the allowed disconnected connectivity graphs cor-
responding to the so-called “elementary band representations”
(EBRs). We will then see how this works in the example of
a two-dimensional inversion symmetric topological insulator,
and so demonstrate how our theory contains the standard theory
of eigenvalue-based topological invariants [3,7,46]. Finally, we
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will show how our graph theory method allows us to predict
not only topological insulators, but topological semimetals as
well.

A. Review of band representations

Band representations, first introduced by Zak [26] and
applied to spin-orbit coupled and topological materials in
a series of papers by the present authors [1,2], relate the
real-space localized electronic orbitals in a crystal to the
momentum-space band structure. Roughly speaking, orbitals
located at a position in the unit cell of a crystal transform under
a representation of the symmetry group of the local crystal field
(the site-symmetry group) of that position. By applying to this
orbital the remaining crystal symmetry operations (including
translation), we induce (in the sense of representation theory,
cf. Refs. [31,47]) an infinite-dimensional representation of the
full space group. The Fourier transform of this representation
determines the little group representations at every k vector
of the Brillouin zone in the energy bands coming from these
orbitals. For the mathematical details, we defer the reader to
Refs. [1,2].

As constructed, every band structure that can be obtained
from localized orbitals that respect all crystal symmetries trans-
forms according to some band representation. Furthermore, in
analogy with the concept of a finite-dimensional irreducible
representation, all band representations can be expressed as a
sum of “elementary building bricks [24,25].” Following Zak
we refer to these as elementary band representations (EBRs)
or, if we also enforce the role of time-reversal symmetry,
physically elementary band representations (PEBRs). All band
structures that can be continuously deformed to an atomic limit
without breaking either crystal (or time-reversal) symmetries
transform under a sum of (P)EBRs [1]. As a corollary, any
disconnected group of bands which does not transform under
some sum of (P)EBRs must give a topological insulator. In the
following, we will show how, by applying our graph theory
mapping to the set of bands in a (P)EBR, we are able to
enumerate topological band structures.

B. Connectivity and topology

While the theory of band representations tells us which little
group representations appear together at all high-symmetry k
points and lines in atomic limit band structures, it does not
in itself tell us how these energy bands are allowed to be
connected in a real material. Applying the ideas of Ref. [1]
discussed above, we see that the connectivity of elementary and
physically elementary band representations lies at the heart of
the search for topological insulators: if the bands transforming
in a (P)EBR are disconnected in the Brillouin zone, then filling
only one of the disconnected components will result in a
topological insulator (i.e., a system that cannot be connected to
the atomic limit without closing a gap). While it was originally
believed that all elementary band representations [at least
without spin-orbit couplng (SOC)] led to connected bands in
momentum space [28], we have found this to be an incorrect
assumption [1,43].

Our mapping of global band structures to connectivity
graphs is well suited to tackle the question of connectivity

of elementary band representations. Because they arise from
atomic-limit systems by construction, the set of little group
representations appearing in a (P)EBR automatically satisfy
all compatibility relations at every k manifold, and so can be
patched together to form at least one consistent, connected
global band structure; the mapping to connectivity graphs,
however, provides an efficient and computationally tractable
method to find all consistent global band structures for a given
(P)EBR, and in particular each disconnected connectivity
graph yields a realizable topological insulator (or topolog-
ical semimetal, if band crossings are mandated away from
high-symmetry points by topological constraints [48–51]). By
applying the graph theory mapping and spectral graph theory
analysis described in Sec. IV, as well as the practical imple-
mentation of these algorithms described in Ref. [43], we have
enumerated all EBRs and PEBRs that can lead to disconnected
bands in the Brillouin zone. There are 693 such EBRs, and
576 such PEBRs, and we have tabulated their disconnected
connectivity graphs in the BANDREP program on the Bilbao
Crystallographic Server [44]. These represent approximately
10% of the 10 403 total EBRs and PEBRs, leading us to
conjecture that at least 10% of all systems should host topolog-
ically disconnected bands. While the Bilbao Crystallographic
Server currently gives the a list of nodes in the disconnected
components of the connectivity graphs, a graphical depiction
will be implemented in the near future [32]. To see how this
works in practice, we will examine below in Sec. VI C two
concrete examples of a topological insulator arising from a
disconnected connectivity graph, on a checkerboard lattice
both with and without inversion symmetry.

C. Example: Square lattice topological insulator

Because the simple elementary band representations in the
cubic groups we examined in Sec. IV D were connected, we
shall move on to consider as an example space group P 4mm

(99), which has disconnected PEBRs. This is a symmorphic
space group with primitive tetragonal Bravais lattice. Taking
the lattice vectors {e1,e2,e3} to be aligned with the Cartesian
directions, we can express the point group C4v as the group
generated by

C4z : {e1,e2,e3} → {−e2,e1,e3}, (44)

mx : {e1,e2,e3} → {−e1,e2,e3}. (45)

Since all point-group elements act trivially on the e3 lattice
vector, this space group can be viewed as stacks of 2D planes,
each consisting of a square lattice with wallpaper symmetry
group p4mm (wallpaper group number 11, generated by C4

and mx).
There are three maximal Wyckoff positions (Wyckoff po-

sitions with site-symmetry groups Gq that are maximal finite
subgroups of the space group [1,2,27]) in this 3D space group,
as indicated in Fig. 7. First, the 1a position corresponds
to vertical lines through the Bravais lattice sites, and has
representative {qa} = {(0,0,z)}. Second is the 1b position,
with representative {qb} = {1/2,1/2,z}. This position lies on a
vertical line extending upward from the center of the 2D square
lattice unit cell. Both of these positions have multiplicity 1,
and so have site-symmetry groups isomorphic to the full point
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e1

e2

FIG. 7. Maximal Wyckoff positions for space group P 4mm (99),
projected along the ẑ = [001] direction. The blue star indicates the
1a position at the Bravais lattice sites, the red diamond indicates the
1b position at the center of the unit cell, and the black circles denote
the 2c Wyckoff position at the middle of the edges. Because space
group P 4mm (99) has no symmetries constraining z, the coordinates
of these positions extend in the z direction (perpendicular to the plane
of the page).

group C4v . As the 1a position lies on the Bravais lattice sites,
its stabilizer Gqa

1
is the full point group, generated by {C4z|000}

and {mx |000}. The stabilizer of the 2b position, on the other
hand, is generated by {C4z|100} and {mx |100}. In Table I, we
give the character table for C4v . Because both the 1a and 1b

Wyckoff positions have multiplicity 1, all band representations
induced from these positions are trivially connected, with
connectivity given by the dimension of the site-symmetry
representation. To see this, note that since the stabilizer groups
of both these positions are isomorphic to the point group, the
connectivity graphs for these band representations contain a
single node in the partition corresponding to the � point, and
labeled by the site-symmetry irrep. If a connectivity graph has
a single node in any partition, then it is impossible to divide
it into disconnected subgraphs, as the node would need to be
split in (at least) two. Thus, all elementary band representations
induced from these Wyckoff positions give topologically trivial
bands.

More interesting for our purposes is the maximal 2c po-
sition, with representatives {q1

c ,q
2
c} = {(0,1/2,z),(1/2,0,z)}.

The site-symmetry group Gqc
1

of the representative qc
1 is

isomorphic to the group C2v , and is generated by {C2z|010}

TABLE I. Character table for the (double) point group C4v . Note
that the conjugacy class denoted by {m,Ēm} contains mx,my , and
their inverses Ēmx and Ēmy ; hence, they all have the same characters.
Similarly, the conjugacy class {C4zm,ĒC4zm} contains mx̂+ŷ , mx̂−ŷ ,
and their inverses. Note that spinful orbitals transform in either the
�6 or �7 representations depending on their total azimuthal quantum
number mz–s orbitals (with mz = ± 1

2 ) transform in the �7 represen-

tation, as do P
1
2 states, and P

3
2 states with mz = ± 1

2 . The remaining

P
3
2 states with mz = ± 3

2 transform in the �6 representation.

Rep E C2z C4z {m,Ēm} {C4zm,ĒC4zm} E EC4z

�1 1 1 1 1 1 1 1
�2 1 1 −1 1 −1 1 −1
�3 1 1 −1 −1 1 1 −1
�4 1 1 1 −1 −1 1 1
�5 2 −2 0 0 0 2 0
�6 2 0 −√

2 0 0 −2
√

2
�7 2 0

√
2 0 0 −2 −√

2

TABLE II. Character table for the (double) group C2v , for both
single- and double-valued representations. The single-valued repre-
sentations �1–�4 are all one dimensional. The unique double-valued
representation �5 is the two-dimensional spin- 1

2 representation. In
terms of the Pauli matrices, it is given concretely as �5(C2z) =
iσz, �5(m) = iσy .

Rep E C2z {m,Ēm} {C2zm,ĒC2zm} E

�1 1 1 1 1 1
�2 1 1 −1 −1 1
�3 1 −1 −1 1 1
�4 1 −1 1 −1 1
�5 2 0 0 0 −2

and {mx |000}. The representations of this group are given in
Table II. Let us focus on the spin-orbit coupled case, where
there is a unique double-valued site-symmetry representation
�5, and hence only the band representation �5 ↑ G can be
induced from orbitals at this Wyckoff position. This repre-
sentation is generated by a single s orbital with spin-up and
-down states at each of the 2c sites, forming stacked layers
of a checkerboard lattice. Consulting Refs. [1,44], we see
that with TR symmetry these orbitals furnish a four-band ele-
mentary band representation. By computationally constructing
the connectivity graphs for this band representation following
the algorithms outlined in Sec. IV and elaborated upon in
Ref. [43], we find from Ref. [44] that this band representation
has disconnected connectivity graphs (corresponding to TIs),
which we now examine further.

We can construct the disconnected realizations of this
band representation by examining the compatibility relations
for space group P 4mm (99). The maximal k vectors in the
Brillouin zone relevant to the 2D system are � = (0,0,0), X =
(0,1/2,0), and M = (1/2,1/2,0). Note that C4z symmetry
relatesX toX′ = (1/2,0,0). At all these high-symmetry points,
the little groups and their representations are independent of
kz. The little cogroups of the points � and M are the full point
group C4v , while the little cogroup of X is isomorphic to the
group C2v . To examine k-space compatibility, we also look
at the lines connecting �, M, and X. Particularly relevant are
the lines � = (kx,kx,0), � = (0,ky,0), and T = (kx,1/2,0),
with kx,ky ∈ [0, 1

2 ]. � connects the points � and M , and has
little cogroup Cs generated by mxC4z. The line � connects �

and X, and has little cogroup Cs generated by mx . Finally, the
line T connects X and M , and has little cogroup Cs generated
by my . Cs has two double-valued representations which we
denote by ρ±, both one dimensional, and distinguished by
whether the mirror is represented by i or −i. Because the group
P 4mm is symmorphic, the representation ρ+ of Cs uniquely
determines the little group representations �4 of G� and T 4 of
GT . Similarly, the representation ρ− uniquely determines the
little group representations �3 of G� and T 3 of GT . Physically,
this means that the representations of the little groups G� and
GT do not change as we move along the lines � and T .

Performing the induction procedure for the band represen-
tation induced from the 2c position, and omitting the details
(cf. Refs. [1,32]), the representations appearing in the Brillouin
zone [44] are presented in Table III.
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TABLE III. Little group representations appearing in the double-
valued band rep induced from the 2c position in SG P 4mm (99).
Note that we use different letters to label the C4v representations at
the � and M points; regardless of the letter, these correspond to the
similarly numbered representations in Table I.

� � M T X �

�6 ⊕ �7 2�3 ⊕ 2�4 M6 ⊕ M7 2T 3 ⊕ 2T 4 Y 5 ⊕ Y 5 2�3 ⊕ 2�4

Next, we analyze the compatibility between these repre-
sentations. To do so, note that the little group irreps at M, �,

and X are all two dimensional, as expected from Kramers’s
theorem. Furthermore, by consulting Tables I and II, we see
that all mirror elements in these irreps have character 0. This
implies that along the high-symmetry lines �, �, and T , each
two-dimensional little group irrep decomposes into one copy of
�4 and one copy of �3, whose sum of mirror characters is zero.
It is now clear that there are two disconnected compatibility
graphs, depending on whether �6 connects to M6 or M7

along the line �. We show a visual depiction of these two
disconnected graphs in Fig. 8. In Eqs. (46) and (47), we
show the two distinct Laplacian matrices for the � − � − M

subgraph of the connectivity graph. Both of these disconnected
solutions correspond to topological phases

L1 =

�6 �7 M6 M7 �4 �4 �3 �3⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2 0 0 0−1 0 −1 0 �6

0 2 0 0 0 −1 0 −1 �7

0 0 2 0−1 0 −1 0 M6

0 0 0 2 0 −1 0 −1 M7

−1 0 −1 0 2 0 0 0 �4

0 −1 0 −1 0 2 0 0 �4

−1 0 −1 0 0 0 2 0 �3

0 −1 0 −1 0 0 0 2 �3

, (46)

L2 =

�6 �7 M6 M7 �4 �4 �3 �3⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2 0 0 0−1 0 −1 0 �6

0 2 0 0 0 −1 0 −1 �7

0 0 2 0 0 −1 0 −1 M6

0 0 0 2−1 0 −1 0 M7

−1 0 0 −1 2 0 0 0 �4

0 −1 −1 0 0 2 0 0 �4

−1 0 0 −1 0 0 2 0 �3

0 −1 −1 0 0 0 0 2 �3

. (47)

In order to determine whether this is a strong, weak, or crys-
talline topological phase, we will impose inversion symmetry
as an additional space-group symmetry. This will allow us to
use the Fu-Kane inversion eigenvalue formula [3] to compute
topological indices from knowledge of only the valence-band
little group representations. Adding inversion takes us from
space group P 4mm (99) to space group P 4/mmm (123). The
addition of spatial inversion forces the z coordinate of our

Γ Σ M

Γ̄6

Γ̄7 M̄7

M̄6

ρ+

ρ+

ρ−

ρ−

Γ Σ M

Γ̄6

Γ̄7

M̄7

M̄6

ρ+

ρ+

ρ−

ρ−

FIG. 8. Visual depiction of the two different disconnected con-
nectivity graphs for space group P 4mm (99), corresponding to the
Laplacian matrices in Eqs. (46) and (47). In the graph on the left, the�6

little group representation at � is connected to the M6 representation
at M , while in the graph on the right the �7 little group representation
at � is connected to the M6 representation at M .

symmetry centers {(0, 1
2 ,z),( 1

2 ,0,z)} to be fixed at either 0 or 1
2 .

We focus on the z = 0 case for concreteness, since the analysis
and results are identical for the z = 1

2 case. Note that in SG
P 4/mmm (123), the position {(0, 1

2 ,0),( 1
2 ,0,0)} is convention-

ally denoted 2e, and we adopt that notation for the remainder
of this section. In addition to the elements of C2v enumerated
above, the site-symmetry group of qf

1 = (0,1/2,0) now also
contains {I |010}. Thus, the site-symmetry group is isomorphic
to D2h, whose representations we enumerate below. We note,
however, that each representation of D2h is generated by taking
a representation of C2v and appending inversion represented
as either plus or minus the identity matrix. Since we started
with s orbitals in SG P 4mm (99), we know that {I |010}
should be represented by the identity matrix in the relevant
representation. Thus, when we add inversion to the discon-
nected band representation in SG P 4mm (99), we arrive at the
band representation induced from the �5 representation of the
site-symmetry group D2h in SG P 4/mmm (123). Consulting
Ref. [44], we see that this band representation is physically
elementary, and allows for disconnected connectivity graphs;
this means we can add inversion symmetry without changing
the band connectivity. To analyze the topological character of
the phases where this band rep is disconnected, we construct
explicitly the k-dependent band representation matrices. Let si

be a set of Pauli matrices operating in spin space, and let σi be
a set of Pauli matrices operating in sublattice space {qf

1 ,qf

2 }.
We start by constructing the matrix representative of inversion
{I |000}. First, we note that inversion acts trivially in spin space.
Next, using the fact that

{I |000}qf

1 = qf

1 − (0,1,0), (48)

{I |000}qf

2 = qf

2 − (1,0,0), (49)

we deduce using the methods of Refs. [1,2] that we can
represent inversion as

ρk(I ) = s0 ⊗
(

eik·e2 0
0 eik·e1

)
. (50)
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Let us pause to make the following observation: there are eight
inversion-symmetric momenta in the BZ: �, X, X′, and M ,
along with the points Z, ,R, R′, and A, directly above them
in the z direction. Assume now that our band representation

�
2f

5 ↑ G is realized as disconnected, with two valence and
two conduction bands. Because of C4 symmetry, the inversion
eigenvalues of the valence bands at X and X′ are the same;
so are the inversion eigenvalues at R and R′. Examining
ρk(I ), we see that at � and Z all four inversion eigenvalues
are positive, while at M and A all inversion eigenvalues are
negative. At X and R two eigenvalues are positive, and two are
negative. Using the well-known relationship between inversion
eigenvalues and Z2 topological indices [3], we conclude
immediately that all disconnected realizations of this band
representation give a weak topological insulator, with indices
(0; 111). In Appendix B, we present an explicit tight-binding
model realizing this topological phase. We emphasize again
that the only phases permitted for this band representation are
either a connected topological semimetal or a disconnected
topological insulator. This is analogous to the situation present
in graphene [52–55], and indeed is true of any elementary band
representation which has a disconnected connectivity graph.

D. Filling constraints: Insulators and semimetals

We have in this section been primarily focused with using
the method of connectivity graphs to find topological insulating
band structures. However, the presence of disconnected groups
of bands in a band structure is not in itself enough to guarantee
that a material is insulating; it must also be true that connected
bands are completely filled, i.e., that (accounting for possible
charge transfer from other bands) there is one electron per band
per unit cell. When the electron filling is less than the number
of bands in an isolated group, a metallic phase naturally results.

Crucially, we can use our graph theory mapping to assess
when a set of k · p Hamiltonians can be patched together
to form a band structure which allows for a topological
semimetallic phase. By this we mean a group of bands that,
at the appropriate filling, can host a zero-volume point or
linelike Fermi surface (possibly in the presence of additional
compensated Fermi pockets). While we defer the systematic
treatment of semimetallic connectivity to a future work, we
can already see some interesting examples in the connectivity
graphs we have examined previously. First, let us return to the
example of Sec. IV D, where we examined the connectivity
of bands originating from P3/2 orbitals in the cubic space
groups I432 (211) and I4132 (214). Returning to Figs. 6(a) and
6(b), we recall that both band structures have only connected
connectivity graphs, with a single representation at the �

point, and with two representations at the P point. We see
that at half-filling, the band structure corresponding to the
connectivity graph Fig. 6(a) in SG I432 can yield a semimetal
with a pointlike Fermi surface at �; this is in fact a “spin- 3

2
Weyl” semimetal first predicted and discussed in Ref. [38]. On
the contrary, by counting the number of edges in Fig. 6(b), we
see that a topological semimetal in SG I4132 (214) necessarily
hosts Fermi surface features away from the � point. In fact,
if we consider additionally the partition N corresponding to
the N point (with coordinates 1

2 g3), we find [44] that there
are two nodes each corresponding to the two-dimensional

representation N5 of the little group GN . Comparing the
connection � ↔ � ↔ N with the connection P ↔ D ↔ N

using the BANDREP application, we can decisively rule out
the existence of a semimetal with features only at � in this
connectivity graph: there must be an additional Fermi pocket
centered near P or N .

A second example of topological semimetallic behavior is
given by connectivity graphs with symmetry-enforced cross-
ings along high-symmetry lines and planes, as in Fig. 5(b).
Along mirror planes in mirror-symmetric systems, these types
of crossings are generically allowed, but not required. How-
ever, along glide planes and screw axes in nonsymmorphic
systems, these crossings are generically required, leading to
the “movable, but not removable” band crossings first pointed
out by Michel and Zak [56]. At half-filling, band structures
in these glide- and screw-symmetric systems will generically
yield Weyl and nodal-line semimetals [56–58].

VII. DISCUSSION

We have shown how graph theory can be used to solve the
problem of constructing and classifying global band structures
consistent with crystal and time-reversal symmetries. While
symmetry strongly constrains the allowed connections of
energy bands, there are often many consistent global band
structures with different numbers of disconnected bands;
our graph theory mapping provides the tools necessary to
algorithmically enumerate all valid band structures. In com-
bination with the theory of elementary band representations of
Refs. [1,2], we demonstrated that the mapping of global band
structures to connectivity graphs gives a powerful method for
enumerating topological band structures. In the accompanying
Ref. [43], we show how to practically implement this program
to algorithmically compute all allowed topologically discon-
nected elementary band representations in all 230 space groups
both with and without time-reversal symmetry; the results of
these computations are now publicly available on the Bilbao
Crystallographic Server [44].

While we have discussed the theory of connectivity graphs
largely within the context of the electronic structure of time-
reversal invariant crystals, the applications of our method
are far grander in scope. The methods here can in principle
be adapted to the electronic structure of magnetic materials,
the dispersion relation of vibrational modes, and spin-wave
spectra. Furthermore, we expect connectivity graphs to play a
central role in the classification of topological semimetals and
the theory of noninteracting topological phase transitions.
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APPENDIX A: DISCUSSION OF THE GRAPH LAPLACIAN

In this appendix, we explore the motivation for the name
“graph Laplacian.” Let us consider the graph G obtained by
discretizing D-dimensional Euclidean space with a regular
hypercubic lattice with lattice constanta = 1. This is an infinite
graph with nodes N (G) = {xa = (xa

1 , . . . ,xa
D)} corresponding

to points in the lattice, each with degree (coordination number)
2D. Edges connect nearest-neighbor lattice sites in the usual
way. Now, if we have some function f : RD → R on space,
we can discretize it by restricting to the points N (G). The
discretization of the Laplacian ∇2f of f at a lattice site xa

can be written

−∇2f (xa) ≈ −
D∑

μ=1

[f (xa + eμ) + f (xa − eμ) − 2f (xa)],

(A1)

where eμ = (0, . . . ,xμ = 1, . . . ,0). We note that each term in
square brackets is the discretization of the second derivative of
f in the μ direction. However, also note that

D∑
μ=1

2f (xa) = 2Df (xa) = (DG)abf (xb), (A2)

where (DG)ab = 2Dδab. Furthermore, note that the sum

D∑
μ=1

[f (xa + eμ) + f (xa − eμ)] (A3)

is the sum of f evaluated at all nodes adjacent to xa . Using the
fact that the adjacency matrix AG as defined in Eq. (30) has
matrix elements (AG)ab equal to 1 for each node b connected
to a, and zero otherwise, we can rewrite this as

D∑
μ=1

[f (xa + eμ) + f (xa − eμ)] = (AG)abf (xb). (A4)

Putting it all together, the discretized Laplacian of f ,

−∇2f (xa) ≈ (LG)abf (xb), (A5)

coincides with the graph Laplacian.

Spectral graph theory starts with the study of the eigenvalues
of the graph Laplacian. We can motivate the relation between
these eigenvalues and the connectivity of the graph using the
correspondence (A5). In particular, let us consider the diffusion
equation

∂tf = ∇2f (A6)

on Rd . We know that if φE(x) is an eigenfunction of ∇2 with
eigenvalue −E, then

fE(x,t) = e−EtφE (A7)

solves the diffusion equation. Because the Laplacian is negative
definite, all solutions decay to zero at infinite time unless E =
0. If we consider diffusion on a subspace of our discretized
RD given by the union of N disconnected sublattices with
Neumann boundary conditions, we know that there will be N

eigenfunctions of ∇2 with eigenvalue E = 0: these are given
by the functions which are 1 on exactly one of the disks, and
zero on the others. These give steady states of the diffusion
equation, which are constants on each of the N sublattices.

From this fact we may suspect that zero eigenvectors of the
graph Laplacian LG correspond to connected components of
the graph G, and we would be correct; we proved this in the
main text in Eqs. (37) and (38).

APPENDIX B: TIGHT-BINDING MODEL FOR THE
DISCONNECTED EBR IN SG P4/mmm

It remains for us to show that such a disconnected realization
exists. This follows immediately from imposing inversion
symmetry on the disconnected band structure we found for SG
P 4mm (99). Inversion forces bands to be doubly degenerate
everywhere, and this leaves our disconnected band structure
disconnected. To see this more clearly, however, we construct
an explicit tight-binding model. Noting that in SG P 4/mmm

(123) along every vertical line in the BZ there is only one
allowed two-dimensional little group representation, we know
that the only possible crossings in the z direction can be
fourfold crossings of these representations. However, level
repulsion ensures that we can eliminate all such crossings.
Hence, we can dispense with the z direction in our model.
We then construct a 2D tight-binding model consistent with
the space-group symmetries, as with graphene (discussed in
Ref. [52] as well as in the Supplemental Material of Ref. [1]),
the effect of inversion in this 2D model is to enforce sz spin
conservation. In addition to inversion, we find for the remaining
space group generators

ρk(C4z) = eik·e1/2e−iπ/4sz ⊗
(

cos
k · e1

2
σx + i sin

k · e1

2
σy

)
,

(B1)

ρk(mx) = −ieik·e1sx/2sx ⊗
(

cos
k · e1

2
σ0 − i sin

k · e1

2
σz

)
,

(B2)

ρk(T ) = isy ⊗ σ0K, (B3)

where K is the complex-conjugation operator. We seek a
Hamiltonian consistent with these symmetries, that is,

ρk(I )H (k)(ρk(I ))−1 = H (−k), (B4)
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FIG. 9. Tight-binding band structure for s orbitals at the 2f position in SG P 4/mmm (123) in two dimensions. (a) Shows the band structure
with no spin-orbit coupling, which yields a semimetal with a gapless point at M . (b) Shows the spectrum with nonzero SOC. The band structure
is fully gapped.

ρk(T )H (k)(ρk(T ))−1 = H (−k), (B5)

ρk(mx)H (k)(ρk(mx))−1 = H (mxk), (B6)

ρk(C4z)H (k)(ρk(C4z))−1 = H (C4zk). (B7)

For the sake of illustration, we will look for the shortest-
ranged fully gapped Hamiltonian satisfying these properties.
The shortest-range Hamiltonian which can support a fully
gapped insulator reads as

H (k) = t1{[1 + cos k · e1 + cos k · e2 + cos k · (e2 − e1)]σx

+ [sin k · e1 − sin k · e2 − sin k · (e2 − e1)]σy}
+ t2(cos k · e1 − cos k · e2)σz + λ{[1 − cos k · e1

− cos k · e2 + cos k · (e2 − e1)]sz ⊗ σy

+ [sin k · e1 − sin k · e2 + sin k · (e2 − e1)]sz ⊗ σx},
(B8)

where t1 is a nearest-neighbor intersublattice hopping, t2 is
a next-nearest-neighbor intrasublattice hopping, and λ is the

nearest-neighbor spin-orbit coupling (SOC). We note that a
closely related model was recently considered in a different
context in Ref. [59]. When λ = 0, the system is gapless at the
M point, as shown in Fig. 9(a). sz-conserving “Haldane-type”
SOC [1,60] opens a gap at the M point, giving us a fully dis-
connected realization of this elementary band representation,
as shown in Fig. 9(b). Analysis of the inversion eigenvalues
reveals that this is a 2D strong topological insulator (layers of
which form the 3D weak topological insulator as above). To see
this directly, we diagonalize our tight-binding model in a slab
geometry, periodic in y and with 50 layers in the x direction.
Figure 10(a) shows the slab band structure as a function
of the surface momentum. Two pairs of counterpropagating
mid-gap states are clearly seen, one pair coming from each
boundary of the slab. To show that these states are indeed
localized to the edge, we compute the surface density of states
on the right boundary of the slab, shown in Fig. 10(b). One
pair of counterpropagating edge states is clearly visible. This
confirms our assertion that this disconnected elementary band
representation realizes a weak 3D topological insulator (i.e., a
strong 2D topological insulator).

FIG. 10. SG P 4/mmm (123) tight-binding model on a finite slab of 50 unit cells. (a) Shows the full slab band structure, with two pairs
of counterpropagating edge modes clearly visible in the bulk gap. Because the total centers of charge of orbitals at the 2f position are not on
Bravais lattice sites, our boundary conditions break inversion symmetry. (b) Shows the surface density of states as a function of energy and
surface momentum, showing one pair of counterpropagating edge modes. The other pair of edge modes is on the other surface of the slab (not
shown).
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