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We present ab initio calculations of the photoemission spectra of bulk sodium using different flavors of the
cumulant expansion approximation for the Green’s function. In particular, we study the dispersion and intensity
of the plasmon satellites. We show that the satellite spectrum is much more sensitive to many details than the
quasiparticle spectrum, which suggests that the experimental investigation of satellites could yield additional
information beyond the usual studies of the band structure. In particular, a comparison to the homogeneous
electron gas shows that the satellites are influenced by the crystal environment, although the crystal potential in
sodium is weak. Moreover, the temperature dependence of the lattice constant is reflected in the position of the
satellites. Details of the screening also play an important role; in particular, the contribution of transitions from
2s and 2 p semicore levels influences the satellites, but not the quasiparticle. Moreover, inclusion of contributions
to the screening beyond the random-phase approximation has an effect on the satellites. Finally, we elucidate the
importance of the coupling of electrons and holes by comparing the results of the time-ordered and the retarded
cumulant expansion approximations. Again, we find small but noticeable differences. Since all the small effects
add up, our most advanced calculation yields a satellite position which is improved with respect to previous
calculations by almost 1 eV. This stresses the fact that the calculation of satellites is much more delicate than the

calculation of a quasiparticle band structure.
DOI: 10.1103/PhysRevB.97.035137

I. INTRODUCTION

Photoemission spectroscopy has proved increasingly useful
in the elucidation of the electronic properties of materials, since
it provides both quasiparticle band structures, with information
of one-particle-like excitations, and satellite structures that
reflect the coupling to bosonic excitations such as phonons,
plasmons, and magnons [1]. Accurate descriptions of pho-
toemission spectra from ab initio calculations have been a
challenge for ages.

Currently, the most widely used approach for moderately
correlated materials is the GW approximation (GWA) pro-
posed by Hedin in 1965 [2]. In the GWA, the one-particle
Green’s function is determined by a Dyson equation G =
Gy +GpX..G, where Gy is the Hartree Green’s function,
and X, is a complex, nonlocal, and frequency-dependent self-
energy that is approximated as a convolution of the one-particle
Green’s function G and the dynamically screened Coulomb
interaction W, leading to ¥,. = GW. The GWA has become
the state-of-the-art approach to compute quasiparticle band
structures. However, one of its notable shortcomings is the poor
description of the satellite structures in photoemission spectra
[3]. Since plasmons are the dominant structures in the inverse
dielectric function ¢! and hence in W = e ~'v,, where v, is
the bare Coulomb interaction, one might suppose that plasmon
satellites should be well described by the GWA. However, this

“jiangiang.zhou @polytechnique.edu

2469-9950/2018/97(3)/035137(14)

035137-1

isnotthe case in practice. An example is the spurious prediction
of a sharp plasmaron satellite, which has been contradicted
experimentally [4-7]. Moreover, the GWA satellites due to
plasmons are generally too far from the quasiparticle energy
compared to experiment [6—12].

Alternatively, the cumulant expansion approximation
(CEA) has been quite promising for giving a better description
of plasmon satellites in photoemission spectra in a number of
systems [6—-20]. The CEA was inspired by the exact Green’s
function of an electron-boson model Hamiltonian for a core
level [21] and has been hence extensively used for core-level
photoemission (see, e.g., [22-25]), and also in other contexts,
such as for the electron-phonon interaction and the polaron
problem (see, e.g., [26—30]), or for modeling ultrafast electron
dynamics (see, e.g., [31-33]). The CEA extrapolates the exact
cumulant average of the evolution operator [34] to obtain
an approximate exponential representation of the Green’s
function in the time domain G(1) = Gy (¢)e“"), the expansion
of which yields a Poisson series of satellites in the spectral
function A(w) = 7~ !'|Im G(w)|, consistent with experimental
observations. Moreover, to lowest order in the screened inter-
action the cumulant function C(¢) can be expressed in terms
of the GW self-energy, and it is therefore computationally no
more demanding than the GWA itself.

The number of ab initio CEA calculations to date is still
relatively limited. Therefore, many details remain to be under-
stood and settled. First, better agreement of CEA results with
experiment is expected in insulators, semiconductors, or core
levels of metals than in metal valence bands [16]. The reason

©2018 American Physical Society


http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.035137&domain=pdf&date_stamp=2018-01-16
https://doi.org/10.1103/PhysRevB.97.035137

ZHOU, GATTI, KAS, REHR, AND REINING

PHYSICAL REVIEW B 97, 035137 (2018)

is that the traditional time-ordered cumulant (TOC) is exact
only in the limit of an approximate core-level Hamiltonian
[21] or for an approximation that decouples different orbitals
[6,16]. Both of these approximations assume that at zero
temperature the occupation numbers are either O or 1, which
is certainly not true close to the Fermi level of metals. A
number of efforts have been made in order to go beyond
the TOC to describe systems with partially occupied states.
For example, the retarded cumulant (RC) approximation was
recently proposed [35,36], where both the Green’s function
and the self-energy appearing in the CEA are replaced by
their retarded counterparts. Consequently, while within the
TOC unoccupied states do not produce satellites below the
Fermi level, these additional features, which are a signature of
coupling between occupied and unoccupied states, have been
obtained in the homogeneous electron gas by using the RC
[35]. Second, as pointed out above, the calculations rely on
a GWA self-energy, which has been extensively studied for
calculations of quasiparticle band structures. However, the
insight gained from these studies is not necessarily transferable
to the satellites, which are considerably enhanced by the CEA
with respect to the GWA calculation. Indeed, our work shows
that several effects influence the satellites, whereas they can
be often overlooked for the quasiparticles. These include mild
changes in the crystal environment and the lattice constant, the
contribution of core levels, and the approximation used for the
screening.

We illustrate these points by performing both TOC and RC
calculations for the valence photoemission spectrum of bulk
sodium. Our most detailed calculation, which takes into ac-
count all the aspects mentioned above, leads to an improvement
of the satellite position of almost 1 eV with respect to previous
calculations [16], as compared to experiment [37].

This paper starts in Sec. II with a brief introduction to the
theoretical framework, where those aspects are highlighted
that are important for the subsequent analysis. In Sec. III the
results of the time-ordered and the retarded CEA are compared.
Section IV discusses the effects of the crystal environment
and the semicore transitions on the spectra. Section V deals
with the approximations used to calculate the screening. In
Sec. VI we compare our result to experiment. Finally, Sec. VII
contains the conclusions. Computational details are relegated
to the Appendix.

II. THEORETICAL FRAMEWORK

In this section we summarize the main theoretical ingredi-
ents. The purpose of the section is to highlight the ideas behind
the existing cumulant approximations, to explain in which way
they constitute an improvement with respect to the GWA, and
what is the difference between various cumulant flavors. It is
a summary section referring to previous work in the literature.

The subject of interest here is the diagonal elements of the
one-body Green’s function at equilibrium at zero temperature.
It describes electron addition and removal to a many-body
system, expressed in terms of the greater (>) and lesser (<)
components:

G;(v) = —i(N|ew(x)c) (0)IN),
Gy (1) = +i(Nlc)(0)er(T)IN), (1)

where we have defined the creation and annihilation operators

c,t and ¢y, respectively, for an electron in a state with quantum

number k (note that in a crystal k stands in general for a band
n and a k point), which act on the ground-state |N) of N
interacting electrons.

These components can be combined in various ways, which
are equivalent if observables are calculated consistently. In
particular, the time-ordered Green’s function reads

G{ (1) = 0(1)G (v) + O(—1)Gf (1) 2
and the retarded Green’s function is
Gi(r) = 0(0)[G; () — GF ()] 3

In both cases, the diagonal elements of the spectral function
can be calculated as

Ay() = é[Gi(w) — G{ ()]

= L mG] (@)| = ~~ImGf (@) )
T T

For a not too strongly correlated material Ax(w) contains in
general a quasiparticle (QP) peak, which is a broadened and
shifted reminder of the single-particle peak in the noninteract-
ing spectrum, and satellites, which are additional structures to
which weight is transferred from the quasiparticle peak. The
latter has therefore less weight than in the noninteracting case.
The quasiparticles constitute the band structure in a solid.

Often, the Green’s function is calculated from the Dyson
equation, which is an integral equation whose kernel is the self-
energy. Today the state-of-the-art approach for band structure
calculations is the GW approximation for the self-energy.
However, it has been known for a long time that satellites in
the spectral function are less well described by the GWA than
quasiparticle energies. This emerges most clearly when one
considers simple models, such as a Hamiltonian consisting of a
single fermionic level coupled to bosons. In our case, the boson
represents a dominant excitation in the dynamically screened
Coulomb interaction W. The model was solved exactly by
Langrethin 1970 [21]. He found that the exact spectral function
consists of one QP peak followed by a Poisson series of
boson replicas. The corresponding Green’s function G(t)
can be written as the noninteracting Green’s function G(t)
multiplied by an exponential ¢“(*), where C is the cumulant
that contains the bosons. The GWA, on the other side, yields a
good description of the QP energy but a poor satellite spectrum.
Indeed, the GWA corresponds in the model to a second-order
expansion of the self-energy in the coupling constant g. As
a consequence, quantities such as the QP renormalization are
correct to first order in g2, but just one satellite appears, which
can be interpreted as an average representing the whole satellite
series of the exact spectrum [38].

The simple model of a single fermion level is reasonable to
represent deep core states and, indeed, core-level photoemis-
sion spectra are often well described by a spectral function of
the exponential (cumulant) form. When one goes beyond iso-
lated levels, the picture of independent quasiparticles coupled
to bosons remains often reasonable. Also for a two-level model
a cumulant Green’s function is a much better approximation
to the exact solution than the GWA [39], in a wide parameter
range. For the general case and real materials, approximate
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cumulant Green’s functions have been derived in various ways,
based for example on diagrammatic arguments [30,39-41],
on the equation of motion for the one-body Green’s function
[42], on the Kadanoff-Baym equations [6], or starting from the
Dyson equation and imposing a cumulant form on the Green’s
function [8]. In all cumulant approximations, greater and lesser
components of the Green’s function are of the form

Gi™ (1) oc e, ®)

where & is a quasiparticle energy for a state k. The rationale
underlying this exponential ansatz for diagonal Green’s func-
tion is that it becomes exact if the vertices of quasiparticle
interaction with the heat-bath excitations (i.e., with other
quasiparticles) are constrained to the propagation interval
(0,7), likewise in the core-hole problem [21,40]. The cumulant
Cy contains the quasiparticle renormalization and the seed for
the satellites that appear when the exponential is expanded.
The difference between various cumulant flavors appears in the
details of the ingredients. Since beyond the model of an isolated
level approximations have to be made, these differences are
linked to the coupling between levels, and in particular, to the
coupling between occupied and empty states, which is treated
differently in different derivations.

The easiest way to illustrate this is to follow the derivations
of [8] and the subsequent [35]: These derivations are based
on the ansatz (5), and the cumulant is found by imposing that
the Green’s function should be exact to first order in W. The
differences appear in the details of the ansatz.

In the case of Ref. [8], for an occupied state k the Green’s
function reads

GY(1) = if(—T1)e 7™, (6)

In this ansatz only occupied single-particle states contribute to
the electron removal spectrum; similarly, the electron addition
spectrum is built with unoccupied states only. In other words,
G; =0 when k < kp. In Ref. [35] the cumulant form was
postulated for the retarded Green’s function, namely

Gi(t) = —if(r)e 7SO, )

In this case, occupied and empty states k can contribute to both
electron addition and removal.

In both cases, the unknown Cy(7) is found by constraining
the Green’s function to the ansatz and by determining the
unknown cumulant function to first order in W from the Dyson
equation. The main ingredient that appears in the resulting
expressions is the GW self-energy, since it is of first order in
W. This leads to the fact that in all cases a GW quasiparticle
energy results, and the method is in general referred to as the
GW+C method. In the case of Ref. [8] the Dyson equation in
its time-ordered version was used, whereas the Dyson equation
for the retarded Green’s function appears in Ref. [35]. At zero
temperature both versions are of course in principle exact and
fully equivalent, but the different approximations in the ansatz
lead to a different final result.

In the time-ordered case the occupied and empty spaces
are decoupled. There are minor variations due to different
points where this decoupling is done; here we concentrate on
the TOC of Refs. [6,16] where the cumulant for an occupied

state is

1 H—Ek e—iwr _
G == [ dom Tt ®)

o]

which is to be used in (6). The analogous TOC for an unoc-
cupied state can be found in [13,14]. The self-energy Xy . is
calculated in a Gy W, scheme [ 18], where W) is obtained using
Kohn-Sham ingredients and G is a quasiparticle (mean-field)
choice that is optimized [38,43,44] in an energy-self-consistent
scheme in such a way that the quasiparticle energy & is equal
to ex. g + Re Xy . (ex), with gy the Hartree part. Note that
for hole states & is smaller than the Fermi energy .

The cumulant (8) creates satellites in the spectral function
for an occupied state k only on the removal side, @ < &.
Similarly, satellites for an unoccupied state are found only in
the addition sector. This is perfectly justified for the deep core
levels that are indeed decoupled from the high-lying empty
states, but it is questionable when one approaches the Fermi
surface.

Indeed, near the Fermi surface the spectral function should
be more and more symmetric, which means that for k ~ kp
satellites of similar weight should be found both in the addition
and in the removal sectors. This can by definition not be
achieved by the ansatz (6). The RC ansatz (7), instead, treats
occupied and empty states on the same footing. Therefore the
symmetry is restored and one may expect that the RC ansatz
is more suitable close to the Fermi surface.

By requiring that the first-order expansion of the retarded
Dyson equation and of the RC ansatz be the same, the RC
cumulant becomes [35]

—iwt __ 1

R [ R e
Cl(r)=— do|Im £f, (0 + )| ———
T J_ s w

©))

Comparison with Eq. (8) shows that the difference in the
cumulant functions is the frequency integration range: the
TOC only integrates the hole part of the self-energy (i.e.,
corresponding to w < ), whereas the RC integrates both hole
and electron parts.

Both the TOC and the RC are exact in the case of an isolated
level coupled to bosons. Beyond this, both are approximations,
based on (i) a linear response approximation which identifies
the boson with the screened Coulomb interaction W; (ii) an
ansatz, or the choice of diagrams of lowest order in W for
the cumulant [21] such that the Green’s function is of the
form (5); and (iii) the hypothesis that one can concentrate
on diagonal elements only, and in particular, that the GW
self-energy is diagonal in the basis of single-particle states.
The justification for these approximations is a combination
of rigorous mathematical derivations, physical intuition (such
as a choice of diagrams, or the electron-boson picture itself),
and experience (which supports for example the diagonal
approximation of the self-energy). However, it is notoriously
difficult to treat the coupling of addition and removal spaces
beyond the GWA in a systematic and physically meaningful
way (see, e.g., [18,39,45]), and the approximations have still to
be judged by their results, both for models and real materials.

In order to illustrate the physical meaning of the different
terms in the cumulant function (8), we consider a simple
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electron-boson model time-ordered self-energy [39]:

g1/2 8/2

") = : :
w—& twp,—1n ®—& —wp,+In

, (10)

where g; and g, denote the electron-plasmon coupling constant
at each orbital, w,, is a nondispersing plasmon energy, & < [
and &, > u are the energies of two electronic orbitals repre-
senting hole and electron state, respectively, and n — 0% is an
infinitesimal positive number. The imaginary part Im ¥"¢ =
(JT/Z)[g%tS(a) —&1+w,) — g%S(a) — & — w,)] contains one §
peak at = &; — w, with weight g7/2 and another one at
o = & + w, with weight g3 /2.

Using this model self-energy for the TOC cumulant function
(8), we have

2 2
C(r) = z‘%el’wﬂ — 2%. (11)
P P
The physical meaning of each term in C(tr) becomes clear
in Eq. (6): the first term generates a series of plasmon
satellites at energies w, away from the quasiparticle energy
', The second term gives the quasiparticle renormalization
factor Z'** = exp{—g{/(2w?)}, which measures the spectral
weight corresponding to the quasiparticle excitation, whereas
(1 — Z'°) goes into the rest of the spectral function, including
satellites.
When X is instead used in the C® (9), we have for the

matrix element of G in the hole state with energy ¢;

2

2 2 >
CR(-[)Z zg_lzeiw,,r + 82 oo _ g7 g
w

P

25)2 2w§ 2(2)% - (12
where @, = w, + A, and A = &, — & the quasiparticle en-
ergy difference between the two orbitals.

Two more terms appear in C* with respect to the time-
ordered C due to the electron part of ¥"¢. The first new term
generates a series of plasmon satellites at energies equal to @),
away from the quasiparticle energy ¢;. Due to the minus sign in
the exponential, these satellites are placed on the high-energy
side of &;. Therefore, the RC has satellites on both sides of the
quasiparticle peak in the spectral function. The second new
term modifies the quasiparticle renormalization factor, such
that 2" = exp{—g}/2w}) — 83/2a7)).

Analogously, the RC spectral function of the electron state
(i.e., orbital with quasiparticle energy ¢;) also contains satel-
lites with energy below the Fermi energy. As a consequence, in
order to have the complete RC electron removal spectrum, one
also has to sum the spectral functions of the partially occupied
electron states.

For the two-level electron-boson coupling model [39] the
TOC and RC results can be compared to the exact ones. As
shown in [46], the RC is clearly superior in the parameter
range of interest here. Of course, the model is a very rough
simplification with respect to the real materials, where we have
one or more dispersing bands.

The GW self-energy of a real system can still be written in
the form of electron-boson coupling, but more poles appear
[38]. For each state ¢, its diagonal matrix element contains
the sum of all valence and conduction states j coupled with
many different bosonic excitations s, and the time-ordered self-

energy reads

DROEDY

J,s#0

il

o — &+ (@, — in)sgn( — &)’

13)

Here ¢, are the quasiparticle energies, w;, = E(N,s) — E(N,0)
are the neutral excitation energies that correspond to the energy
differences between the N-particle excited state s and the N-
particle ground state, and V;; are the fluctuation potentials,
which determine the strength of the electron-boson coupling.
Often, the sum over excitations s can be approximated by a
small number of dominant excitations, such as plasmons. In the
following, we will disentangle the different contributions by
examining separately the various ingredients entering Eq. (13),
and hence the cumulant expansions for G in Egs. (8) and (9).

In a solid, it is convenient to analyze the loss function
L(q,w), which can be directly measured by inelastic x-ray scat-
tering (IXS) or electron-energy-loss spectroscopies (EELS)
[47]:

e(q,w)
€}(q.0) + €3(q.w)’

where €, = €| + i€y is the complex macroscopic dielectric
function. The peaks of the loss function, which generally
depend on the wave vector q (i.e., the experimental momentum
transfer), correspond to the neutral excitations wy in (13). In
particular, the plasmon energies w;(q) correspond to the peaks
in the loss function for which €;(q,w,;(q)) = 0.

Equation (13) shows that the self-energy is an average over
the couplings of the single-particle states £ with the plasmons
(and other electron-hole excitations) at all momentum transfers
q. As a consequence, the plasmon energy w,;(q = 0) is in
general different from the plasmon satellite energies ) in the
spectral function, which for each state are defined as the energy
distance between the quasiparticle and first plasmon satellite.

In the GWA the inverse dielectric function €' and the
loss function are often calculated within the random-phase
approximation (RPA). However, one may go beyond the RPA
by using time-dependent density-functional theory (TDDFT)
[48,49], where the solution of the Dyson equation for the
polarizability x = xo + xo(ve + fre)x yieldse ™' =1+ v.x.
While the RPA corresponds to setting the exchange-correlation
kernel f,. to 0 and evaluating the independent-particle polariz-
ability x( in some mean-field approximation, the most widely
used approximation in TDDFT is the adiabatic local-density
approximation (ALDA) [50,51]. In general, the ALDA yields
plasmon spectra in better agreement with EELS and IXS
experiments than the RPA [52,53]. Therefore we will inves-
tigate whether the ALDA also improves plasmon satellites in
photoemission spectra.

L(q,0) = —Ime;,'(q,0) =

(14)

III. TIME-ORDERED VERSUS RETARDED CUMULANT
APPROXIMATION

The RC has been applied to the homogeneous electron gas
[35], but it remains interesting to investigate whether the RC
improves over the TOC for the spectral function of a real
metal like sodium. To this end, we perform ab initio TOC
and RC calculations for bulk sodium, using the computational
ingredients summarized in the Appendix. The TOC and RC
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FIG. 1. k-resolved spectral functions A(k,w) for the sodium
valence band along I'N using TOC (red solid curve) and RC (black
dotted curve). The Fermi wave vector is kr = 0.49 a.u.

results are compared in Fig. 1, which shows the k-resolved
spectral functions A(k,») along the I'N direction for the
sodium valence band, crossing the Fermi level at kr ~ 0.49
a.u. At kK =TI, which is at the bottom of the band, and for
states close to it, the TOC and the RC spectral functions are
very similar for ® < p. In agreement with previous TOC cal-
culations [8,16], there is a prominent quasiparticle peak which
has a parabolic dispersion (see Fig. 2) and two satellites that
follow the quasiparticle dispersion at a distance of ~5.84 eV
and ~11.64eV to the quasiparticle band, respectively. This
similar dispersion is analogous to the situation in silicon, which
has been investigated in [15,17]. The satellites are slightly more
intense in the TOC than in the RC, as the renormalization
factors are different in the two cases. For w > u, the RC
displays a nonzero spectral weight, while the TOC is always 0
by definition. This tail in the RC comes from the integration of

x T T T T T T T T T %
0 +* +*
—2f * % RC-QP 1
* % RC-satl
* % RC-sat2
—4r — TocqP |
— TOC-satl
— TOC-sat2

* * * x|
_gl W ]

-10} B

energy (eV)

—-12 4

—141 4

i i i i I 1 i
-0.6 -05 -04 -03 -0.2 -0.1 00 01 02 03 04 05 06

k (N-I'-N) (a.u.)

FIG. 2. The dispersion of quasiparticles (red) and first (blue) and
second (green) satellites in TOC (solid curves) and RC (stars). The
stars with double size are satellites from states above the Fermi
level w.

0.16 ;
— TOC
0.14}| — RC
0.12
1
1
L‘" 0.10} !
1
2 .
2 o0.08 1
— !
3 L L L 1 L
= 006l -9 -85 —-8.0 -7.5 —7.0 —6.5 6.0
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0.02} )
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FIG. 3. The total k-summed spectra for the sodium valence band
in both TOC (in red) and RC (in black), multiplied by the room
temperature Fermi function. Inset: Zoom on the first satellite. The
two dashed vertical lines mark the positions of the maximum of each
satellite; their distance is 0.11 eV.

the electron part of Im X, which is present in the RC but not
in the TOC. By approaching k the differences between TOC
and RC spectral functions become significant: the unoccupied
part of the RC spectral function becomes larger, also showing a
pronounced satellite at about 6 eV above w. For k ~ kp the RC
is symmetric around . Finally for k > kp [see Fig. 1(d)] we
show only the RC, since this matrix element of the hole TOC
is zero. Interestingly, for k > kr the RC still has a satellite
for w < pu, which might be measurable by photoemission
experiments.

Figure 2 shows the dispersion of the band and the satellites.
While for occupied states the QP and the satellites have the
same parabolic dispersion, for unoccupied states we find that
the satellites in the RC spectral function below the Fermi level,
which are denoted by stars in the figure, do not follow the
parabolic dispersion of the quasiparticle band, becoming more
flat and even inverting the curvature. This behavior can be
understood using the model equations (7), (9), and (10), by
varying the energy ¢; in order to simulate the dispersion of the
empty state.

Figure 3 shows the valence spectral functions summed over
the first two bands, integrated over all k in the Brillouin zone,
and multiplied by the Fermi function for 7 = 300 K together
witha 0.3 eV Gaussian broadening. While qualitatively similar,
the TOC and RC display small quantitative differences for both
the QP peak at the Fermi level and the satellites (see the zoom
around the first satellite in the inset of Fig. 3). Notably the
maximum of the first satellite is more intense and closer to
the QP peak in the RC compared to the TOC. The differences
between TOC and RC are due to the different renormalization
factors and to the satellites of the unoccupied states for w < u,
which are present only in the RC spectral functions.

The maximum of the RC satellite has a binding energy that
is 0.11 eV smaller than that of the TOC, bringing it into better
agreement with experiment. We conclude that the RC leads to
some small but visible changes in the valence photoemission
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spectra of a metal such as sodium. Since the RC contains
additional physics, one may expect that this approximation
is better than the TOC. In the following we will present only
RC spectral functions.

IV. ENVIRONMENT EFFECTS ON THE PLASMON
SATELLITES

In this section we will study various contributions that have
a small but visible influence on the satellites, while they do
not affect the quasiparticles. It should be noted that all effects
discussed here lead to changes of the same sign, such that they
add up and finally have a non-negligible impact on the spectra.

A. The lattice potential: Comparing sodium
and the homogeneous electron gas

Sodium 1is the closest realization of the homogeneous
electron gas (HEG) model: the potential due to the ionic lattice
introduces only a very small perturbation of the ideal HEG,
the valence-band dispersion remains close to parabolic, and
the Fermi surface close to spherical. The spectral function
of the HEG has been previously calculated using both the
TOC [54-56] and the RC [35,36] that we employ here. By
comparing sodium and the HEG with the same electron density,
here we can additionally establish whether the lattice potential
influences the quasiparticle and satellite properties in the same
way.

The integrated spectral functions for Na and the HEG,
which are displayed in Fig. 4, are very similar for the
quasiparticle peak at the chemical potential u, whereas their
satellites are slightly different (see the zoom in the inset of
Fig. 4). In the HEG the satellite has a larger distance from the
quasiparticle than in Na, resulting in a larger binding energy.
This is confirmed by comparing in Fig. 5 the dispersion of the
k-resolved spectra along I'N. While the quasiparticle bands
overlap entirely in the two cases, at each k point the distance
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FIG. 4. The total k-summed spectra of HEG (in red) and sodium
(in black), multiplied by the Fermi function. Inset: Zoom on the
first satellite. The two dashed vertical lines mark the positions of
the maximum of each satellite; their distance is 0.12 eV.
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FIG. 5. k-resolved spectral functions A(k,w) of sodium (red

curve with circles) and the HEG (black curve) at the I' point and
close to Fermi level (kr ~ 0.49 a.u.).

between the quasiparticle and the first satellite is larger in the
HEG than in Na. This difference is almost twice as big for the
second satellite [see Fig. 6(a)]. We also note that the largest
differences occur around the I" point at the bottom at the band,
while around the Fermi level the satellite positions get closer.
For a better comparison, Figs. 6(b) and 6(c) show for both
sodium and the HEG the dispersion of the quasiparticle band
and the plasmon satellites, where the satellite energies have
been shifted such that they coincide with the quasiparticle
at ['. As already found in sodium (see Fig. 2), also in the
HEG at the bottom of the band the satellite band follows the
parabolic dispersion of the quasiparticle. When the state is
instead close to Fermi level, there is an abrupt change, yielding
a flat dispersion and a downwards bending. Since this feature
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FIG. 6. (a) Dispersion of quasiparticles (in red) and first (in blue)
and second (in green) satellite of sodium (solid curves) and of the
HEG (stars) along the NI'N direction. (b), (c) Comparison of the
quasiparticle (red solid curves), first satellite (blue dashed curve), and
second satellite (green dots) dispersions of (b) sodium and (c) the
HEG. The satellite energies have been shifted in order to align all
energies at the I" point.
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FIG. 7. The shifted imaginary part of self-energy of sodium (red
solid lines) and HEG (blue dashed lines) at different k points along
I’'N in the sodium Brillouin zone. Only the removal part w < p is
shown. The Fermi wave vector is at kr = 0.49 a.u.

is in common to the HEG and Na, this property of the satellite
dispersion must be due to the electronic interaction, while the
differences in the satellite energies between the HEG and Na
are caused by the lattice potential.

In order to understand the origin of these differences, let us
analyze the imaginary part of the self-energy Im X, that enters
Eq. (9), shown in Fig. 7. In both sodium and the HEG, Im X, is
characterized by a single peak, which in the HEG is located at
larger distances from the corresponding quasiparticle peak than
in Na (note that the energy scale in the figure is given relative to
the quasiparticle energy). This explains why the satellites in the
spectral functions are at higher binding energies in the HEG.

Approaching the Fermi level, the difference between
sodium and the HEG decreases, while the peak becomes
broader and asymmetric. The shape of Im X, can be directly
linked, through Eq. (13), to the parabolic valence band dis-
persion in Na and in the HEG. Typically, for a given bosonic
excitation s, the dominant contribution to the sum over states j

is selected by the coupling matrix elements V;; and stems from

states that are close; i.e., Im Eff is dominated by contributions

with |k; — k¢| < A. When K, is at the bottom of the parabolic
band, i.e., close to I' where the band is relative flat, neighboring
states k; for which V;; is significantly different from zero

have energies ¢; very close each other. As a result, Im £
for such a state £ has a sharp peak around &, — wy. Instead,
when K, is away from I', where the band has a steeper slope,
Im ¢ is different from zero in a wider energy range. At the
same time, it becomes more asymmetric, developing a long tail
on the low-energy side. The reason for the asymmetry is the
availability of energies: close to the Fermi level, there are fewer
occupied states j with energy &; > &, whereas many states
with smaller energies €; < &, contribute to the low-energy tail
of the peak. Going towards the bottom of the valence band, the
spectral weight continuously moves towards the high-energy
side of the peak. At the bottom of the band, however, the
asymmetry is hidden by the fact that the peak is sharp. Of
course, this is a qualitative analysis, since the coupling with

(a):: ¢=0.11 (a.u.) (b):: g=0.24 (a.u.)
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FIG. 8. The RPA loss functions of sodium (red curve) and HEG
(blue curve) at different momentum transfers ¢ (in a.u.).

bosonic excitations of different character and energies w; that
are summed up to form the self-energy complicates the picture.

Finally, in order to understand why the peak position of
Im X, in the HEG is always farther from the quasiparticle
than in Na, we compare the loss functions, which are shown in
Fig. 8 as a function of momentum transfer g. For ¢ smaller
than the wave vector g, ~ 0.45 a.u., the peak in the loss
function corresponds to a plasmon resonance, for whiche; = 0
[see Eq. (14)]. Above g, the plasmon enters the electron-hole
continuum where the loss function is dominated by €, . In agree-
ment with Ref. [57], the HEG shows larger plasmon energies
than sodium at all momentum transfers. As g increases, the
difference becomes larger and larger: the plasmon in sodium
is more and more affected by band-structure effects and short-
range spatial inhomogeneities in the charge response become
more apparent. These observations suggest that low-density
regions have a stronger influence on the plasmon energy of an
inhomogeneous material than high-density regions, such that
the resulting plasmon energy is smaller than what one would
expect from the average density.

This difference in the plasmon energies explains why the
plasmon satellite has a larger binding energy in the HEG than in
Na. Since the difference in the peak position of Im X, between
sodium and the HEG is always smaller than 0.2 eV (see Fig. 7),
we can conclude that the loss functions at small momentum
transfers (i.e., ¢ < 0.3 a.u., where the loss functions of the
HEG and Na are similar) are those which contribute mostly to
Im X, and hence to the position of the plasmon satellite in the
spectral functions.

B. Thermal expansion

The results above have been obtained with calculations per-
formed at temperature 7 = 0, and with a lattice parameter for
sodium of 4.227 A, which is the experimental result measured
at T = 5 K. However, experiments are often performed at room
temperature, 7 = 293 K. There is no major influence of the
electronic temperature, besides the Fermi function in the spec-
tra on this range of temperatures, but thermal expansion may
play an important role. Indeed, by increasing the temperature
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FIG. 9. RPA loss functions of sodium calculated with lattice
parameters corresponding to 5 K (red curve) and 293 K (black curve)
at different momentum transfers ¢ (in a.u.).

from 5 K to room temperature, the lattice parameter of sodium
changes considerably, from 4.227 A to 4.29 A [58]. Since the
plasmon energy at q = 0 is approximatively proportional to the
square root of the electronic density, we expect that with the
decrease of density at higher temperature, the plasmon energy
decreases as a consequence of the lattice thermal expansion.
Indeed, in Fig. 9 we find that for all momentum transfers
the plasmon resonance is located at lower energies in the
loss function calculated with the room temperature lattice
parameter than in the 5 K result.

Extrapolating from the comparison between Na and the
HEG in Sec. IVA, one should expect a similar effect on
the spectral functions. Indeed, for all k points, the plasmon
satellites in Figs. 10 and 11 have smaller binding energies at
room temperature than at 5 K. Again, the satellites are more
affected by the thermal expansion than the QP peaks, which
remain almost unchanged.
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FIG. 10. k-resolved spectral functions of sodium along the I'N
direction using lattice parameters corresponding to 5 K (black curve
with dots) and 293 K (red solid curve) at the I" point and close to
Fermi level (kr = 0.49 a.u.).
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FIG. 11. (a) The QP and plasmon satellite dispersions along I'N.
The QP and first satellite energies of Na at 5 K are represented in red
and blue solid curves, respectively. For Na at 293 K QP and satellite
energies are stars. (d) The total spectra summed over k points and two
bands, using lattice parameters corresponding to 5 K (black curve with
dots) and 293 K (red solid curve).

This trend is confirmed by a calculation where we have
artificially expanded the lattice parameter to 4.44 A for the
sake of demonstration. Figure 12 shows that the satellite band
moves much closer to the QP band, which does change, but to
a much lesser extent: while the QP bandwidth is reduced by
0.28 eV, the binding energy of the maximum of the satellite
peak decreases by 0.46 eV.

C. Core polarization

Transition from shallow core levels to empty states are
known to affect the loss function also at lower energies, i.e., in
the energy range of valence transitions [59-61]. Since we have

(a): k=0 (a.u.) (¢):: band T-N (d):: k-summed spectra
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FIG. 12. Comparison between Na with lattice parameter at 5 K
(ap =4.23 A) and Na with artificially expanded lattice parameter
(ap = 4.44 A): k-resolved spectral functions (a) at the I point and
(b) close to the Fermi level; (c) band and satellite dispersions; (d)
k-integrated spectral function.
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FIG. 13. The loss functions —Im e~! including different transi-
tions. The yellow filled curve contains all transitions from 2s, 2p, 3s
states. The red dashed and black solid curves contain transitions from
2p + 3s and 3s only, respectively. The black diamonds are calculated
using a pseudopotential containing only 3s electrons as valence states.

found that the satellite in the spectral function is very sensitive
to small changes of the plasmon properties, here we analyze
whether those core polarization effects have an influence also
on the valence plasmon satellites in the spectral function of
sodium.

In order to investigate how the 2s and 2 p core states affect
the loss function we have used two different pseudopotentials:
one that has only 3s as valence electrons and another where
also 2s and 2 p are explicitly included in the calculations [62].
First of all, we have to make sure that the errors inherent
in the pseudopotential approach do not bias our conclusions.
To this end, we have verified that the two pseudopotentials
give the same result when only excitations from 3s states are
taken into account. This is indeed the case, as one can see
from the comparison of the two pseudopotential results (black
diamonds and black curve) in Fig. 13(a). In the next step, we
add transitions from 2s and 2 p core levels to the calculations.
This leads to the yellow shaded curves, which are redshifted
with respect to the black curves for all momentum transfers
[see Figs. 13(a)-13(d)]. This effect is mainly due to the 2p
electrons: results with (yellow shaded curves) or without [red
curve in Fig. 13(a)] the 2s are indistinguishable.

To understand the origin of the redshift of the loss function,
the real and imaginary parts of the dielectric functions at
momentum transfers ¢ = 0.11 a.u. and ¢ = 0.45 au. are
shown in Figs. 14 and 15, respectively. When the transitions
from core levels are included in the calculation, at smaller
energies €; is unchanged, but at energies larger than 25 eV,
which corresponds to the core-level binding energies, a new
structure appears. As a consequence, through the Kramers-
Kronig relation, €; is affected on a wider energy range. In
particular the position of its crossing with the zero axis is
shifted, which changes the plasmon peak in the loss function.
This effect is smaller at larger momentum transfers.

The core-polarization effect in the loss functions influ-
ences the spectral functions for the sodium valence band (see

(a) (b)
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FIG. 14. (a) The loss functions —Ime~! containing the core
transitions (red dashed curve) and transitions of valence states only
(black solid curve), together with their real (¢;) and imaginary (e;)
parts at ¢ = 0.11 a.u. (b) Zoom around the plasmon energy for ¢;.
(c) Zoom around the core-level contributions for €,. Note that the fast
wiggles in the blue curve in panel (c) are due to the finite k-point
sampling.

Fig. 16). As in the previous cases, the QP peak is affected
in a negligible way, while the plasmon satellite energy in the
k-integrated spectral function (see Fig. 17) is reduced by about
0.23 eV by including the core-level transitions in the screening
calculation.

Altogether, the results presented in this and the previous
two sections clearly illustrate that the plasmon satellite is very
sensitive to all the changes of the environment surrounding the
quasiparticle excitation. The lattice potential, the change in the
lattice parameter, and the polarization from the core electrons
have a much stronger influence on the plasmon satellites than
on the quasiparticle peaks. This finding is consistent with
other observations; in particular, the drastic modification of
plasmon excitations in bulk and at surfaces of Cu and Ag due to
polarization of occupied d bands [63]. Another example is the
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FIG. 15. Same as Fig. 14, but for ¢ = 0.45 a.u.
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FIG. 16. k-resolved spectral functions A(k,w) of sodium taking
into account the core polarization (black curve with dots) and without
core polarization (red curve) (a) at the I" point and (b) close to Fermi
level (kp = 0.49 a.u.).

comparison of graphene and graphite in Ref. [12]: also in that
case it was found that the presence of neighboring graphene
planes in graphite affects more the satellite than the QP
spectra. This implies that plasmon satellites in photoemission
spectra are powerful “detectors” for small variations of a
material, and that measuring and analyzing the satellites in
photoemission spectra, in addition to the quasiparticle peaks,
may give additional precious information.

V. THE SCREENED INTERACTION BEYOND THE RPA

In the GWA the screening given by the inverse dielectric
function e~! is usually calculated at the level of the RPA.
However, previous studies have shown that in sodium, like
in other materials, the ALDA yields loss functions in better
agreement with IXS experiments [57,61], since it leads to
a redshift of the plasmon energy that increases with the
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FIG. 17. (a) Band and satellite dispersions along I'N and (b)
k-integrated spectral function, calculated with or without the core
polarization contribution.
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FIG. 18. The loss functions —Ime~! of Na calculated in RPA
(black solid lines) and ALDA (red dashed lines) at different momen-
tum transfers q in a.u.

momentum transfer. This is confirmed by the results reported
in Fig. 18. One would therefore expect that the choice of the
ALDA or the RPA for the calculation of the screening should
significantly affect the plasmon satellites. On the other hand,
our previous analysis shows that the satellite position in the
spectral function is mainly determined by the plasmon energy
at small momentum transfers, where the difference between
the RPA and the ALDA and the difference between the RPA
and experiment are minor. This raises the question of how
important it is to go beyond the RPA in the calculation of
plasmon satellites, and whether the calculation that yields
loss functions in better agreement with IXS measurements
also yields plasmon satellite spectra in better agreement with
photoemission experiments. This is a nontrivial question, and
we can only give evidence, since the quality of many-body
perturbation theory (MBPT) results is often influenced by error
canceling.

Going beyond the RPA for W corresponds to the inclusion
of vertex corrections beyond the GWA for X,.., which has been
an issue of intense research for decades. In agreement with
results from the literature [64—67], here we find that passing
from RPA to ALDA the QP bandwidth decreases by 0.22 eV,
while the QP peaks increase slightly their width, implying a
reduction of the QP lifetimes [66] (see Fig. 19).

In line with the findings in the previous section, also in
this case we find that the change in the screening affects more
the satellites than the QPs [see Fig. 20(a)]: the quasiparticle
binding energy at I" is reduced by 0.22 eV due to the ALDA,
while the satellite binding energy decreases by 0.37 eV. This
leads to a decrease of the distance between the QP and
the satellite of 0.15 eV, going from RPA to ALDA. Also
in the k-integrated spectral function [see Fig. 20(b)], both
the increase of the QP width and a slight reduction of the
binding energy of the center of mass of the satellite peak are
apparent. This means that using the ALDA instead of the RPA
for the calculation of W, spectral functions are obtained in
slightly better agreement with photoemission experiments. The
comparison with experiment will be discussed more in detail
in the next section.
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FIG. 19. k-resolved spectral functions A(k,w) of sodium using
RPA (black dotted curve) and ALDA screening (red curve) (a) at the
I" point and (b) close to Fermi level (kr = 0.49 a.u.).

VI. COMPARISON WITH EXPERIMENT

In Ref. [16] the spectral function of the sodium valence
was calculated using the TOC together with RPA screening,
the 5 K lattice constant, and a valence-only pseudopotential.
Moreover, in the calculation of the self-energy the screened
interaction W(q) is summed over wave vectors ¢, and it is
difficult to evaluate the intraband contribution for q = 0. Since
this contribution is vanishing when the sum is converged with
respect to the number of q points, the intraband contribution
for @ = 0 was neglected in Ref. [16] and in the present work.
For any finite q-point sampling, however, this neglect is an
approximation. We have checked that it introduces an error of
0.2 eV for the q-point mesh that was used in Ref. [16]. (Note
that the results presented here are different since we take
intraband contributions for q = 0 approximately into account,
as explained in Appendix, and therefore obtain much better
convergence.) Altogether, a discrepancy with experiment of
almost 1 eV was found concerning the distance between
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FIG. 20. (a) Band and satellite dispersions and (b) k-integrated
spectral functions of sodium using RPA and ALDA screening.

the first plasmon satellite and the valence band, and it was
speculated that the RPA might be at least partially responsible
for this difference. As we have seen in the previous sections,
the RPA does indeed lead to an overestimate of the QP-satellite
distance of 0.15 eV, but several other effects add up: together
with the effects of the lattice constant (0.15 eV), the core
polarization (0.23 eV), the intraband contribution (0.2 eV),
and the use of the RC instead of the TOC (0.11 eV), the total
improvement amounts to a significant change of about 0.84 eV.

While the comparison of peak positions with the experimen-
tal ones can be done on a quantitative level, the comparison of
spectra including spectral weight and shapes is more delicate.
For sodium, the ARPES data of Jensen et al. [68,69] displayed
a bandwidth reduction due to interaction effects that was
larger than predicted from HEG calculations, and a sharp
peak at the Fermi energy for photon energies where no hole
excitation should be possible in a single-particle picture. These
experimental results gave rise to controversial interpretations
[70,71], with Overhauser [72] proposing that the observed
sharp peak close to the Fermi level was a signature of the ex-
istence of a charge-density wave, while Mahan and coworkers
[73-75] showed that a careful description of the photoemission
process itself was needed to reconcile theory and experiment.
This debate illustrates that for a detailed comparison with
experimental photoemission spectra, the calculation of the
intrinsic spectral function alone is not sufficient. However,
the simulation of the photoemission process is a complex
task itself. We therefore limit ourselves to a semiquantitative
comparison of spectra, following the simplified approach used
[85] in Refs. [6,16].

The photoelectron leaving the sample undergoes scattering
events: these extrinsic losses sum with the additional exci-
tations induced by the photohole that are seen as satellites
in the intrinsic spectral function. Moreover, the interaction
of the photoelectron and the photohole produces an interfer-
ence effect that partially cancels with intrinsic and extrinsic
contributions. In order to take into account these extrinsic
and interference effects in the calculation of the photocur-
rent, we adopt the model of Hedin and coworkers [76,77].
Since this approach has been developed for the time-ordered
formalism only, here we discuss these effects on the basis of
the TOC spectral function. We also included the secondary
electron background using a Shirley profile [78]; we multiplied
the calculated spectral functions with a Fermi function for
T =300 K and applied a Gaussian broadening of 0.255 eV
corresponding to the experimental resolution [37]. The final
comparison between the calculated photocurrent for photon
energy hv = 1487 eV and the experimental data from Ref. [37]
is shown in Fig. 21.

The TOC intrinsic (black dashed curve) and intrinsic plus
extrinsic and interference effects (solid curve) spectral func-
tions are almost identical [86] to the results of Ref. [16],
with its overestimate of the QP-satellite distance of 0.8 eV,
since besides a lightly different broadening (0.3 eV in [16],
0.25 eV in the present work) the curves have been calculated
using the same ingredients: RPA screening without intraband
contributions, a valence-only pseudopotential, and the 5 K
lattice constant. Our best intrinsic spectral function, namely
the RC result obtained at the room temperature lattice constant
and with ALDA screening including core polarization as well
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- = TOC-old-intrinsic
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TOC-old-full

photon current (arb. units)

FIG. 21. The black and red dashed curves are intrinsic TOC
from Ref. [16] (using the 5 K lattice constant, transitions from
valence only, without intraband transitions, and RPA screening)
and RC spectral functions (using room temperature lattice constant,
including transitions from semicore and intraband transitions, and
ALDA screening), respectively. The TOC spectral function (using the
5 K lattice constant, transitions from valence only, without intraband
transitions, and RPA screening) with extrinsic and interference effects,
together with secondary electron background (magenta solid curve),
is compared with experimental data from Ref. [37] (green dots). The
black solid curve is obtained by adding the extrinsic and interference
effect on the black dashed curve. All curves have been aligned on the
low-binding energy side of the QP.

as intraband contributions, is given by the red dashed curve.
The quasiparticle peak of the two results is similar (the QP
maximum of the red and black dashed curves is at 0.49
and 0.68 eV binding energy, respectively). However, it can
be clearly seen that as outlined above, the binding energy
of the first plasmon satellite in the new calculation is about
0.8 eV smaller than the old one, thus reducing significantly the
difference with respect to experiment. This can be better ap-
preciated when the full photoemission experiment is simulated
as explained above (magenta curve). Concerning the spectral
shape and intensities, more work is needed: the experimental
quasiparticle is broader and slightly more symmetric than the
calculated one, which may be due to several reasons, such as
the experimental resolution or temperature effects beyond the
change in lattice constant (e.g., phonons). Moreover also the
photoionization cross sections and the presence of the surface
(with the corresponding surface plasmons) are known to play
a role [37]. This also leads to an uncertainty in the relative
normalization of the spectra, which are given in arbitrary units,
and partially explains the apparent difference in the weight of
the satellites. However, our method to simulate extrinsic and
interference effects is admittedly quite crude, and one should
not overinterpret the results.

VII. CONCLUSION

We have presented a detailed study of the photoemission
spectra of sodium and the homogeneous electron gas, with a

focus on plasmon satellites. This study is motivated by the
increasing use of cumulant expansion approximations (CEAs)
for the ab initio calculation of photoemission spectra. While
model studies in this context are numerous, many details
concerning quantitative calculations remain to be elucidated.

The main conclusion of the present work is the high
sensitivity of satellites to many details of the calculations
and, strictly related, to many details of the real material
in experiments. Noticeable changes in the satellite positions
occur due to thermal expansion and due to the effect of the
crystal potential. Moreover, the semicore polarization modifies
the satellite positions. These effects are important to explain
the measured spectra [37]. On the computational side, improve-
ments are also found by using TDDFT in the adiabatic local
density approximation instead of the RPA for the calculation of
screening. Moreover, the RC version of the CEA instead of the
traditional TOC leads to a further small improvement of the
satellite position, and creates electron removal satellites for
spectral functions at k > ky which might be measurable if
sufficient experimental resolution in k and energy is available.
A fully quantitative comparison with experiment is beyond the
scope of this work, since photoemission contains many effects
that go beyond the intrinsic spectral function. In particular,
the inclusion of extrinsic and interference effects has up to
now only been done in a very approximate way, and with a
prescription that is limited to the TOC. However, our study
yields detailed insight about interesting features of the intrinsic
spectral functions and about the care that is needed in the
calculations, and it highlights the potential impact of studies of
the satellite part of photoemission spectra for the understanding
of materials.
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APPENDIX: COMPUTATIONAL DETAILS

We carry out energy-self-consistent GW calculations (up-
dating G, but keeping W fixed) using a plane-wave basis
and norm-conserving Troullier-Martins-type pseudopotentials
[79] as implemented in the ABINIT code [80]. This scheme
can be seen as an approximation to an optimized quasiparticle
calculation, such as in the quasiparticle self-consistent GW
scheme [81]. The update of energies is consistent with Hedin’s
suggestion of level alignment in Ref. [38]; it is important in
order to obtain the correct distance between the quasiparticle
and the satellite [43,44]. The Brillouin zone (BZ) of sodium
and homogeneous electron gas are both sampled using a 20 x
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TABLE 1. Parameters used in the intraband transitions.

Systems w, (eV) n (eV)
HEG 6.39 0.2

Na-5k (valence) 5.96 0.289
Na-293k (valence) 5.857 0.274
Na-293k-core-rpa 5.449 0.248
Na-293k-core-alda 5.383 0.242

20 x 20 grid mesh that yields 145 inequivalent k points in the
irreducible Brillouin zone (IBZ) for sodium, and 726 k points
for homogeneous electron gas, since sodium is face-centered
cubic and our homogeneous electron gas is simulated using a
simple cubic structure. A smearing temperature of 0.005 Ha
was used for all the calculations. This is a fictitious temperature
that only serves as a computational trick to speed up the k-point
convergence, which explains why we can still use a standard
time-ordered formalism in the GW calculation (besides the fit
of the intraband contribution to the screening; see Table I and
below).

The plane-wave cutoff of the LDA ground-state calculation
was 6 Ha for the homogeneous electron gas, 16 Ha for sodium
with valence electrons only, and 200 Ha for sodium containing
core electrons. The converged parameters for the calculation
of screening and self-energy are reported in Table II, where
the first part contains the parameters for screening calculation
and the second part is for the self-energy calculation. The
Lorentzian broadening in both x( and X, [e.g., n in Eq. (13)]
is chosen to be 0.1 eV in all GW calculations. For the loss
functions (see Figs. 8, 9, 13, 14, 15, and 18) the parameter n
is reduced to 0.001 eV in the calculation of x( and the final
spectra are convoluted with a Gaussian of 0.1 eV width. Also all
the spectral functions have been convoluted with a Gaussian of

TABLE II. Parameters in the GW calculations. The upper part
refers to the calculation of W and the bottom part to the calculation
of X,..

Parameters HEG Na (valence) Na (core)
nband 30 60 60
npwwfn 50 100 1500
npweps 50 50 50
nfreqim 25 10 10
nfreqre 225 150 150
freqremax 25eV 25eV 25eV
nband 30 60 60
npwwfn 50 200 9000
npwsigx 50 200 9000

0.3 eV width, exceptin Fig. 21, where we adopted a broadening
of 0.255 eV corresponding to the experimental resolution.

In Table IT, nband refers to the number of bands, npwwfn and
npweps are the number of plane waves representing the wave
functions and the dielectric matrix, respectively, and nfreqim
and nfreqre are the number of imaginary and real frequencies,
respectively. The maximum real frequency is represented by
freqremax. The number of plane waves for the exchange part
of the self-energy is named npwsigx.

The intraband transitions in the dielectric function for
q = 0 are taken into account approximately using €, =
1-— a)?, /lw(w +in)] [66,82] where the parameters w, and n
are fitted on the calculated retarded loss function for small
q # 0 (see Table I).

The spectra of the cumulant expansion approximations are
calculated using our cumulant code [83]. The cumulant code
takes the outputs of the GW calculation from the ABINIT code.
In particular, we evaluate Egs. (6) and (8) for the calculation of
the time-ordered cumulant, and Eq. (9) in the retarded cumulant
calculation.
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Egs. (8) and (9) [83].
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