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Single magnetic impurity in tilted Dirac surface states
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We utilize variational method to investigate the Kondo screening of a spin-1/2 magnetic impurity in tilted Dirac
surface states with the Dirac cone tilted along the ky axis. We mainly study about the effect of the tilting term
on the binding energy and the spin-spin correlation between magnetic impurity and conduction electrons. The
binding energy has a critical value while the Dirac cone is slightly tilted. However, as the tilting term increases,
the density of states near the Dirac node becomes significant, such that the impurity and the host material always
favor a bound state. The diagonal and the off-diagonal terms of the spin-spin correlation between the magnetic
impurity and conduction electrons are also studied. Due to the spin-orbit coupling and the tilting of the spectra,
various components of spin-spin correlation show very strong anisotropy in coordinate space and are of power-law
decay with respect to the spatial displacements.
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I. INTRODUCTION

Topological semimetals [1] host Dirac or Weyl fermions in
the bulk and have attracted lots of theoretical and experimental
research interests in recent years. The Dirac or Weyl fermions
found in condensed matter physics are quasiparticles which
do not have to obey the Lorentz invariance, indicating that
the band structure in the momentum space can be anisotropic.
Type-II Dirac or Weyl fermions [2,3] are obtained when Dirac
or Weyl cones are tilted strongly in the momentum space,
that the electron and hole pockets co-exist with the Dirac or
Weyl nodes. Type-II Weyl fermions are predicted to exist in
many materials, such as WTe2 [2], MoTe2 [4,5], Ta3S2 and
LaAlGe [6]. More recently, it has been reported that PdTe2 [7,8]
and PtTe2 [9] are type-II Dirac semimetals which host tilted
Dirac cones in three-dimensions.

Except for the type-II topological semimetals mentioned
above, one can also obtain tilted Dirac or Weyl cones in two
dimensions [10,11]. The tilted anisotropic Dirac cones have
been found in the 8-pmmn borophene [12] and the organic
semiconductor α-(BEDT-TTF)2I3 [13,14]. In particular, it has
been proposed that the crystal symmetries can give rise to type-
II Dirac surface states [10], which are characterized by tilted
Dirac cones with helical spin polarization and open electron
and hole pockets touching at the Dirac point.

The purpose of this paper is to investigate the properties
of the Kondo screening in two-dimensional (2D) tilted Dirac
surface states with helical spin polarization. The Kondo prob-
lem is an important issue in condensed matter physics and has
been widely studied by using various methods [15–23]. The
Kondo problem as well as the RKKY interactions in systems
with isotropic Dirac cones have been studied intensively
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since the discoveries of graphene and topological insulators
[24–27]. At half-filling, the density of states (DOS) of the
Dirac fermions vanishes, and the problem of a magnetic
impurity in such systems falls into the category of pseudo-
gap Kondo problem [28–30]. There exists a critical value of
hybridization for the impurity and the conduction electrons to
form a bound state [31,32]. For tilted Dirac surface states, due
to the coexistence of spin-orbit coupling and the anisotropy
of band structure, the spin-spin correlations in both the spin
and coordinate spaces show rich features and are much more
interesting than those in normal metals.

In this paper, we systematically study the binding energy
and real space spin-spin correlations of a magnetic impurity
in titled Dirac surface states. We use the variational method
and compare the results with those obtained in conventional
2D helical metals. The variational method we apply has been
used to study the ground state of the Kondo problem in normal
metals [22,33], antiferromagnet [34], 2D helical metals [31],
3D Weyl semimetals [35], and the Fermi arc surface states of
Weyl semimetals [36].

The paper is organized as follows. We present the model
and dispersion relation in Sec. II. In Sec. III, we apply the
variational method to study the binding energy. In Sec. IV,
we investigate the spin-spin correlation between the magnetic
impurity and the conduction electrons in tilted Dirac surface
states. Two cases are mainly studied: (1) vx = vy , vt �= 0 and
(2) vx �= vy , vt �= 0, where vx , vy are the velocities along the kx-
and ky-axis and vt is the tilting term. The results are compared
with the counterparts in a two dimensional helical metal (vx =
vy , vt = 0). Finally, the discussions and conclusions are given
in Sec. V.

II. HAMILTONIAN

We use the Anderson impurity model to study the Kondo
screening of a spin-1/2 magnetic impurity in tilted Dirac
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FIG. 1. The band structure of tilted Dirac cone for vx = vy = 1.0
and vt = 0.5. εd is the impurity energy level which is below the Fermi
surface. The dispersion relation is tilted along the ky axis due to the
nonzero vt term.

surface states. The model Hamiltonian contains three parts:
the kinetic energy term H0 of the tilted Dirac cone, the
impurity Hamiltonian Hd , and the hybridization between
the magnetic impurity and the tilted Dirac surface states HV .
The Hamiltonian reads

H = H0 + Hd + HV . (1)

The Hamiltonian of a tilted Dirac cone in a 2D plane is
given by [37,38]

H0 =
∑

k

h0(k) =
∑

k

�
†
k(vxkxσx + vykyσy + vtkyσ0)�k, (2)

where σx , σy are the spin Pauli matrices and σ0 is the identity
matrix. �k ≡ {ck↑,ck↓}T and �

†
k = {c†k↑,c

†
k↓}, where c

†
kσ (ckσ )

creates (annihilates) an spin-σ electron with momentum k. vx

and vy are the velocity along the kx and ky axes, respectively.
When vt = 0 and vx = vy , the dispersion relation is exactly
the same as a single Dirac cone in graphene or in a 2D helical
metal. The nonzero vt tilts the Dirac cone, and if vx �= vy

extra anisotropy is induced in the system, such that the real
space spin-spin correlation between a magnetic impurity and
the conduction electrons shall be affected accordingly.

The single particle eigenenergy writes

εks = kyvt − s

√
k2
xv

2
x + k2

yv
2
y, (3)

where s = {+,−} refer to the valence and the conduction
bands. The dispersion relation for vx = vy = 1.0 and vt = 0.5
is shown in Fig. 1. If vt = 0, the spectrum is isotropic in the
2D plane. The nonzero vt tilts the Dirac cone along the ky

axis. We can see that the DOS is still zero for a small vt , but
as vt increases, the DOS at half-filling will become finite. In
this present paper, we may study about the case with relatively
small vt , such that the DOS at half-filling is still zero while the
spectra become anisotropic due to the tilting term.

The eigenstates are given by {{−e−iθk ,1},{e−iθk ,1}}, where
θk ≡ arctan(−kyvy/kxvx). Then one can define a unitary

matrix to diagonalize h0(k) as

U = 1√
2

(
e− iθk

2 −e
iθk
2

e− iθk
2 e

iθk
2

)
.

(4)

The eigenstates of the tilted Dirac cone is given by

{γk+,γk−}T = U{ck↑,ck↓}T , (5)

and then H0 in its diagonal basis writes

H0 =
∑

k

h0(k) =
∑

ks

εksγ
†
ksγks , (s = {+,−}). (6)

The local impurity Hamiltonian is given by

Hd = (εd − μ)
∑

σ

dσ
†dσ + Ud↑†d↑d↓†d↓, (7)

d
†
↑(↓) and d↑(↓) are the creation and annihilation operators of

the spin-up (spin-down) state on the impurity site. εd is the
impurity energy level, U is the on-site Coulomb repulsion. We
may assume that εd is slightly below the chemical potential and
U is finite but very large, such that εd < μ � εd + U , that the
impurity is always singly occupied with a local moment, and
the impurity energy shall be εd − μ.

The hybridization between the electrons on the magnetic
impurity site and in the tilted Dirac cone is described by

HV =
∑
kσ

Vk(c†kσ dσ + d†
σ ckσ ) =

∑
ks

Vk(γ †
ksdks + γksd

†
ks),

(8)

Vk is the hybridization strength, and we assume that the
electrons on the magnetic impurity is equally coupled to the
conduction and valence bands. The momentum space impurity
operators dks are connected to the original ones dσ through the
following unitary transformation

{dk+,dk−}T = U{d↑,d↓}T . (9)

We assume that the hybridization only occurs between the
magnetic impurity and the conduction electrons on the same
location in coordinate space. Hence, in the following, the
hybridization strength Vk is in fact momentum-independent.

III. THE SELF-CONSISTENT CALCULATION

First we may assume HV = 0, which is the simplest case
that the magnetic impurity and the host material is completely
decoupled from each other. The ground state of H0 is given by

|�0〉 =
∏
ks

γ
†
ks |0〉, (10)

where the product runs over all the states below the Fermi
surface, and s = {+,−} refer to the valence and the conduction
bands in the tilted Dirac cone. If we consider about singly
occupied impurity, and ignore the hybridization between con-
duction electrons and the magnetic impurity, the total energy
of the system is just the sum of the bare impurity energy and
the total energy of the tilted Dirac cone,

E0 = εd − μ +
∑
ks

(εks − μ). (11)
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To investigate the eigenstate property, we utilize a trial
wave-function approach. The Coulomb repulsion U is assumed
to be a finite but very large value, and εd is below the chemical
potential, such that the impurity site is always singly occupied.
If the hybridization interaction is taken into account, the
band electron states and the localized states are combined.
According to the most right side of Eq. (8), the hybridization
term only involves the band states and the impurity states with
the same indices {ks}, such that the trial wave function for the
ground state can be written in the diagonal form of {ks} as

|�〉 =
(

a0 +
∑

ks

aksd
†
ksγks

)
|�0〉. (12)

a0, aks are all numbers and they are the variational parameters
to be determined through self-consistent calculations.

The energy of total Hamiltonian in the variational state |�〉
shall be

E = 〈�|H |�〉
〈�|�〉 , (13)

where 〈�|�〉 = a2
0 + ∑

ks a2
ks=1 according to the wave-

function normalization condition.
Then the total energy of the tilted Dirac system with a

magnetic impurity in the trial state |�〉 writes

E =
∑

ks

[
(E0 − εks + μ)a2

ks + 2Vka0aks + (εks − μ)a2
0

]
a2

0 + ∑
ks a2

ks

.

(14)

The variational principle requires that ∂E/∂a0 =
∂E/∂ak = 0, which will lead us to two equations below:[

E −
∑

ks

(εks − μ)

]
a0 =

∑
ks

Vkaks ,

[E − E0 + (εks − μ)]aks = Vka0. (15)

We then obtain the self-consistent equation

εd − μ − 	b =
∑
ks

V 2
k

εks − μ − 	b

,
(16)

	b = E0 − E is the binding energy. If 	b > 0, the hybridized
state has lower energy and is more stable than the bare state.
	b can be obtained by numerically solving Eq. (16), and a0

and ak can be calculated according to the relations

a2
0 +

∑
ks

a2
ks = 1,

aks = Vk

εks − μ − 	b

a0. (17)

If vx = vy = 1.0 and vt = 0 the Dirac cone is not tilted
at all, the band structure given in Eq. (3) is isotropic in the
momentum space and the binding energy shall be exactly the
same as that in a 2D helical metal [31]. If μ = 0, the DOS is
zero, such that the hybridization has a critical value Vc, below
which the system has no positive binding energy. The results
of the binding energy for vx = vy = 1.0 with various vt values
are given in Fig. 2. The impurity energy level is chosen as

FIG. 2. The results of binding energy for vx = vy = 1.0 at μ = 0
with various values of vt . The impurity energy level is chosen as εd =
−0.01
d . When vt = 0, the magnetic impurity and the conduction
electrons form bound states only if 2π (Vk/
d )2 >

|εd |

d

[31]. Thus,

the critical value of hybridization shall be Vc = √|εd |
d/(2π ). As vt

increases, there still exists a critical value of hybridization Vc, and it
decreases as the Dirac cone is more and more strongly tilted.

εd = −0.01
d . When vt = 0, the magnetic impurity and the
conduction electrons form bound states only if 2π (Vk/
d )2 >
|εd |

d

[31]. Thus the critical value of hybridization shall be Vc =√|εd |
d/(2π ). As vt increases, there still exist a critical value
of hybridization Vc, since the DOS at the Fermi energy still
vanishes for vt < vy . However, Vc decreases as the Dirac cone
is more strongly tilted, indicating that the tilted Dirac system
forms a bound state more easily than the Dirac cones, which
are not tilted. For a more complicated case when vx �= vy , if the
DOS at μ = 0 is still zero, there should exist a critical value of
hybridization Vc, since the existence of a critical value merely
depends on the DOS at the Fermi energy. The values of Vc is
determined by the velocities vi (i = x,y,t).

When μ �= 0, the DOS at the Fermi energy becomes finite,
so there exists positive binding energy for arbitrary Vk values.
While vt > 0, the band structure of the Dirac cone is tilted
along the ky axis, and if vt is larger than vy , the Dirac cone
is so strongly tilted that the DOS at the Fermi energy for μ =
0 becomes finite. In this case the magnetic impurity and the
conduction electrons always form a bound state.

IV. SPIN-SPIN CORRELATION

In this section, we study about the spin-spin correlation
between the magnetic impurity and the conduction electrons.
The spin operators of magnetic impurity and conduction
electrons are defined as Sd = 1

2d†σd, Sc = 1
2c†σc, where σ

is the spin-Pauli Matrix. The Fourier transformations of the
conduction electrons read cσ (r) = 1√

N

∑
q eiqrcqσ ; cσ

†(r) =
1√
N

∑
q e−iqrcqσ

†. We choose the position of magnetic
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impurity as r = 0, and consider about spin-spin correlation
Juv(r) = 〈Su

c (r)Sv
d (0)〉 on the x-y plane, where r is the location

of the conduction electron. Hereu,v = x,y,z and 〈· · · 〉denotes
the ground-state average.

The spin-spin correlation function is evaluated for relatively
small vt and for μ �= 0. In this case, the DOS at half-filling
still vanishes, but the DOS is significant when μ �= 0 such that
the binding energy 	b is always positive. This means that the
magnetic impurity and the conduction electrons always form a
bound state. The diagonal terms and the nonzero off-diagonal
terms of the spin-spin correlation in coordinate space are given
by

Jzz(r) = −1

8
|A(r)|2 + 1

16
|B(r)|2 + 1

16
|C(r)|2,

Jxx(r) = −1

8
|A(r)|2 − 1

8
Re[B∗(r)C(r)],

Jyy(r) = −1

8
|A(r)|2 + 1

8
Re[B∗(r)C(r)],

(18)

Jxz(r) = −1

8
Re[A∗(r)B(r)] + 1

8
Re[A∗(r)C(r)],

Jyz(r) = 1

8
Im[A∗(r)B(r)] + 1

8
Im[A∗(r)C(r)],

Jxy(r) = 1

8
Im[B∗(r)C(r)],

where A(r) = ∑
ks eik·raks , B(r) = ∑

ks sgn(s)ei(k·r+θk)aks ,
C(r) = ∑

ks sgn(s)ei(k·r−θk)aks .
In Figs. 3–5 we show the patterns of spatial spin-spin

correlation between the magnetic impurity and conduction
electrons in the x-y plane, for different values of vx , vy and
vt . For all the cases, the Dirac cone is weakly tilted that the
DOS at the Dirac point is still zero. The various components
of spin-spin correlation show spatial oscillations and decay
with respect to the displacement r. To investigate the patterns
more clearly, we show Juv(r) × r2 instead of Juv(r), and the
length unit is 1/
d where 
d is the energy cutoff. The spin-spin
correlation between the magnetic impurity and a conduction
electron of distance r follows a power law decay 1/rd if
r < ξK , and 1/rd+1 if r > ξK , with ξK the Kondo coherence
length and d the dimensionality of the host material [39–41].
In fact, the binding energy 	b shall take different values while
vx , vy or vt changes. Here for simplicity, we may fix 	b

as a constant value since the change of the spatial spin-spin
correlation is our major concern. The parameter we use in this
section is Vk = 0.05
d , 	b = 0.1
d , μ = −0.1
d . We may
find through simple calculation that the off-diagonal terms
of Juv(r) have the relation that Jxz(r) = −Jzx(r), Jyz(r) =
−Jzy(r) and Jxy(r) = Jyx(r), so only Jxz(r), Jyz(r) and Jxy(r)
are explicitly given in Figs. 3–5.

Shown in Fig. 3 are the results of Juv(r)(u,v = x,y,z),
while vx = vy = 1.0 and vt = 0. The spatial patterns of all the
six components of the spin-spin correlation shall be exactly
the same as those given in a 2D helical metal [31]. Jzz(r)
shown in Fig. 3(a) is antiferromagnetic around the magnetic
impurity, and is isotropic in the coordinate space. Both Jxx(r)
in Figs. 3(b) and Jyy(r) in Fig. 3(c) are also dominated by
antiferromagnetic correlation around the impurity location, but
is spatially anisotropic along the x or y axis. Jxz(r) plotted

FIG. 3. The results of Juv(r) × r2 for vx = vy = 1.0 and vt = 0.
(a) r2Jzz(r), (b) r2Jxx(r), (c) r2Jyy(r), (d) r2Jxz(r), (e) r2Jyz(r), (f)
r2Jxy(r).

in Fig. 3(d) shows more interesting behavior. Around the
magnetic impurity, the correlation is antiferromagnetic while
y > 0 and ferromagnetic while y < 0, and is zero along the y

axis. Jyz(r) in Fig. 3(e) shows the same behavior as Jxz(r) if we
exchange the real space coordinate x → y and y → x. Jxy(r)
is plotted in Fig. 3(f). It is ferromagnetic while xy > 0 and
antiferromagnetic when xy < 0, and is zero along both the x

and y axes. While vx = vy and vt = 0, the dispersion relation
of the Dirac cone is isotropic in the momentum space, and
hence the various components of spin-spin correlation between
the magnetic impurity and conduction electrons show highly
symmetric pattern. However, when vt term becomes finite,
the Dirac cone is tilted along the y axis, and accordingly the
Juv(r) (u,v = x,y,z) becomes highly anisotropic in the x-y
plane.

Shown in Fig. 4 are the results of Juv(r) × r2 for vx = vy =
1.0 and vt = 0.5. The band structure of the tilted Dirac cone is
given in Fig. 1, that the symmetry between the kx and ky axis are
broken by the nonzerovt term. The broken symmetry in the mo-
mentum space also affect the patterns of spin-spin correlation
in the real space, and the results are shown in Fig. 4. We can see
that all the components of spin-spin correlation oscillates faster
along the y axis, and slower along the x axis in comparison
to those give in Fig. 3. The spatial spin-spin correlation
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FIG. 4. The results of Juv(r) × r2 for vx = vy = 1.0 and vt = 0.5.
(a) r2Jzz(r), (b) r2Jxx(r), (c) r2Jyy(r), (d) r2Jxz(r), (e) r2Jyz(r), (f)
r2Jxy(r).

shows clear interference patterns with large r . Jzz(r) shown in
Fig. 4(a) becomes strongly anisotropic in real space. Around
the magnetic impurity, Jzz(r) is still antiferromagnetic, but the
correlation along the x and y axis oscillates in different periods.
Jxx(r) and Jyy(r) are both squeezed along the y axis, and the
interference pattern emerges for large r .Jxx(r) andJyy(r) given
in Figs. 4(b) and 4(c) also show interference pattern when
r is away from the magnetic impurity location. For both of
the spin-spin correlation components, the antiferromagnetic
behavior around the magnetic impurity remains unchanged, but
the oscillation on the x or y axis becomes slightly different. In
Figs. 4(d) and 4(e), we show Jxz(r) and Jyz(r) which show
much different patterns in comparison with those given in
Figs. 3(d) and 3(e). Jxz(r) and Jyz(r) are both squeezed along
the y axis, and show clear interference patterns near the x

axis while r is large. Jxy(r) given in Fig. 4(e) is the most
interesting one. Besides the interference patterns for large r ,
it also shows different symmetry. When vt = 0 as shown in
Fig. 3(f), the Jxy(r) is always zero along the x or y axis,
and the absolute value has a fourfold rotational symmetry.
However, when vt �= 0, the Jxy(r) is still zero along the x axis,
but becomes nonzero along the y axis. The fourfold rotational
symmetry of the absolute value is also broken due to the tilting
term.

FIG. 5. The results of Juv(r) × r2 for vx = 1.0, vy = 0.8 and vt =
0.5. (a) r2Jzz(r), (b) r2Jxx(r), (c) r2Jyy(r), (d) r2Jxz(r), (e) r2Jyz(r),
(f) r2Jxy(r).

In Fig. 5, we show the spin-spin correlation components
while vx = 1.0, vy = 0.8, and vt = 0.5. Actually, in the 8-
pmmn borophene [12], the typical value of the parameters
are vx = 0.89, vy = 0.67, and vt = 0.32. Hence, our choice
of the vi(i = x,y,t) values will show spin-spin correlation
patterns very close to those in a 8-pmmn borophene. Besides
the vt term, which tilts the Dirac cone along the ky axis, the
velocity along the kx and ky axis becomes distinct, and this
will add extra anisotropy in the momentum space. In general,
we can easily find that the components of the spatial spin-spin
correlation are more strongly squeezed than those in Fig. 4.
Here we set vx > vy that the anisotropy along the x and y axis
is enhanced by the velocity terms. We can see that the spin-spin
correlation decays and oscillates much faster along the y axis
and slower along the x axis. Jzz(r) shown in Fig. 5(a) becomes
more strongly anisotropic in the coordinate space. Around the
magnetic impurity, Jzz(r) is still antiferromagnetic, but the
correlation along the x axis oscillates much slower than that
along the y axis. This is caused by the distinct velocity along
the kx , ky axis. In contrast, if we choose vx < vy , the velocity
difference will compensate the anisotropy caused by the tilting
term, and shows spin-spin correlation patterns more close to
those given in Fig. 3. Jxx(r) and Jyy(r) given in Figs. 5(b)
and 5(c) are more strongly squeezed along the y axis, and
show more clear interference pattern when r is away from
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the magnetic impurity location. The antiferromagnetic nature
remains unchanged, but the oscillation along the x, y axis
show completely distinct patterns. When vx = vy and vt = 0
as given in Fig. 3, Jxx(r) and Jyy(r) if we rotate the coordinate
space by 90◦. However, this symmetry is completely broken
by the tilting term and the distinct velocities along the x, y

axis. In Figs. 5(d) and 5(e), we show Jxz(r) and Jyz(r), which
are more strongly squeezed along the y axis, and shows clear
interference patterns near the x axis for large r . Jxy(r) is given
in Fig. 5(e). We can see that the fourfold rotational symmetry of
the absolute value is completely destroyed. The x-y spin-spin
correlation is still zero along the x axis but is clearly nonzero
along the y axis.

V. CONCLUSIONS

In this paper, we utilize the variational method study the
Kondo screening of a spin-1/2 magnetic impurity in tilted
Dirac surface states at the large-U limit. The host material
is described by a tilted Dirac cone in two dimensions. The
Kondo screening in topological semimetals using the same
trial wave-function method had been studied in Ref. [35]. To
see the spatial changes of spin-spin correlation, we choose two
sets of vi(i = x,y,t) parameters, they are (1) vx = vy = 1.0,
vt = 0.5, (2) vx = 1.0, vy = 0.8, vt = 0.5, and we compare the
results with the counterparts in a 2D helical metal while vx =
vy = 1.0, vt = 0 [31]. When the Dirac cone is slightly tilted

(vt < vx , vy), the DOS at a charge neutral point still vanishes as
in graphene, so there exist a critical value of hybridization Vc.
The magnetic impurity and conduction electrons form a bound
state only if Vk > Vc. If the Fermi surface is tuned away from
the Dirac point, then the magnetic impurity and conduction
electrons will always form a bound state for arbitrary Vk. If a
finite vt term is added, the Dirac cone is tilted along the ky axis.
The components of the spatial spin-spin correlation oscillates
with different period along the x or y axis, and show more
anisotropic patterns. The tilting of the Dirac cone does not
change the signs of correlation close to the magnetic impurity,
but interference patterns show up while r is large.

So far, we have only studied the effect of a single magnetic
impurity in tilted Dirac fermion systems with spin-orbit cou-
pling in two dimensions. The 3D tilted Dirac-Weyl fermion
systems should exhibit similar behaviors to those of the 2D
tilted Dirac systems. However, the spin-spin correlation is
expected to show more rich patterns due to an extra dimension
and these will be investigated in our future work.
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