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The discovery of monolayer graphene has initiated two fertile fields in condensed matter physics: Dirac
semimetals and atomically thin layered materials. When these trends meet again in transition metal compounds,
which possess spin and orbital degrees of freedom and strong electron correlations, more exotic phenomena are
expected to emerge in the cross section of topological states of matter and Mott physics. Here, we show by using
ab initio calculations that a monolayer form of transition metal trichalcogenides (TMTs), which has a honeycomb
network of 4d and 5d transition metal cations, may exhibit multiple Dirac cones in the electronic structure of the
half-filled eg orbitals. The Dirac cones are gapped by the spin-orbit coupling under the trigonal lattice distortion
and, hence, can be tuned by tensile strain. Furthermore, we show that electron correlations and carrier doping turn
the multiple Dirac semimetal into a topological ferromagnet with high Chern number. Our findings indicate that
the honeycomb-monolayer TMTs provide a good playground for correlated Dirac electrons and topologically
nontrivial magnetism.
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I. INTRODUCTION

Since the success of exfoliation of a monolayer graphene
[1], atomically thin layered materials have grown as one of
the leading themes in condensed matter physics. In particular,
van der Waals (vdW) materials, composed of atomic layers
bounded via weak vdW forces, have received great attention.
Electrons confined in an atomically thin layer exhibit dras-
tically distinct behavior from the bulk form. The archetypal
example is the Dirac electrons in a monolayer graphene,
which show anomalous transport behavior, e.g., the anomalous
integer quantum Hall effect [2,3] and the Klein tunneling
[4,5]. Another example is the valley degree of freedom in the
monolayer form of transition metal dichalcogenides [6], which
has been intensively studied toward valleytronics devices [7,8].
Furthermore, heterostructures of different vdW materials have
provided a new platform for novel functionalities never seen
in bulk compounds [9,10].

Through the intensive research in the past decade, a lot
of effort has been made to find atomically thin magnetic
materials. Among many candidates, a family of transition
metal trichalcogenides (TMTs) has gained increasing interest,
both from theoretical proposals of monolayer magnetism
[11,12] and experimental reports on the mono- and few-layer
forms [13–18]. In addition, not only the magnetism but also
anomalous electronic and transport properties are predicted in
the presence of the relativistic spin-orbit coupling (SOC), e.g.,
the spin-valley coupling [19], the magnon spin Nernst effect
[20], and the gate-controllable magneto-optic Kerr effect [21].
Thus, the atomically thin layered TMTs are expected to provide
a unique cross section between strong electron correlations and
the SOC, but their potential remains unexplored.

In this paper, we theoretically propose that monolayer
TMTs with a honeycomb network of 4d and 5d transition

metals would host a good playground for correlated Dirac
electrons and topologically nontrivial magnetism. By ab initio
calculations, we show that the TMTs with group 10 transition
elements have semimetallic band structures with multiple
Dirac cones in the half-filled eg orbitals in the paramagnetic
state. We find that the multiple Dirac cones originate in electron
transfers on a hidden honeycomb superstructure emergent from
spatially anisotropic d orbitals with large hybridization with
the neighboring ligand p orbitals. We also show that the SOC
gaps out these Dirac cones in the presence of the trigonal lattice
distortions and, hence, the mass gap can be flexibly tuned by
the tensile strain. In addition, by the mean-field analysis for
an effective multiorbital Hubbard model, we elucidate that
electron correlations and chemical doping potentially change
the multiple Dirac semimetals into a topological ferromagnet
with high Chern numbers.

This paper is organized as follows. In Sec. II, we introduce
the method of ab initio calculations used in this paper. In
Sec. III, we show the results of the ab initio calculations and
the mean-field analysis of an effective multiorbital Hubbard
model for monolayer TMT. Section IV is devoted to the
summary and the discussion of future issues. In Appendix A,
we show the details of optimized crystalline structures, ab initio
band structures, and transfer integrals of monolayer TMTs. In
Appendix B, we provide the information on distortions under
tensile strain. The ab initio results for magnetism of monolayer
TMTs are presented in Appendix C.

II. AB INITIO CALCULATION

The chemical formula for TMTs is generally given by
MBX3, where M is transition metals, B = P, Si, or Ge,
and X is chalcogens. TMTs have vdW layered structures,
whose stacking manner depends on the compounds [22–25]. In
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FIG. 1. (a) Schematic picture of a honeycomb-monolayer TMT, whose chemical formula is given as MBX3. The orange, purple, and yellow
spheres denote the transition metals M , B, and chalcogens X, respectively. The gray octahedra indicate the edge-sharing MX6. M forms a
honeycomb network, while B composes a dimer located at the center of each hexagon of the honeycomb structure. (b) Electronic band structure
of a monolayer PdPS3 in the paramagnetic state without the SOC. The Fermi level is set to zero. The black solid lines represent the band
dispersions obtained by ab initio calculations, while the red dotted ones are those by the tight-binding model for the eg bands with the transfer
integrals between MLWFs up to fifth neighboring Pd cations (see Table I). (c) Total density of states (DOS) and projected DOS for the Pd d

orbitals. (d) Three-dimensional plot of the two bands near the Fermi level. The multiple Dirac nodes are formed at the K and K ′ points and
around the midpoints in the �-K lines in the first Brillouin zone indicated by the gray hexagon.

each layer, transition metal cations M comprise a honeycomb
network by sharing the edges of MX6 octahedra, and B2 dimers
locate at the centers of the hexagons of the honeycomb network
[Fig. 1(a)].

In this paper, we focus on a monolayer form of TMTs with
B = P and X = S and Se. In this case, the nominal valence
of the transition metal cation is M2+. We note that all 3d, 4d,
and 5d transition metal elements belonging to group 10 and 12
can take the stable divalent oxidation state [26]. Indeed, MPX3

with M = Ni, Pd, Zn, Cd, and Hg have been synthesized [22].
In the following, we consider group 10 elements, M = Ni, Pd,
and Pt.

We calculate the electronic band structures of monolayer
MPX3 by ab initio calculations based on the generalized
gradient approximation (GGA). In the calculations, we used
OPENMX code [27], which is based on a linear combination
of pseudoatomic orbital formalism [28,29]. We adopted the
Perdew-Burke-Ernzerhof GGA functional in the density func-
tional theory [30] and a 30 × 30 × 1 k-point mesh for the
calculations of the self-consistent electron density and the
structure relaxation. We inserted vacuum space greater than
10 Å between monolayers and fully relaxed the primitive vec-
tors and atomic positions in the unit cell with the convergence
criterion 0.01 eV/Å about the interatomic forces.

For all combinations of M = Ni, Pd, and Pt and X =
S and Se, we performed full structural optimization in the
paramagnetic state without the SOC, starting from the reported
crystalline data of NiPS3 or PdPS3 [22]. We confirmed that all
the cases stably converge on the similar structure, as shown
in Appendix A. The SOC is incorporated by the relativistic ab
initio calculations for the optimized structures. In the following
sections, we will discuss the material trend of MPX3 on the
basis of PdPS3, as it represents the typical band structure of
MPX3 and locates between weakly correlated 5d and strongly
correlated 3d systems. (Indeed, we will discuss that the
compound might be close to the border between paramagnetic

and antiferromagnetic phases.) For the microscopic analyses
based on the tight-binding models, we construct the maximally
localized Wannier functions (MLWFs) [31,32] for the eg bands
and evaluate the transfer integrals between them via a code
implemented in OPENMX [27]. We also compute the magnetic
solutions by using the GGA scheme without the SOC under
the full structural optimization, as shown in Appendix C.

III. RESULTS

A. Multiple Dirac cones

We show the electronic band structures in the paramagnetic
state obtained by ab initio calculations without the SOC.
Figures 1(b) and 1(c) show the representative results for PdPS3.
The Pd d-orbital levels are split into two groups, eg and t2g ,
due to the crystalline electric fields of octahedral ligands. As
Pd2+ is in the d8 electron configuration, the lower-energy t2g

manifold is fully occupied and the higher-energy eg manifold is
half filled. Remarkably, the eg bands have two crossing points
at the K point and around the midpoint on the �-K line in the
Brillouin zone [Fig. 1(b)], and the projected density of states
are almost zero at the Fermi level [Fig. 1(c)]. We find that
the crossings are the Dirac cones, as shown in Fig. 1(d): two
electronic bands near the Fermi level give rise to eight Dirac
cones (two on the zone boundary, K and K ′, and other six
inside). We confirm that the multiple Dirac cones are shared
by other monolayer TMTs with M = Ni, Pd, and Pt (see
Appendix A for details).

In order to clarify the microscopic origin of the multiple
Dirac cones, we show the MLWFs obtained from two initial
states, d3z2−r2 and dx2−y2 , in Figs. 2(a) and 2(b), respectively.
Both MLWFs well extend over the neighboring S sites, indi-
cating the importance of indirect hopping processes via the
ligand p orbitals. Table I shows the representative transfer
integrals between the two types of MLWFs for the Pd-Pd
bonds up to fifth neighbors [see Fig. 2(c)] (see Appendix A for
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FIG. 2. (a),(b) Contour-surface plot of MLWFs, which are ob-
tained from two initial states, d3z2−r2 and dx2−y2 orbitals, respectively.
The red (blue) surfaces indicate the positive (negative) isosurface at
+0.03 (−0.03). Both wave functions are not localized around the Pd
site, but are fairly extended to neighboring S sites. (c) Atomic positions
used in the calculation of transfer integrals summarized in Table I. Ri

represents the ith neighbor site to the 0 site. The red dotted lines
indicate a honeycomb superstructure composed of the third-neighbor
bonds. (d),(e) Schematic pictures of first- and third-neighbor hopping
processes via the ligand p orbitals.

the extended list of transfer integrals). We construct a tight-
binding model by using these transfer integrals and confirm
that the model well reproduces the ab initio band structure [see
Fig. 1(b)]. Interestingly, the most dominant electron transfer
is not for nearest neighbors, but for the third neighbors. This
is understood from the fact that the indirect d-p-d hoppings
between nearest neighbors are almost forbidden, while the
d-p-p-d ones for third neighbors are substantial, as shown
in Figs. 2(d) and 2(e). We note that a similar argument was
made for magnetic exchange interactions [11].

TABLE I. Transfer integrals between MLWFs. Each value in the
table means 〈m,0| H |n,r〉, where H is the Hamiltonian of the system
and |m,r〉 is the dm-like MLWF at site r (m = 3z2 − r2 or x2 − y2).
We take r = Ri (i = 1, 2, 3, 4, or 5) illustrated in Fig. 2(c). The unit
of transfer integrals is in meV.

(m,n) R1 R2 R3 R4 R5

(3z2 − r2,3z2 − r2) −87 −9 −38 4 −12
(3z2 − r2,x2 − y2) 0 22 0 −8 0
(x2 − y2,3z2 − r2) 0 18 0 −8 0
(x2 − y2,x2 − y2) −70 14 304 7 30
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FIG. 3. (a) Enlarged figure of the electronic band structure of
PdPS3 near the Fermi level along the �-K line. The black (red)
solid lines represent the band dispersions obtained by ab initio
calculations neglecting (including) the SOC. The blue dotted ones are
the dispersions for the tight-binding model with the transfer integrals
of MLWFs up to fifth-neighbor Pd cations including the effective SOC
in Eq. (1) with λ̃ = 15 meV. (b) The amplitudes of the Dirac gaps as
functions of the expansive ratio of the in-plane lattice constant. A
schematic image of tensile expansion is shown in the inset. (c) The
tensile-strain dependence of the two valley structures.

The dominant third-neighbor transfers explain the origin
of the multiple Dirac cones. As is well known in graphene,
the nearest-neighbor transfers produce the Dirac cones at the
zone corners, i.e., the K and K ′ points. This is also the
case for the eg electron systems [33]. On the other hand,
the third-neighbor transfers bring about Dirac cones at the
additional six points inside the first Brillouin zone: the network
of the third-neighbor bonds forms honeycomb superstructures
with the lattice spacing two times longer than the original
honeycomb network, as exemplified in Fig. 2(c), which leads
to new Dirac cones around the midpoints of the �-K lines (zone
corners in the folded Brillouin zone). Thus, in our TMTs, the
hidden honeycomb superstructures stemming from the orbital
and geometric nature result in the multiple Dirac nodes.

B. Tunable Dirac gap

Next, we discuss the effect of SOC. Although the orbital
moment is quenched in the eg manifold in an ideal octahedral
crystal field, the SOC modifies the eg electronic states through
t2g-eg mixing in the presence of a distortion of MX6 octahedra.
Indeed, we find that the Dirac nodes are gapped out by
including the relativistic effect in the ab initio calculations,
as shown in Fig. 3(a). In this monolayer system, the dominant
distortion is a trigonal one, which leads to an effective SOC
given as [33]

HSOC = −(λ̃/2)
∑

k

∑

mn

∑

σσ ′
c
†
kmσ (τ̂y)mn(σ̂z)σσ ′cknσ ′ , (1)

where c
†
kmσ (ckmσ ) is the creation (annihilation) operator of an

electron for the wave vector k, orbital m = d3z2−r2 or dx2−y2 ,
spin σ = ↑ or ↓, and τy (σz) is the y (z) component of the
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Pauli matrix for the orbital (spin) space; here, the xyz axes are
taken as shown in the inset of Fig. 2(a) and the quantization
axis of spin is taken along the [111] direction. The coupling
constant is given as λ̃ = �triλ

2/�2, where � and �tri are
the crystalline electric field from the octahedral ligands and
the trigonal distortion, respectively, and λ is the coupling
constant of the atomic SOC. Indeed, we confirm that when
adding the effective SOC in Eq. (1) to the tight-binding model
constructed above, its band structures reproduce the gapped
Dirac nodes, as shown in Fig. 3(a). From the comparison, we
obtain the rough estimate of the effective SOC λ̃ � 15 meV.
We note that the gapped state is topologically trivial: the Z2

topological invariant [34] becomes zero for all the bands in the
tight-binding model.

The result indicates that the Dirac gaps can be controlled
through the crystalline symmetry. Here, we demonstrate it
by tensile strain, which has been commonly used for two-
dimensional vdW materials [35,36]. Starting from the fully
optimized crystalline structure at zero expansive ratio, we
extend two in-plane primitive vectors, a and b, while keeping
the out-of-plane primitive vector c. We also keep the fractional
coordinates of atoms projected onto the ab plane. Figure 3(b)
shows the change in the Dirac gaps. In the original optimal
structure (zero expansive ratio), the octahedra are slightly
elongated in the out-of-plane direction. While the system is
expanded in the in-plane directions, the Dirac gaps decrease
and become minimal around the 8–9% expansive ratio, where
the trigonal distortion almost vanishes (see Appendix B for the
information on distortions of the octahedra). Interestingly, the
valley structures of the two massive Dirac cones are shifted
individually by the tensile strain, as shown in Fig. 3(c). These
results indicate the flexible tunability of the massive Dirac
cones.

C. Topological magnetism induced by electron correlations

Let us discuss the effect of electron correlations in d

electrons on the multiple Dirac semimetals. Although the
magnetism was studied for monolayer TMTs by ab initio
calculations [11,12], the previous works focused on the 3d

compounds in which the SOC is irrelevant. Here we investigate
the synergetic effect of electron correlations and the SOC,
both of which can be relevant in 4d and 5d compounds, using
an effective multiorbital Hubbard model and the mean-field
approximation. The multiorbital Hubbard model consists of
the tight-binding model with the transfer integrals in Table I,
the effective SOC in Eq. (1) with λ̃ = 15 meV, and the on-site
Coulomb interactions given by

Hint = 1

2

∑

mnm′n′
Umnm′n′

∑

i

∑

σσ ′
c
†
imσ c

†
inσ ′cin′σ ′cim′σ , (2)

where c
†
imσ (cimσ ) is the Fourier transform of c

†
kmσ (ckmσ ). As-

suming the rotational symmetry of the Coulomb interaction, we
set Ummmm = U , Umnmn = U − 2J , and Umnnm = Ummnn = J

(m �= n), where U is the intraorbital Coulomb interaction and
J is the Hund’s coupling, respectively; we take J/U = 0.2 in
the following calculations. In the mean-field calculation, we
adopt the standard Hartree-Fock approximation to decouple
the on-site interaction terms in Eq. (2). We take into account
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FIG. 4. (a),(b) Ground-state phase diagrams of the multiorbital
Hubbard model obtained by the mean-field approximation at half fill-
ing and 3/4 filling, respectively. PM, AFMI, FMM, and FMI represent
the paramagnetic metal, antiferromagnetic insulator, ferromagnetic
metal, and ferromagnetic insulator, respectively. The magnitude of
magnetic moments is plotted in each magnetic phase. (c) Electronic
band structure for the FMI at U = 1.5 eV. The red and blue lines
represent the up- and down-spin bands, respectively, and the number
on each band indicates the Chern number C. (d) Wave-number
dependence of the Berry curvature of the highest-occupied band with
C = 6 in the first Brillouin zone.

charge, spin, and orbital orders with the ordering vector Q =
(0,0) or (π,π ) on the honeycomb lattice and approximate the
integration in the first Brillouin zone by the summation over
128 × 128 k points and determine the mean fields consistently
within a precision of less than 10−6.

We focus on two commensurate fillings, i.e., half filling (two
eg electrons per M) and 3/4 filling (three eg electrons per M);
the former corresponds to the situation discussed above, while
the latter is a chemical substitution of M by, e.g., Ag or Cd. We
note that such substitutions were reports for the bulk form of
TMTs [23]. Figures 4(a) and 4(b) show the ground-state phase
diagrams and the magnetic moments, obtained by the mean-
field analysis in the range of Coulomb interactions including
realistic values for 4d and 5d transition metal compounds [37].

At half filling [Fig. 4(a)], while increasing the elec-
tron interactions, the system exhibits a continuous phase
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transition from the paramagnetic Dirac semimetal to a Néel-
type antiferromagnetic insulator (AFMI) with in-plane mag-
netic moments. For comparison, we also performed the ab
initio calculations in the GGA scheme with allowing magnetic
solutions (see Appendix C for the details). We find that, similar
to the mean-field results, the lowest-energy state changes from
the paramagnetic Dirac semimetal to AFMI while changing
from weakly correlated M = Pt to strongly correlated M =
Ni; the M = Pd case is close to the border. We note that, in
general, the ab initio calculation tends to underestimate the
correlation effects, while the mean-field approximation tends
to overestimate. From these considerations, we conclude that
PdPS3 might be in the AFM phase, while PtPS3 is the multiple
Dirac semimetal (see also the discussion in Appendix C). As
PdPS3 appears to locate close to the border, it might also
be possible to transform it to the multiple Dirac semimetal
by tuning the bandwidth by the substitution of S by Se (see
Appendix A) or by tensile strain.

On the other hand, at 3/4 filling, the system shows a
discontinuous phase transition from the paramagnetic metal to
a ferromagnetic metal (FMM), and to a ferromagnetic insulator
(FMI) with out-of-plane magnetic moments, as shown in
Fig. 4(b). For comparison, we also performed the GGA calcu-
lation for AgPS3, which realizes the 3/4-filled state, using the
crystalline structure of PdPS3 [22]. We found that the lowest-
energy state is the FM state, consistent with the mean-field
result. The magnetic moment is rather small, 0.04 μB, which
might also reflect the general tendency of GGA calculations to
underestimate electron interactions.

Interestingly, we find that the ferromagnetic states at 3/4 fill-
ing acquire a nontrivial topological nature. Figure 4(c) shows
the band structure of the FMI at U = 1.5 eV. The bands are
split by the exchange field into the up-spin (red) and down-spin
(blue) ones, and the lower six are occupied at 3/4 filling. Note
that as the mean-field Hamiltonian in the ferromagnetic state
conserves the spin-z component, we can separate the mean-
field Hamiltonian into up-spin and down-spin sectors and dis-
tinguish the spin state of each electronic band in Fig. 4(c). We
calculate the Berry curvature and the Chern number for each
band of the mean-field solution by using the standard Kubo for-
mula [38]. Summing the Chern number of the occupied bands
[see Fig. 4(c)], we find that the FMI is a topologically nontrivial
ferromagnet with rather high Chern number C = 4. Figure 4(d)
displays the wave-number dependence of the Berry curvature
of the highest-occupied band with C = 6. The Berry curvature
shows spikes at the K and K ′ points and around the midpoints
of the �-K lines. These anomalous contributions can be traced
back to the Dirac cones in the original semimetallic state. Thus,
our results suggest that the multiple Dirac semimetal can be
turned into an unconventional topological ferromagnet with
high Chern number by electron correlations and carrier doping.

IV. SUMMARY AND CONCLUDING REMARKS

To summarize, we have theoretically uncovered two poten-
tial electronic properties of TMTs with 4d and 5d transition
metals in the monolayer form. One is the highly tunable mul-
tiple Dirac cones. This will bring about interesting transport
phenomena, such as the unconventional Hall responses and
the multiple valley operations. The other is the topological

ferromagnetism with high Chern number driven by electron
correlations and chemical doping. This will provide candidates
for quantized anomalous Hall insulators, whose multiple chiral
edge modes might be used for a thin-film transmitter with
high efficiency. We believe that the two features will stimulate
further material exploration in 4d and 5d TMTs for delivering
missing pieces in material science of atomically thin films and
the heterostructures.

The recipe for multiple Dirac cones found here is generic
and simple: transition metal cations with eg orbitals and octa-
hedral ligands forming an edge-sharing honeycomb structure
with extended p orbitals. As such a crystalline and electronic
structure is widely seen in layered transition metal compounds,
e.g., transition metal chalcogenides and halides [39], it is of
great interest to search other candidates of multiple Dirac
semimetals. Another intriguing issue would be the effect of
electron correlations on the Dirac cones, which has been in-
tensively studied in graphene and related compounds. The ad-
ditional valley degrees of freedom in our multiple Dirac nodes
may give rise to richer physics between the Dirac semimetal
and the Mott insulator. Therefore, we believe that our findings
stimulate the further exploration of TMTs and their relatives,
which would pave a way to postgraphene nanotechnology.
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APPENDIX A: AB INITIO RESULTS FOR MONOLAYER
MPX3 IN THE PARAMAGNETIC STATE

In this appendix, we show the details of ab initio results
for MPX3 (M = Ni, Pd, and Pt, and X = S and Se). We
confirm that the honeycomb monolayer form (Fig. 5) is
structurally stable for all MPX3, though the lattice constant a

is different; see Table II. We note that the optimized structures
are elongated along the out-of-plane direction compared to the
ideal octahedra: in all cases, the ratio a/n (see Fig. 5) is smaller
than the ideal value 3/

√
2 ∼ 2.12.

Figure 6 shows the electronic band structures of monolayer
MPX3 obtained by ab initio calculations with and without the
SOC. In all cases, the band structures show multiple Dirac
dispersions at the middle points on the �-K lines as well as
the K and K ′ points near the Fermi level, which are gapped
out by the SOC. This indicates that the multiple Dirac cones
originating from the orbital and geometric nature discussed in
Sec. III A are ubiquitous in the monolayer TMTs. We note that
similar band dispersions were already seen in the previous ab
initio studies [12] although less attention has been paid. We also
note that the previous experimental work reported insulating
behavior even above the Néel temperature for NiPS3 in the
bulk form [41], while our result for the monolayer form is
semimetallic in the paramagnetic state. The discrepancy would
be ascribed to the difference between bulk and monolayer or
the importance of electron interactions in 3d electrons, which
is in general underestimated in ab initio calculations.
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FIG. 5. (a) Schematic picture of optimized honeycomb-
monolayer structure. The dotted lines and the solid arrow indicate
the unit cell and the lattice constant a (see Table II). Atomic
positions used in the calculation of tcransfer integrals in Table III
are also denoted. (b) Schematic picture of transition metal cation M

sandwiched by X3 triangles. We define the layer thickness n as the
distance between centers of the upper and lower X3 triangles in the
unit cell (see Table II).

In addition, we provide the detailed information on the
transfer integrals estimated by MLWFs for PdPS3. While the
representative values are shown in Table II, we enlist all the
values in Table III up to fifth neighbors. The spatial positions
of the neighbors are illustrated in Fig. 5(a). As discussed
in Sec. III A, the transfer integrals for third neighbors are
the most dominant among them on average. Note that the
transfer integrals for different directions in the same distance
are related with each other via the point-group operations;
for instance, when the MX6 octahedra have D3h symmetry,
the hopping matrices should follow ĥ(Ĉ3 R) = R̂C3 ĥ(R)R̂−1

C3
,

where (ĥ(R))mn = 〈m,0| H |n,R〉 and R̂C3 is the threefold-
rotation operator on the eg-orbital basis. Indeed, Table III indi-
cates that such relations hold approximately for the optimized
structure in the ab initio calculation.

APPENDIX B: DISTORTION OF OCTAHEDRA
BY THE TENSILE STRAIN

In this appendix, we show how PdS6 octahedra are distorted
for the tensile strain discussed in Sec. III B. We adopt two
conventional measures for the distortion [42]: one is the bond
angle variance

∑12
i=1(θi − 90◦)2/11, where θi is the angle of a

S-Pd-S bond for neighboring S, and the other is the quadratic

TABLE II. The lattice constant and the layer thickness of op-
timized structures of MPX3. Schematic pictures of a and n are
illustrated in Fig. 5. In the honeycomb network of the edge-sharing
ideal octahedra, the ratio of the parameters should be a/n = 3/

√
2 ∼

2.12.

NiPS3 PdPS3 PtPS3 NiPSe3 PdPSe3 PtPSe3

a (Å) 5.82 6.02 6.07 6.17 6.34 6.42
n (Å) 2.98 3.17 3.07 3.07 3.27 3.12
a/n 1.95 1.90 1.97 2.01 1.94 2.05
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FIG. 6. Electronic band structures of monolayer MPX3 with M =
Ni, Pd, and Pt, and X = S and Se. Left panels show the entire range of
the eg bands. Right panels show the enlarged figures near the Fermi
level along the �-K line. The black (red) solid lines represent the band
dispersions obtained by ab initio calculations neglecting (including)
the SOC.
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TABLE III. Transfer integrals between MLWFs. Each value in the
table means 〈m,0| H |n,r〉, where H is the Hamiltonian of the system
and |m,r〉 is the dm-like MLWF at site r (m = 3z2 − r2 or x2 − y2).
See Fig. 5(a) for the spatial positions of r . The unit of transfer integrals
is in meV.

(m,n) R1 R1
1 R2

1 R2 R1
2 R2

2 R3
2 R4

2 R5
2

(3z2 − r2,3z2 − r2) −87 −72 −72 −9 −9 26 −9 −9 26
(3z2 − r2,x2 − y2) 0 9 −9 22 −22 2 18 −18 −2
(x2 − y2,3z2 − r2) 0 9 −9 18 −18 −2 22 −22 2
(x2 − y2,x2 − y2) −70 −82 −82 14 14 −21 14 14 −21

(m,n) R3 R1
3 R2

3 R4 R1
4 R2

4 R3
4 R4

4 R5
4

(3z2 − r2,3z2 − r2) −38 219 219 4 4 −1 13 13 −1
(3z2 − r2,x2 − y2) 0 147 −147 −8 8 5 −3 3 −5
(x2 − y2,3z2 − r2) 0 147 −147 −8 8 5 −3 3 −5
(x2 − y2,x2 − y2) 304 48 48 7 7 12 −2 −2 12

(m,n) R5 R1
5 R2

5 R3
5 R4

5 R5
5

(3z2 − r2,3z2 − r2) −12 19 19 −12 19 19
(3z2 − r2,x2 − y2) 0 −18 18 0 −18 18
(x2 − y2,3z2 − r2) 0 −18 18 0 −18 18
(x2 − y2,x2 − y2) 30 −1 −1 30 −1 −1

elongation
∑6

i=1(li/ l0)2/6, where li is the length of a Pd-S
bond and l0 is the bond length of an ideal octahedron with
the same volume. Figure 7 shows the the bond angle variance
and the quadratic elongation of PdS6 octahedra as functions
of the expansive ratio obtained by our ab initio calculations.
The result indicates that PdS6 octahedra is originally elongated
along the c axis at the zero expansive ratio (see also Table II)
and approaches ideal octahedra while increasing the expansive
ratio; the distortion is minimized around 10%. This is consis-
tent with the behavior of the Dirac gaps plotted in Fig. 3(b),
which is predominantly opened by the trigonal distortion of
the octahedra.

APPENDIX C: TOTAL ENERGY COMPARISON
BY GGA CALCULATION

In this appendix, we show the ab initio results while
allowing magnetic solutions. Using GGA calculations without
the SOC under the full structural optimization, we compute the
total energy of paramagnetic (PM), ferromagnetic (FM), Néel
antiferromagnetic (AFM), zigzag antiferromagnetic (zAFM),
and stripy antiferromagnetic (sAFM) states. We adopt a rect-
angular unit cell (see Fig. 8) and 16 × 16 × 1 k-point mesh.

TABLE IV. The total energy of each electronic state obtained by
GGA calculations. The lowest energy of all electronic states is set to be
zero for each compound. The blanks indicate that the corresponding
state is not obtained as a stable solution. The unit of energy is in meV
per rectangular unit cell including four formula units (see Fig. 8). For
the magnetic solutions, we denote the value of the magnetic moment
per transition metal cation in unit of Bohr magneton μB.

PM FM AFM zAFM sAFM

NiPS3 914 444 (1.24) 41 (1.13) 0 (1.12) 491 (1.24)
PdPS3 5 0 (0.26) 1 (0.27)
PtPS3 0
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FIG. 7. The bond angle variance and the quadratic elongation of
PdS6 octahedra as functions of the expansive ratio of the in-plane
lattice constant obtained by the ab initio calculations.

Table IV shows the total energy and the magnetic moment in
each state. The lowest-energy solution is for the zAFM for the
3d electron system with M = Ni, while it is PM for the 5d M =
Pt. We note that the zAFM was indeed found for the bulk NiPS3

[23]. In the case of the 4d M = Pd, the lowest-energy state is
the AFM, while the obtained solutions are almost degenerate in
energy among PM, AFM, and zAFM. The results indicate the
trend from strongly correlated 3d to weakly correlated 5d; the
4d case is in the border between the magnetic insulator and the
Dirac paramagnetic semimetal. Thus, PtPS3 would be a prime
candidate for the multiple Dirac semimetal rather than PdPS3.
In addition, from the comparison of the magnetic moments
between the GGA calculation for PdPS3 and the mean-field
analysis at half filling [see Fig. 4(a)], the correspondingU value
in the mean-field analysis is about 0.5 eV, which appears to be
weak for 4d transition compounds. This may be ascribed to
the generic tendency that the GGA calculation underestimates
the electron interactions of d orbitals.

FM

sAFMzAFM

AFM

a
b

c

a
b

c

a
b

c

a
b

c

FIG. 8. Schematic pictures of magnetic configurations considered
in the GGA calculations. The rectangular unit cells are indicated by
the dotted lines.
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