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Emergent orbitals in the cluster Mott insulator on a breathing kagome lattice
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Motivated by the recent developments on cluster Mott insulating materials such as the cluster magnet
LiZn2Mo3O8, we consider the strong plaquette charge ordered regime of the extended Hubbard model on a
breathing kagome lattice and reveal the properties of the cluster Mottness. The plaquette charge order arises from
the intersite charge interaction and the collective motion of three localized electrons on the hexagon plaquettes.
This model leads naturally to a reduction of the local moments by 2/3, as observed in LiZn2Mo3O8. Furthermore,
at low temperatures, each hexagon plaquette contains an extra orbital-like degree of freedom in addition to
the remaining spin 1/2. We explore the consequence of this emergent orbital degree of freedom. We point out
the interaction between the local moments is naturally described by a Kugel-Khomskii spin-orbital model. We
develop a parton approach and suggest a spin-liquid ground state with spinon Fermi surfaces for this model. We
further predict an emergent orbital order when the system is under a strong magnetic field. Various experimental
consequences for LiZn2Mo3O8 are discussed, including an argument that the charge ordering must be short ranged
if the charge per Mo is slightly off stoichiometric.
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I. INTRODUCTION

Spin, charge, and orbital are three basic degrees of freedom
of condensed matter systems, and their mutual interaction,
interplay, and entanglement cover the major topics of modern
condensed matter physics [1–4]. In conventional Mott insula-
tors, electron charge localization creates local spin moments
at the lattice sites, and the orbital degree of freedom becomes
active when the local crystal symmetry allows the degeneracy
of atomic orbitals [3]. Recently, the cluster Mott insulator has
emerged as a new type of Mott insulator in which the electrons
are localized inside the cluster [5–13]. As a result, the keen
interplay between the charge and the spin degrees of freedom
in cluster Mott insulators (CMIs) is often quite different from a
conventional Mott insulator [5–8]. In particular, it was shown
that the two-dimensional CMIs of the kagome system [6,8]
with an extended Hubbard model at 1/6 electron filling may de-
velop a plaquette charge order [14–18] on hexagon plaquettes
(see Fig. 1). This plaquette charge order immediately impacts
the spin degree of freedom and modulates the spin properties
by reconstructing the spin state within each plaquette. Such a
charge-driven spin-state reconstruction is one crucial property
of the CMIs in this system [6].

Well-known examples of cluster magnets include
LiZn2Mo3O8, Li2InMo3O8 [19], and ScZnMo3O8 [20],
where the Mo electrons are in the CMIs with the Mo
electrons localized in the smaller triangular clusters of the
distorted kagome lattice (see Fig. 1) [21–25]. The distortion
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is such that the up and down triangles have different bond
lengths and the lattice is often referred to as the breathing
kagome. Interestingly, the material LiZn2Mo3O8 experiences
two Curie regimes with distinct Curie-Weiss temperatures
and Curie constants [22,23] in which the low-temperature
Curie constant is 1/3 of the high-temperature one and the
low-temperature Curie-Weiss temperature is much smaller
than the high-temperature one. Moreover, the system remains
magnetically disordered down to the lowest measured
temperature, and inelastic neutron scattering does observe

FIG. 1. The breathing kagome lattice with plaquette charge order.
The solid (dashed) lines represent the up (down) triangles. The
plaquette charge order hosts three electrons that are resonating on
hexagons with circles marked, and a1,a2 are two lattice vectors that
connect neighboring resonating hexagons. R labels the resonating
hexagon, and 1–6 label the six vertices.
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a continuum of excitations [21]. This is consistent with the
proposal of a spin-liquid ground state in this material. Partly
inspired by the experiments in LiZn2Mo3O8, we here explore
the strong plaquette charge ordered regime of the CMI on
the breathing kagome system where the electron charges are
localized on resonating hexagon plaquettes (see Fig. 1). In
addition to the on-site repulsion, a large intersite repulsion is
assumed which forbids the occupation of neighboring sites.
This leads to plaquette charge ordering and the expansion of
the unit cell, formed by a triangular lattice of hexagons marked
by the circles in Fig 1. The low-lying degree of freedom is
the collective resonant rotation of the three occupied sites on
each hexagon (see Fig. 2). To put this model in the context
of the earlier model by Flint and Lee [26], there the intersite
repulsion is assumed to be weak and each up triangle is
occupied by one electron, and no correlation is assumed
around the hexagons. The up triangles form a triangular
lattice and a lattice distortion is postulated which creates a
honeycomb lattice of up triangles, with the spin at the center
of the honeycomb relatively isolated and responsible for the
local moments at low temperatures. Note that both for this
model and the current model, a tripling of the unit cell is
assumed. This has been searched for by x-ray scattering but
so far no new diffraction peaks have been observed. This issue
will be discussed in the Discussion section, where we point
out that if the system is slightly off stoichiometric, domain
walls will form between the ordered states. Due to a special
feature of domain walls forming a honeycomb lattice [27], it
can be shown that long-range order is always destroyed, i.e.,
the system can only have short-range order. This may help
explain the absence of new diffraction spots, and both models
may remain viable. We also point out that the Flint-Lee model
addressed only the freeze-out of 2/3 of the spins at low
temperatures, and the ultimate fate of the local moments that
remained was not discussed. In the current model, we address
both the freeze-out and the true ground state of this system
and argue that due to an emergent orbital degree of freedom,
a spin-liquid state may form as the true ground state.

We also compare the current paper with a previous work
on a similar model [6] which treats the weak plaquette order
regime. The current treatment of the CMI is analogous to the
strong Mott regime of a conventional Mott insulator, while the
previous weak plaquette charge ordered regime [6] is similar to
the weak Mott regime (i.e., close to the Mott transition) where
the charge fluctuation may destabilize the spin order and lead to
a spin liquid [28,29]. We find that in the strong charge ordered
regime, the charge-spin interaction appears in a much more
straightforward and transparent manner. We explain the local
moment reconstruction in the presence of a strong plaquette
charge order on the hexagon, giving rise to a net spin-1/2
local moment on the hexagon. We point out that there exists
an emergent orbital-like degree of freedom. These emergent
orbitals are twofold degenerate and protected by the symmetry
of the hexagon plaquette. The natural model that describes
the interaction between the effective spin and the emergent
orbital on the hexagon plaquette is the Kugel-Khomskii ex-
change model [30]. As a comparison with conventional Mott
insulators, the Kugel-Khomskii model is used to describe the
exchange interaction between the local moments when an
orbital degeneracy exists for the atomic orbitals [30].

For the Kugel-Khomskii model, we design a fermionic par-
ton approach to represent the effective spin and the emergent
orbital degrees of freedom, and propose a spinon Fermi-surface
spin-liquid ground state. We point out that the emergent orbital
generically creates nondegenerate spinon bands and allows
interband particle-hole excitations. Specifically, the interband
particle-hole excitations would manifest as a finite-energy
spinon continuum at the � point in inelastic neutron scattering
and optical measurements. Polarizing the spin degrees of
freedom by applying strong magnetic fields, we obtain a simple
120◦ compass model for the emergent orbital interaction. We
further predict that the system selects a specific orbital order
via order by quantum disorder and supports a nearly gapless
pseudo-Goldstone mode. These results establish a different
perspective on the Mottness of the CMI.

The paper is organized as follows. In Sec. II, we introduce
the extended Hubbard model and explain the plaquette charge
order. In Sec. III, we explain the local moment structure
of the resonating hexagon in the strong plaquette charge
ordered regime and point out the fundamental existence
of the emergent orbital degree of freedom. In Sec. IV, we
derive the Kugel-Khomskii model that describes the exchange
interaction between the spin and the orbital on the triangular
lattice formed by the resonating hexagons. In Sec. V, we
design a parton construction and suggest the features of
the spinon continuum for the proposed spinon Fermi-surface
ground state. In Sec. VI, we explain the emergent orbital order,
quantum order by disorder effect of the compass model for the
orbitals, and the orbital excitation when the spin is polarized
by an external magnetic field. In Sec. VII, we discuss the
relevance of this model to LiZn2Mo3O8 and explore various
experimental consequences. We end with a broad view on the
cluster Mott insulating materials.

II. THE MICROSCOPIC MODEL AND THE PLAQUETTE
CHARGE ORDER

We start with the extended Hubbard model on the breathing
kagome lattice (see Fig. 1),

H = −
∑
〈ij〉∈u

(t1c
†
iσ cjσ + H.c.) −

∑
〈ij〉∈d

(t2c
†
iσ cjσ + H.c.)

+
∑
〈ij〉∈u

V1ninj +
∑
〈ij〉∈d

V2ninj +
∑

i

Uni↑ni↓, (1)

where c
†
iσ (ciσ ) creates (annihilates) an electron with spin σ

(= ↑,↓) at the lattice site i, ni (≡ni↑ + ni↓) is the electron
occupation number, and “u” and “d” refer to the up and
down triangles that are of different sizes, respectively. Here,
t1 and V1 (t2 and V2) are the electron hopping and repulsion
on neighboring sites of the up (down) triangles, respectively.
The electron filling is 1/6, i.e., one electron per unit cell
on the breathing kagome lattice. This model was suggested
to capture the physics of Mo-based cluster magnets such as
LiZn2Mo3O8 in which the Mo atoms form a breathing kagome
lattice [6,19,20].

The Hubbard U interaction for our system merely removes
the electron double occupancy on the lattice site, but it
cannot localize the electrons on the lattice sites. The electrons
can move on the lattice without encountering any double
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FIG. 2. The correlated and collective motion of the three electrons
on the elementary hexagon. The arrow indicates the hopping direction.
Note that the hoppings of the three electrons happen at the same time.

occupancy. This is quite different from a conventional Mott
insulator where the electrons are localized on the lattice sites.
It is the intersite interactions V1 and V2 that localize the electron
on the triangular clusters of the kagome system. Despite being
localized on the triangular clusters, the electrons manage to
fluctuate in a collective fashion due to the extensive degeneracy
of the electron occupation configuration on the kagome lattice.
As U is often quite large compared to t1,t2,V1,V2, one could
safely ignore the electron configurations with any double
occupancy. With a third-order degenerate perturbation of the
electron hoppings, we obtain an effective Hamiltonian that
operates on the degenerate electron occupation manifold and
is given as [6]

Heff = −
∑
�

∑
αβγ

[K1(c†1αc6αc
†
5βc4βc

†
3γ c2γ + H.c.)

+K2(c†1αc2αc
†
3βc4βc

†
5γ c6γ + H.c.)], (2)

where we have

K1 = 6t3
1

/
V 2

2 , K2 = 6t3
2

/
V 2

1 , (3)

and “1, 2, 3, 4, 5, 6” refer to the six vertices on the elementary
hexagon of the kagome lattice. Heff describes the correlated
and collective motion of the three electrons on the elementary
hexagon (see Fig. 2). By mapping the electron occupation to
the dimer covering on the dual honeycomb lattice [6,31], the
previous work has obtained a plaquette charge order where
the electrons preferentially occupy 1/3 of the hexagons in a
periodic fashion (see Fig. 1) [6,14,16–18,32]. This plaquette
charge order is a quantum effect because the three electrons are
resonating on the hexagons and form a linear superposition of
the two occupation configurations [6]. In the strong plaquette
charge ordered limit, the electron (charge) occupation wave
function would be well approximated by a simple product state
with

|�〉c =
∏

R

1√
2

[|�R〉A + |�R〉B], (4)

where R refers to the position of the resonating hexagons,
and A and B label the two charge occupation configurations
of the three electrons on the resonating hexagon (see Fig. 1).
The spin quantum number can still be transferred via the spin
exchange interaction, so |�〉c merely represents the charge
wave function.

III. THE EMERGENT ORBITALS AND THE LOCAL
MOMENTS

In this section, we focus on the strong plaquette charge
ordered regime and reveal the different features of the local
moment structure. The three electrons are well localized on the
resonating hexagons but still move in a collective fashion that
is governed by Heff. This collective motion tunnels the electron
spins that are interacting with the superexchange interaction at
the same time. As a comparison, the localized electrons on a
lattice site of a conventional Mott insulator are fully governed
by the atomic electron interactions and the Hund’s rules. Here,
the right model that describes the localized electrons on an
individual resonating hexagon is

H�R
= −K1

∑
αβγ

(c†1αc6αc
†
5βc4βc

†
3γ c2γ + H.c.)

−K2

∑
αβγ

(c†1αc2αc
†
3βc4βc

†
5γ c6γ + H.c.) + Hex,R, (5)

where the superexchange interaction is given as

Hex,R = J
∑

〈〈ij〉〉∈�R

(
Si · Sj − 1

4

)
ninj . (6)

It is interesting to note that the above superexchange differs
from the usual form of the exchange interaction by having
extra electron density operators ni and nj . This is because the
positions of the electrons are not fixed due to their collective
tunneling on the hexagon plaquette. The local Hilbert space
of H�R

also differs significantly from the on-site one for a
conventional Mott insulator, and is instead spanned by the
electron states that are labeled by both the positions and the spin
quantum numbers of the three resonating electrons. Because
the electrons are separated from each other by one lattice
site due to the repulsive interaction, the Hilbert space for the
electron positions is highly constrained. For the resonating
hexagon centered at R, there are in total 16 states that are
labeled by

|αβγ 〉A ≡ |n1 = 0〉|n2 = 1,α〉|n3 = 0〉
×|n4 = 1,β〉|n5 = 0〉|n6 = 1,γ 〉, (7)

|αβγ 〉B ≡ |n1 = 1,α〉|n2 = 0〉|n3 = 1,β〉
×|n4 = 0〉|n5 = 1,γ 〉|n6 = 0〉, (8)

where α,β,γ (= ↑,↓) refer to the electron spins at the occupied
site. Since the hexagonal Hamiltonian H�R

commutes with the
total spin Stot and Sz

tot of the three resonating electrons, we use
{Stot,S

z
tot} to label the spin states of the hexagon plaquette. From

the spin composition rule for three electron spins, we have the
following relation,

1
2 ⊗ 1

2 ⊗ 1
2 ≡ 1

2 ⊕ 1
2 ⊕ 3

2 , (9)

where the left-hand side is the product state of the three electron
spins and the right-hand side is the total spin states Stot. For
both A and B occupation configurations, there are eight spin
states. Note that we have two pairs of Stot = 1/2 states for each
occupation configuration.
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FIG. 3. Three spin-singlet positions for both A and B occupation
configurations. The (orange) dimer refers to the spin singlet, and the
(red) arrow is the dangling spin. The three spin-singlet configurations
are related by the threefold rotation around the hexagon center.

The two states with Stot = 3/2 are simply the ferromagnetic
states and are certainly not favored by the antiferromagnetic
exchange interaction Hex,R. Directly solving the Hamiltonian
H�R , we find that when

J > 2
3

[
K1 + K2 − (

K2
1 − K1K2 + K2

2

) 1
2
]
, (10)

the local ground states are four symmetric states with
Stot = 1/2. Here, the “symmetric” states refer to being sym-
metric between the A and B occupation configurations in
Fig. 3. This is understood by the fact that the collective
motion of three electrons favors symmetric states rather than
antisymmetric ones. These fourfold degenerate states can be
effectively characterized by two quantum numbers {sz,τ z}
with sz = ± 1

2 and τ z = ± 1
2 , where sz refers to the total spin

sz ≡ Sz
tot = ± 1

2 . The pseudospin-1/2 operator τ refers to the
emergent orbitals that will be explained below.

The wave functions of the four degenerate states are labeled
by |τ zsz〉R and are given as to the order of O(K2/K1) [33],

|↑↑〉R = 1

2
[|↑↑↓〉A − |↑↓↑〉A + |↓↑↑〉B − |↑↑↓〉B], (11)

|↓↑〉R =
√

3

6
[2|↓↑↑〉A − |↑↓↑〉A − |↑↑↓〉A

+ 2|↑↓↑〉B − |↑↑↓〉B − |↓↑↑〉B], (12)

and these other two states |↑↓〉R,|↓↓〉R are simply obtained
by applying a time-reversal transformation to the above two
states,

|↑↓〉R = 1

2
[|↓↓↑〉A − |↓↑↓〉A + |↑↓↓〉B − |↓↓↑〉B], (13)

|↓↓〉R =
√

3

6
[2|↑↓↓〉A − |↓↑↓〉A − |↓↓↑〉A

+ 2|↓↑↓〉B − |↓↓↑〉B − |↑↓↓〉B]. (14)

We clarify the physical origin of the fourfold degeneracy
of the above four states for the hexagon plaquette. First, the
twofold degeneracy of sz = ±1/2 is simply protected by time-
reversal symmetry. The remaining twofold degeneracy comes

from the point group symmetry of the resonating hexagon. This
is ready for us to see if we can fix the occupation configuration
of the three electrons. To be more specific, let us start with the
A configuration in the upper panel of Fig. 3. To optimize the
antiferromagnetic exchange interaction, two electron spins out
of the three must form a spin singlet, leaving the third electron
as a dangling spin. As shown in Fig. 3, the spin singlet can
be formed between any pair of electrons, and the different
arrangements of the spin singlet are related by the threefold
rotation. Although there seems to be three possible singlet
arrangements, only two of them are linearly independent and
are responsible for the twofold degeneracy. Likewise, for the B
configuration on the lower panel of Fig. 3, we again have two
such degenerate states. When the three electrons start to move
collectively within the hexagon between the A and B configu-
rations, the corresponding states start to hybridize and the sym-
metric states are favored energetically. The twofold degeneracy
survives and is given as the τ z = ↑,↓ states in Eqs. (11)–(14).

The three electrons are localized on the resonating hexagon
but are delocalized within the resonating hexagon. It is hard for
them to move out of the resonating hexagon, but easy for them
to move within the resonating hexagon. Due to this collective
motion, the wave functions of |τ zsz〉 are extended and span
across the resonating hexagon, and the τ z = ↑,↓ states behave
as two degenerate orbitals that are defined on the resonating
hexagon. Since the degeneracy of τ z = ↑,↓ states originates
from the arrangements of the spin singlets, the pseudospin τ is
even under the time-reversal transformation. The two emergent
orbital states that are defined in Eqs. (11) and (12) comprise
the two-dimensional E-type irreducible representation of the
point group, and thus their twofold degeneracy is protected by
the point group symmetry of the resonating hexagon.

IV. THE KUGEL-KHOMSKII SPIN-ORBITAL
INTERACTION

In this section we study and derive the interaction between
the spins and the emergent orbitals that live on the neighboring
resonating hexagons. This interaction is necessarily of the
Kugel-Khomskii type. Based on the Kugel-Khomskii model,
we obtain the Curie-Weiss temperature and Curie constant in
the strong plaquette ordered regime, and compare with the
high-temperature results.

A. The Kugel-Khomskii model

The neighboring resonating hexagons are connected by a
“bowtie” structure that is composed of corner-shared up and
down triangles (see Fig. 4). The local moment interaction
comes from the remaining exchange interaction between the
two electron spins that reside on the four exterior vertices of the
bowtie. To illustrate the idea, we consider the bowtie structure
that connects the two resonating hexagons centered at R and
R + a1 (see Figs. 1 and 4). To derive the local moment interac-
tion, we need to project the remaining electron spin exchange
interaction onto the fourfold degenerate local moment states
|τ zsz〉 of each resonating hexagon. For this purpose, we first
write down the interhexagon exchange interaction between the

035124-4



EMERGENT ORBITALS IN THE CLUSTER MOTT … PHYSICAL REVIEW B 97, 035124 (2018)

FIG. 4. The bowtie structure that connects two neighboring res-
onating hexagons. In the upper right-hand corner, we indicate the
exchange interaction J ′ between two electrons.

electrons at the bowtie vertices,

H ′
ex = −J ′

4
[n4(R) + n5(R)][n1(R + a1) + n2(R + a1)]

+ J ′[S4(R)n4(R) + S5(R)n5(R)] · [S1(R + a1)

× n1(R + a1) + S2(R + a1)n2(R + a1)], (15)

where we have included the exchange interactions for electrons
at all four pairs of the external vertices. Again, since the
position of the electron is not fixed, the electron number
operator ni is introduced. The exchange paths all go through the
central vertex of the bowtie and are of equal length. Therefore,
only one exchange coupling J ′ is introduced for all four pairs
in Eq. (15). The exchange coupling J ′ can be obtained from
the fourth-order perturbation theory and is given as

J ′ = 4t2
1 t2

2

UV 2
1

+ 4t2
1 t2

2

UV 2
2

+ 4t2
1 t2

2

UV1V2
, (16)

and the fifth-order perturbation theory could introduce more
terms to J ′ without invoking double electron occupancy on a
single lattice site. Moreover, since J ′ is the exchange coupling
between the spins in the strong plaquette ordered regime, J ′
is expected to be weaker than the intraresonating-hexagon
exchange coupling J in Eq. (6).

We project H ′
ex onto the local ground-state manifold at

resonating hexagon sites R and R + a1 and then express the
resulting interaction in terms of the spin s and the pseudospin
τ . The effective interaction on other bonds can be obtained
likewise. The final local moment interaction reduces to a
Kugel-Khomskii model [30] that is defined on the triangular
lattice formed by the resonating hexagons. To the order of
O(K2/K1), the Kugel-Khomskii model is given as

HKK = J ′

9

∑
R

∑
μ=x,y,z

(
sR · sR+aμ

)[
1 + 4T

μ

R

][
1 − 2T

μ

R+aμ

]
,

(17)

where the new set of pseudospin operators T μ’s are defined as

T x
R = −1

2
τ z

R −
√

3

2
τ x

R, (18)

T
y

R = −1

2
τ z

R +
√

3

2
τ x

R, (19)

T z
R = τ z

R, (20)

and ax = a1, ay = a2, and az = −a1 − a2. The particular
expression of the Kugel-Khomskii model in Eq. (17) originates
from the choice of two orbital wave functions in Eqs. (11)–(14).
If a different set of orbital wave functions is chosen, the
resulting Kugel-Khomskii model would have a different form.
In Eq. (17), the effective exchange coupling is significantly
reduced after the projection compared to the original exchange
coupling J ′ in Eq. (15). The important factor 1/9 in front of
this equation can be understood physically as coming from the
fact that each spin is found in the bowtie structure connecting
two hexagons only 1/3 of the time.

B. The Curie-Weiss laws

Since the pseudospin τ is even under the time-reversal
transformation and thus does not couple to the external mag-
netic field, the low-temperature Curie-Weiss temperature thus
detects the spin-spin interaction, and from the Kugel-Khomskii
model HKK we directly compute the Curie constant C and the
Curie-Weiss temperature 	CW at low temperature,

CL = g2μ2
Bs(s + 1)

3kB

N

3
, (21)

	L
CW = −2s(s + 1)J ′

9
, (22)

where N is the total number of electrons, g is the Landé factor,
and N/3 in CL means the active spin degrees of freedom in
the strong plaquette ordered phase comprise 1/3 of the total
number of electrons. This is a natural consequence due to
the spin state reconstruction within each resonating hexagon.
This result is consistent with the low-temperature magnetic
susceptibility LiZn2Mo3O8 [21–24].

To make a comparison with the high-temperature suscep-
tibility, we consider the high-temperature regime where the
plaquette charge order is present and the spin singlet within
the resonating hexagon plaquette is thermally destroyed. In
this regime, all the electron spins contribute to the magnetic
susceptibility. Therefore, the Curie constant for this high-
temperature regime is simply given by

CH = g2μ2
Bs(s + 1)

3kB
N, (23)

and is three times larger than the low-temperature one. More-
over, in this regime, Fig. 1 is a typical electron configuration.
For each electron, there are four neighboring electrons that in-
teract with this electron spin with the pairwise spin interaction
across the bowtie structure. Among these interactions, there
are two intraresonating-hexagon interactions with the coupling
J and two inter-resonating-hexagon interactions J ′. Then the
Curie-Weiss temperature for this high-temperature regime is
given as

	H
CW = −2s(s + 1)

3
(J + J ′), (24)
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and is 3(1 + J/J ′) times larger than the low-temperature
one. Since J ′ is expected to be less than J , the ratio is
larger than 6 and provides a separation of scale between
the high-temperature freezing of 2/3 of the spins and the
interaction among the remaining spins. In the experiment on
LiZn2Mo3O8, the two Curie-Weiss temperatures are −220 and
−14 K, respectively [23].

V. PARTON CONSTRUCTION FOR THE CANDIDATE
SPIN-LIQUID STATE

As any other spin-orbital exchange model [30], the Kugel-
Khomskii model HKK in our context involves the spin-spin
interaction, the pseudospin-pseudospin interaction, and the
spin-pseudospin interaction, and all these interactions are of
the same energy scale. These interactions together make the
model analytically intractable. In the absence of the spin-
pseudospin interaction, the Heisenberg spin exchange model
would favor the conventional 120◦ state with a long-range
order. The spin-pseudospin interaction, however, competes
with the Heisenberg term, destabilizes the conventional 120◦
state, and may potentially induce a spin-liquid state. This
is because the quarticlike spin-pseudospin interaction allows
the local moment to fluctuate more effectively in the spin-
pseudospin space. Such a spin liquid, if it exists, may be
smoothly connected to the U (1) spin liquid with spinon Fermi
surfaces that was proposed for the weak plaquette charge
ordered regime in Ref. [6].

From the experimental side, a broad continuous excita-
tion has been discovered in the inelastic neutron scattering
measurement on powder samples. The authors of Ref. [21]
proposed a gapless spin-liquid state. Moreover, the neutron
spectral weight in the experiment is not suppressed at low
energies, which indicates that the ground state cannot be
a Dirac spin liquid. Based on the experimental results, we
here propose a candidate ground state to a spin liquid with
a spinon Fermi surface. This phenomenological proposal is
again consistent with the previous suggestion from the weak-
coupling approach [6]. To demonstrate the phenomenological
consequence of this proposal, we develop a parton construction
that is designed for our spin-orbital model and suggest the
experimental consequence of this candidate state.

A. The parton construction

There are both spin and orbital degrees of freedom on a
single site R. To account for both of them, we introduce the
following fermionic parton representation,

τ R =
∑
m,n

∑
α

1

2
f

†
RmασmnfRnα, (25)

sR =
∑
m

∑
α,β

1

2
f

†
Rmασ αβfRmβ, (26)

where m,n = ↑,↓ refer to the pseudospin state for the orbitals,
α,β = ↑,↓ refer to the spin state, and σ = (σx,σ y,σ z) is the
vector of Pauli matrices. To get back to the physical Hilbert
space, we further impose a Hilbert space constraint,∑

α

∑
m

f
†
RmαfRmα = 1. (27)

FIG. 5. (a) Threefold rotation around the center of the plaquette.
(b) The twofold rotation axis. (c) Another twofold rotation axis.

Unlike the pure spin model, our spinon carries an extra orbital
index. This parton construction could be well extended to other
spin-orbital models.

B. The symmetry property of the spinons

A U (1) spin liquid with spinon Fermi surfaces was proposed
for the weak plaquette charge ordered regime [6]. For this state,
the spinon transforms identically as an electron under the lattice
transformation, and there is no projective realization of the
lattice symmetry. Since we suggest that the possible spin liquid
for our Kugel-Khomskii model in the strong-coupling regime
is connected to the ground state in the weak plaquette ordered
regime, we here explicitly derive the symmetry transformation
of the spinons in our context.

Let us consider a single plaquette at R, where the sym-
metries include a threefold rotation C3 and two twofold
rotations C2 and C ′

2 (see Fig. 5). The lattice symmetry does
not change the spin component, but acts on the orbital degree
of freedom. Under C3, the lattice sites within the hexagon
plaquette transform as

C3 : 2 → 4, 4 → 6, 6 → 2, (28)

C3 : 1 → 3, 3 → 5, 5 → 1, (29)

therefore, from the orbital wave functions, we have that the
states |↑↑〉R and |↓↑〉R transform as

C3 : |↑↑〉R → −1

2
|↑↑〉R +

√
3

2
|↓↑〉R, (30)

C3 : |↓↑〉R → −
√

3

2
|↑↑〉R − 1

2
|↓↑〉R, (31)

where the transformation does not depend on the spin quantum
number, and identical transformations are obtained for the
states |↑↓〉R and |↓↓〉R. One then establishes

C3 : fR↑α → −1

2
fR↑α +

√
3

2
fR↓α, (32)

C3 : fR↓α → −
√

3

2
fR↑α − 1

2
fR↓α. (33)

Following the same type of calculation, under C2 and C ′
2, we

have

C2 : 5 ↔ 6, 1 ↔ 4, 2 ↔ 3, (34)

C2 : fR↑α → −fR↑α, (35)

C2 : fR↓α → +fR↓α, (36)

C ′
2 : 1 ↔ 6, 2 ↔ 5, 3 ↔ 4, (37)
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FIG. 6. The two spinon bands and their vertical particle-hole
transition between the two bands. In the plot, t̃2 = 0.3t̃1, and t̃1 = 1 is
used as the energy unit. The inset is the Brillouin zone of the triangular
lattice formed by the resonating hexagons.

and

C ′
2 : fR↑α → +1

2
fR↑α −

√
3

2
fR↓α, (38)

C ′
2 : fR↓α → −

√
3

2
fR↑α − 1

2
fR↓α. (39)

C. The spinon Fermi-surface state

From the spinon symmetry properties, we determine the
generic symmetry allowed spinon mean-field Hamiltonian
Hspinon,

Hspinon =
∑
R,μ

∑
m,n

∑
α

tμmnf
†
RmαfR+aμ,n,α + H.c., (40)

where t
μ
mn is a bond-dependent hopping matrix for the spinons,

and we have the symmetry allowed hoppings as

tx = −t̃112×2 + t̃2σ
z +

√
3t̃2σ

x, (41)

ty = −t̃112×2 + t̃2σ
z −

√
3t̃2σ

x, (42)

t z = −t̃112×2 − 2t̃2σ
z, (43)

and 12×2 is a 2 × 2 identity matrix. This model describes the
spinon hopping on a triangular lattice with two orbitals at each
lattice site. Since the spinons are at 1/4 filling, each band is
partially filled and the system develops spinon Fermi surfaces
(see Fig. 6). The mean-field ground state is obtained by filling
the spinon states below the Fermi energy EF,

|�MF〉 =
∏

Ek,j <EF

ξ
†
kj↑ξ

†
kj↓|0〉, (44)

where Ek,j is the energy of the eigenmode that is defined by
ξ
†
kj↑ or ξ

†
kj↓, and is given as

Ek,1 = −2t̃1(cx + cy + cz) + 4|t̃2|
(
c2
x + c2

y + c2
z

− cycz − cxcz − cxcy

) 1
2 , (45)

FIG. 7. The spinon continuum contribution to the spin-spin cor-
relation function as measured by neutron scattering along the high-
symmetry momentum direction. Due to the interband transition, a
spinon continuum exists up to finite energies near the � point, with a
small region of missing weight. The energy parameters here are the
same as the ones in Fig. 6.

Ek,2 = −2t̃1(cx + cy + cz) − 4|t̃2|
(
c2
x + c2

y + c2
z

− cycz − cxcz − cxcy

) 1
2 . (46)

Here, cμ = cos(k · aμ).

D. The qualitative feature of the spinon continuum due to the
emergent orbitals

The key property for the spinon mean-field model is the
presence of the interorbital hopping t̃2 that hybridizes different
orbitals such that each spinon band no longer has a definite
orbital character. This interorbital spinon hopping arises from
the fact that the orbital interaction is anisotropic in the orbital
space and only respects the discrete lattice symmetry. In inelas-
tic neutron scattering, the neutron would only see the effective
spin and not see the emergent orbital degree of freedom. The
orbital degree of freedom, however, has an important effect
on the spinon continuum that is observed by inelastic neutron
scattering. The neutron detects the particle-hole excitation
across the spinon Fermi level. From the momentum and energy
conservation, we have the momentum and energy transfer of
the neutron as

q = q1 − q2, (47)

E = Eq1,j1 − Eq2,j2 , (48)

where q1 and Eq1,j1 are the momentum and the energy of an
unoccupied spinon while q2 and Eq2,j2 are the momentum and
the energy of the filled spinon. The particle-hole excitation
would involve both the intraband transitions (with j1 = j2)
and the interband transitions (with j1 �= j2). If there is no
orbital degree of freedom and there is only one single spinon
band, the interband transition is not involved, and the inelastic
neutron scattering spectral weight for the intraband transition
is suppressed for the finite energies at the � point. This is
because at the mean-field level the intraband process always
excites the finite-energy spinon particle-hole pair with a finite
momentum. In contrast, with the interband vertical process (see
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Fig. 6), the spinon particle-hole pair with zero momentum can
carry a wide range of finite energies. In Fig. 7, we explicitly
compute the energy and momentum spread of the contribution
to the spin-spin correlation function as measured by neutron
scattering due to the spinon particle-hole pair excitation for
a specific choice of spinon hoppings. Qualitatively, a broad
continuum is observed, with a small amount of missing weight
near the � point due to the features of the interband transition.

VI. EMERGENT ORBITAL ORDER IN A FIELD

Despite the possible exotic spin-liquid ground state at
zero field, the Kugel-Khomskii model HKK becomes more
tractable in the presence of a strong external magnetic field.
Due to the suppression of the exchange coupling in HKK,
it is feasible to choose the magnetic fields to fully polarize
the local spin moments such that sz = ↑ for every resonating
hexagon, but at the same time keep the field from polarizing
all the electron spins in the kagome system. The pseudospin
τ is not directly effected by the magnetic field since it does
not couple to the Zeeman field. The pseudospins remain
active, and the interaction between them turns out to be a
ferromagnetic compass model on the triangular lattice formed
by the resonating hexagons,

HRKK = −2J ′

9

∑
R

∑
μ=x,y,z

T
μ

R T
μ

R+aμ
. (49)

From a standard Luttinger-Tisza type of mean-field ap-
proach [34], we find that the mean-field ground state of HRKK

has an accidental U (1) continuous degeneracy, i.e., any ferro-
orbital (q = 0) state with the pseudospin τ orienting in the
xz plane is a classical ground state. Here, we parametrize the
mean-field pseudospin order as

τ cl = 1
2 (cos θ ẑ + sin θ x̂), (50)

with θ ∈ [0,2π ).

FIG. 8. The quantum zero-point energy per resonating hexagon
for the mean-field orbital order. The energy unit is set to 2J ′/9 in the
figure.

This continuous U (1) ground-state degeneracy at the mean-
field level of the reduced Kugel-Khomskii model HRKK is lifted
when the quantum fluctuations of the orbitals are included. We
study this quantum order by the disorder phenomenon from the
linear orbital-wave theory. Here, we introduce the Holstein-
Primakoff boson to represent the pseudospin operator τ R as
follows,

τ R · τ̂ cl = 1

2
− a

†
RaR, (51)

τ R · ŷ = 1

2i
[aR − a

†
R], (52)

τ R · (ŷ × τ̂ cl) = 1

2
[aR + a

†
R], (53)

where τ̂ cl ≡ τ cl/|τ cl| is the orientation of the pseudospin.
We keep the quadratic terms in the Holstein-Primakoff boson
operators and express the reduced Kugel-Khomskii model as

HRKK =
∑
k∈BZ

[2Aka
†
kak + Bk(aka−k + H.c.)] + Ecl, (54)

where “BZ” refers to the Brillouin zone of the triangular lattice
formed by the resonating hexagon plaquettes and

Ecl = − J ′

12

N

3
, (55)

Ak = 2J ′

9

[
− sin2(θ − π/3)

4
cos(k · ax) − sin2(θ + π/3)

4
cos(k · ay) − sin2 θ

4
cos(k · az) + 3

4

]
, (56)

Bk = 2J ′

9

[
− sin2(θ − π/3)

4
cos(k · ax) − sin2(θ + π/3)

4
cos(k · ay) − sin2 θ

4
cos(k · az)

]
. (57)

The linear orbital-wave Hamiltonian is then diagonalized
by a Bogoliubov transformation for the Holstein-Primakoff
bosons and is given by

HRKK = Ecl +
∑
k∈BZ

[ωk

2
− Ak

]
+

∑
k∈BZ

ωkα
†
kαk,

where the orbital-wave (or “orbiton”) mode reads

ωk = 2
(
A2

k − B2
k

) 1
2 . (58)

From Eq. (58), the quantum correction to the ground-state
energy is

�E =
∑
k∈BZ

[ωk

2
− Ak

]
. (59)

In Fig. 8, we plot the quantum correction as a function of the
angular parameter θ . The minima occur at

θ = π

6
+ nπ

3
, n ∈ Z, (60)

and are indicated in Fig. 9(a).
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FIG. 9. (a) The selection of the θ on a unit circle by quantum
fluctuation. The arrow indicates the optimal choice. (b) The magnetic
moment distribution within the resonating hexagon for θ = π/6. It
is clear that the threefold rotation about the center of the hexagon is
broken.

Since the twofold orbital degeneracy arises from the point
group symmetry, the emergent orbital order, which breaks the
orbital degeneracy, has to be related to the symmetry breaking.
To understand the physical consequence of the orbital order,
we consider the following product state wave function that is
appropriate for the q = 0 ferro-orbital state,

|�〉orb =
∏

R

[
cos

θ

2
|↑↑〉R + sin

θ

2
|↓↑〉R

]
. (61)

This variational wave function gives the orbital ordering in
Eq. (50). From this wave function, we find that the electron
density is uniform at every site within each resonating hexagon
and thus preserves the rotation and reflection symmetries. We
then compute the local magnetization for each site within the
resonating hexagon,

〈
sz

1

〉
R = 〈

sz
6

〉
R = 1

12
+ sin(θ − π/6)

6
, (62)

〈
sz

2

〉
R = 〈

sz
3

〉
R = 1

12
+ sin θ

6
, (63)

〈
sz

4

〉
R = 〈

sz
5

〉
R = 1

12
− sin(θ + π/6)

6
. (64)

Although the total local magnetization of each resonating
hexagon is 〈sz〉R = ∑6

i=1〈sz
i 〉R = 1/2, the orbital ordering

FIG. 10. The orbiton dispersion along the high-symmetry mo-
mentum line. The inset is the Brillouin zone of the triangular lattice
formed by the resonating hexagons. The energy unit is set to 2J ′/9
in the figure.

leads to a modulation of the spin ordering inside each resonat-
ing hexagon [see Fig. 9(b)]. The threefold rotational symmetry
about the center of the resonating hexagon is explicitly broken
by the orbital ordering.

In Fig. 10, we plot the dispersion of the orbiton excitation for
θ = π/6. We find the dispersion is gapless at the � point due to
the breaking of the accidental U (1) degeneracy. This pseudo-
Goldstone mode is expected to be gapped if the interaction
between the Holstein-Primakoff bosons is included. Since the
interaction-induced gap should be very small compared to the
orbiton energy scale, one would expect to observe the heat
capacity Cv ∼ T 2 at low temperatures.

VII. DISCUSSION

We discuss the experimental consequences of the plaquette
charge order, the emergent orbitals, and the orbital orders. The
plaquette charge order explicitly breaks the lattice translation
symmetry and would lead to some variation of the bond lengths
according to the symmetry breaking. This may be detected
by high-resolution x-ray scattering or x-ray pair distribution
function (PDF) measurements. The plaquette charge order
reconstructs the spin states within each resonant hexagon
leading to the freezing of 2/3 of the spins, as observed in
the spin susceptibility in LiZn2Mo3O8 [21–25]. A different
explanation for the susceptibility anomaly in LiZn2Mo3O8

based on the lattice distortion and the emergent lattices has
been proposed in a previous work [26]. Both this previous work
and the current work require a translation symmetry breaking
by tripling the crystal unit cell. Such a translation symmetry
breaking has not yet been observed in the experiment. Here,
we point out the possible reason, namely, that under certain
conditions, the symmetry breaking must be short ranged at all
temperatures.

The Li ion is mobile and may make the system slightly off
stoichiometric. To accommodate the missing or extra charges,
the system needs to create domain walls within the symmetry-
broken phase. An example of such domain walls is shown in
Fig. 11 for the case when the filling is slightly more than 1/6.
Each solid dot represents the charge order shown in Fig. 1. Note
that the charge order can be centered on one of three hexagons,
thereby forming ABC-type domains. A certain density of do-
main walls will be required for a given deviation from 1/6 fill-
ing. There is an energy cost per unit length of the domain wall,
because electrons are now forced to occupy neighboring sites.
The resulting state is expected to be a “liquid” state with an ex-
ponential decay of correlations for the electron charge density
[27]. This result is special for the hexagonal arrangement of
domain walls and the reason is as follows. It was pointed out by
Villain [35] that there exists a breathing mode that expands or
shrinks one particular domain but costs no energy because the
total domain wall length is not changed. This is illustrated in
Fig. 12. Consequently, the free energy of the system of domain
walls is purely entropic and is proportional to temperature
T . In the long-wavelength limit, the elastic constant of the
system is also proportional to T and so is the energy to create a
dislocation. An example of a dislocation is shown in Fig. 13. By
the usual Berezinskii-Kosterlitz-Thouless (BKT) argument,
the competition of this energy with the entropy associated
with the dislocation determines whether the dislocation will
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FIG. 11. A picture of the domain walls separating the ABC
domains when the electron occupation is off stoichiometric, in this
case slightly more than 1/6 per Mo.

proliferate, resulting in an exponentially decaying correlation
function. Unlike the usual BKT argument, where the disloca-
tion energy is a constant and a phase transition is predicted at
a finite temperature, here the result depends on the numerical
coefficient of the linear T term in the elastic energy. A detailed
computation carried out in Ref. [27] showed that the system
is always disordered at any temperature. A short-range charge
ordering makes detection more difficult, but not impossible.
Perhaps resonant x-ray scattering which couples directly to the
electrons will have a better chance of seeing this distortion.

The emergent orbital is a degree of freedom that naturally
emerges from the plaquette charge order on the breathing
kagome lattice. The presence of this extra degree of freedom
distinguishes the current proposal from the previous one in
Ref. [26]. However, the emergent orbital is not detectable
in the magnetization measurement since the orbital does not
couple directly to the external magnetic field. However, it

FIG. 12. The breathing mode of Villain [35]. Note that the total
wall length and hence its energy has not changed. This mode
contributes only to the entropy.

FIG. 13. A picture of a dislocation center (in red) in the system
of domain walls.

does contribute to the heat capacity and the entropy. We
expect an additional entropy from the emergent orbitals apart
from the spin entropy. The suggested spinon Fermi surface
ground state and the spinon excitation should be detectable via
inelastic neutron scattering. In fact, the existing measurement
does suggest a broad continuum of excitations [21], even
though the measurement was taken on powder samples. Since
the qualitative feature for the spinon interband particle-hole
excitation is more visible at the � point, optical measurements
or Raman scattering can be useful for detecting the finite-
energy spinon continuum at the � point.

A magnetic field that is of the order of the low-temperature
Curie-Weiss temperature is expected to polarize the spin
degree of freedom. The magnetic field should be much less
than the high-temperature Curie-Weiss temperature to prevent
polarizing the spins that form the spin singlet within the
resonating hexagon. The remaining orbital degrees of freedom
then develop an orbital order via a quantum order by disorder
mechanism and support a pseudo-Goldstone mode that gives
a heat capacity Cv ∼ T 2 at low temperatures. The orbital
wave excitation may be detected by resonant inelastic x-ray
scattering. The orbital order creates a magnetic moment re-
distribution within the resonating hexagon. This intrahexagon
static magnetic structure may be detected by high-resolution
neutron scattering, muon spin rotation (μSR), and/or NMR
measurements.

Finally, there exists a large family of cluster magnets in
which the electrons are localized on the cluster units and form
CMIs [5–13,19,20]. The physical properties of many of these
cluster magnets have not been explored carefully. Recently,
1T -TaS2 was proposed as a spin-liquid candidate [12]. In this
system, the low-temperature (commensurate) charge density
wave order enlarges the unit cell such that there exists one
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localized and unpaired electron inside the 13-site star-of-David
cluster. This system can thus be considered as a CMI [12].
These clustered localized electrons form effective spin-1/2
local moments that interact with each other and may develop a
spin-liquid ground state [12]. Besides these two-dimensional
cluster magnets, Ta-based and Mo-based lacunar spinels are
good examples of three-dimensional CMIs [5,9–11]. In these
materials, the systems naturally host a breathing pyrochlore
lattice structure where one half of the tetrahedral clusters is
smaller than the other half and host the localized electrons
[5]. The study on these systems is quite limited so far. We
expect that the cluster localization of the electrons in these

CMIs may bring some interesting phenomena and enrich our
understanding of Mott physics.
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