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We present a theoretical framework for equilibrium and nonequilibrium dynamical simulation of quantum
states with spin-density-wave (SDW) order. Within a semiclassical adiabatic approximation that retains electron
degrees of freedom, we demonstrate that the SDW order parameter obeys a generalized Landau-Lifshitz equation.
With the aid of an enhanced kernel polynomial method, our linear-scaling quantum Landau-Lifshitz dynamics
(QLLD) method enables dynamical SDW simulations with N � 105 lattice sites. Our real-space formulation
can be used to compute dynamical responses, such as the dynamical structure factor, of complex and even
inhomogeneous SDW configurations at zero or finite temperatures. Applying the QLLD to study the relaxation
of a noncoplanar topological SDW under the excitation of a short pulse, we further demonstrate the crucial role
of spatial correlations and fluctuations in the SDW dynamics.
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Quantum states with unusual broken symmetries have long
fascinated physicists because of their fundamental importance
and potential technological applications. Of particular interest
is the regular spatial modulation of electron spin known as the
spin-density-wave (SDW) state [1,2]. SDWs are ubiquitous in
strongly correlated systems and play a crucial role in several
intriguing many-body phenomena. For example, the SDW state
is proximate to the superconducting phase in several unconven-
tional superconductors, including cuprates and iron pnictides.
Indeed, non-Fermi liquid behavior is usually observed in the
vicinity of a SDW phase transition [3]. Moreover, conduction
electrons propagating in a noncoplanar spin texture acquire
a nontrivial Berry phase and exhibit unusual transport and
topological properties [4,5]. Consequently, metallic SDW with
complex spin structures, such as spirals or skyrmion crystals,
offers a novel route to control the charge degrees of freedom
through manipulation of spins and vice versa [6].

While analytical techniques have yielded much insight
about itinerant magnetism and SDW states [7,8], numerical
methods continue to provide valuable benchmarks and shed
light on controversial issues. Among the various numerical
tools [9], quantum Monte Carlo (QMC) simulations provide
numerically exact solutions to strongly correlated models
[10–12]. However, one severe restriction of most QMC
methods is the infamous sign problem. Powerful alternative
approaches that avoid the sign problem include dynamical
mean-field theory (DMFT) [13,14] and density-matrix renor-
malization group (DMRG) [15,16]. Significant developments
have also been made in their nonequilibrium extension such as
time-dependent (TD) DMFT [17,18] and TD-DMRG [19,20].
Both methods, however, are still very limited in their treatment
of complex mesoscopic structures.
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In this paper, we present a different numerical approach to
SDW dynamics, emphasizing the ability to simulate large-scale
lattices and complex SDW orders that often occur in highly
frustrated systems. Our starting point is a semiclassical treat-
ment of Hubbard-like models, which neglects quantum fluc-
tuations, but retains the spatial fluctuations of the SDW field.
In a way, this approach is the complement of DMFT, which
includes quantum fluctuations at the expense of neglecting
spatial correlations. A systematic approach is then developed
to reintroduce quantum dynamics to the SDW order parameter.
We show that in the leading adiabatic approximation, the
SDW dynamics is described by a generalized Landau-Lifshitz
(LL) equation in which the effective forces acting on the
spins are generated from itinerant electrons. Our numerical
scheme can be viewed as a quantum LL dynamics (QLLD),
in which the electronic degrees of freedom are integrated out
at each time step. By supplementing the LL equation with
Ginzburg-Landau type relaxation and stochastic terms, our
QLLD method can be used to simulate SDW dynamics both
near and far from equilibrium.

I. SPIN-FERMION HAMILTONIAN
FOR EQUILIBRIUM SDW PHASES

We consider the one-band Hubbard model with an on-site
repulsion U > 0,

H = −
∑
ij,α

tij c
†
i,αcj,α + U

∑
i

ni,↑ni ↓. (1)

After performing the Hubbard-Stratonovich (HS) transforma-
tion [21,22], we obtain the following spin-fermion Hamilto-
nian,

HSDW = −
∑
ij,α

tij c
†
i,αcj,α − 2U

∑
i

mi · si + U
∑

i

|mi |2,

(2)
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where si = 1
2c

†
i,ασ αβci,β is the spin operator of conduction

electrons and σ is a vector of the Pauli matrices. The local HS or
auxiliary field mi is a classical O(3) vector inR3. Here we have
set h̄ = 1. Importantly, since HSDW describes noninteracting
electrons coupled to a magnetic background, the fermionic
degrees of freedom can be integrated out either in Monte Carlo
or dynamical simulations to be described below.

This HS Hamiltonian is typically the starting point for deter-
minant QMC (DQMC) simulations [10–12]. In an alternative
approach, one assumes static HS variables; then the above
Hamiltonian resembles the so-called spin-fermion model
[23,24] and can be simulated with Markov chain Monte Carlo
assuming classical “spins” mi , while electrons are treated
quantum mechanically. Applying this method to the cubic-
lattice Hubbard model, the obtained Néel temperature agrees
remarkably well with those from DQMC simulations [22]. It is
worth noting that while Eq. (2) is similar to the Hartree-Fock
treatment of the Hubbard model, retaining spatial fluctuations
of the local HS fields {mi} in this static (in imaginary time) HS-
field formalism goes beyond the usual mean-field method. For
instance, this approach captures the critical fluctuations, and
consequently the correct universality class, of any continuous
thermodynamic transition into a magnetically ordered state.

Instead of Markov-Chain Monte Carlo, here we employ the
stochastic Ginzburg-Landau (GL) relaxation dynamics [25,26]
to sample the equilibrium SDW configurations within the static
HS-field approximation,

dmi

dt
= −γ

∂〈HSDW〉
∂mi

+ ξ i(t). (3)

Here γ is a damping constant, and ξ i is a δ-correlated
fluctuating force satisfying 〈ξ i(t)〉 = 0 and 〈ξμ

i (t)ξν
j (t ′)〉 =

2γ kBT δij δμνδ(t − t ′) for vector components μ and ν. This
equation is similar to the over-damped Langevin dynamics
used in Ref. [27] for the Kondo-lattice model. We note that the
magnitude |mi | of the O(3) vector mi is not fixed in this over-
damped dynamics. A fictitious inertial mass term can be added
to the above dynamics to improve the efficiency of the simu-
lation. Unlike conventional GL simulations, where the force
is given by the derivative of a phenomenological energy func-
tional, here the force is computed by solving the equilibrium
electron liquid of HSDW at each time step; or equivalently, the
effective energy functionalEeff ({mi}) = 〈HSDW〉 is obtained by
integrating out electrons on the fly. Our method is thus similar
to the so-called quantum molecular dynamics (MD) simula-
tions [29], in which the interatomic force is computed by solv-
ing the quantum electron Hamiltonian, instead of being derived
from a phenomenological classical potential [30]. Drawing on
this analogy with MD simulations, our approach can be viewed
as a quantum GL method for SDW. Interestingly, the quantum
MD method in conjunction with the functional integral the-
ory has already been employed to obtain complex magnetic
orderings in itinerant magnet compounds in the past [31].

The GL method is particularly powerful when combined
with our recently developed kernel polynomial method (KPM)
and its gradient transformation in which forces acting on all
spins can be efficiently computed [27,28]; see Appendix A for
more details. The resulting linear-scaling KPM-GL method
allows us to simulate large lattices with N � 105 to 106 sites.
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FIG. 1. Phase diagram of the half-filled triangular-lattice Hubbard
model with NN hopping t . With increasing Hubbard repulsion,
the four different phases are as follows: a paramagnetic metal, an
incommensurate spiral metal, a collinear commensurate zigzag SDW,
and the 120◦ order. (a) average spin length 〈|m|〉 as a function of
U/t . The two commensurate SDW phases, collinear zigzag and 120◦

orders, are shown in (b) and (c), respectively.

We apply the KPM-GL simulations to the triangular-lattice
Hubbard model as a benchmark. The phase diagram shown in
Fig. 1 agrees very well with those obtained by holon-doublon
mean field [32] and the rotational-invariant slave-boson (SB)
[33] calculations. Note that the SB method [34] describes both
large and small U regimes, and shows quantitative agreement
with QMC over a wide range of interaction and doping for the
square-lattice Hubbard model [35].

At large U , our simulation finds the expected 120◦ order,
which is the ground state of the Heisenberg Hamiltonian arising
from the strong-coupling limit of the half-filled Hubbard
model. In fact, the semiclassical Hamiltonian Eq. (2) reduces
to the classical Heisenberg spin model in the U/t 	 1 limit.
To see this, we note that any ground state for tij = 0 contains
exactly one electron in each site with its spin locally aligned
with the SDW field mi . The magnitude of the SDW field freezes
at |mi | = 1/2 in this U → ∞ limit because amplitude fluctua-
tions have an energy cost proportional to U . In analogy with the
large U limit of the original Hubbard model, the ground-state
manifold is massively degenerate because each mi can point
in an arbitrary direction. The degeneracy is removed to second
order in tij . The low-energy effective Hamiltonian is obtained
by considering virtual electron hopping processes between two
neighboring sites i and j . The Pauli exclusion principle dictates
that an electron at site i can hop to the neighboring site only
when its spin is antialigned with that of the local moment at
site j . Consequently, the effective hopping constant between
the two neighboring sites is teff

ij = tij 〈χi |χj 〉 = tij sin(θij /2),
where |χi〉 is the local electron spinor eigenstate and θij
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is the angle between the two local moments. At second
order, the energy gain through the virtual electron hopping
produces the effective interaction,

Hij = −2t2
ij sin2(θij /2)

U
= 4t2

ij

U

(
mi · mj − 1

4

)
. (4)

This result corresponds to the classical limit of the S =
1/2 Heisenberg model, implying that the semiclassical SDW
Hamiltonian (2) correctly captures the classical limit of the
half-filled Hubbard model in the strong-coupling regime [36].
A formal derivation of the large-U effective Hamiltonian and
dynamics can be found in Appendix B.

As U is decreased, our simulation shows that the 120◦ order
is replaced by an interesting commensurate collinear SDW
as the ground state [32,33]. The collinear SDW at this inter-
mediate U is still gapped electronically and exhibits a zigzag
structure. By computing the electron density of states (DOS),
we find a metal-insulator transition at Uc2 between an incom-
mensurate spiral and a commensurate collinear SDW phase
(see Fig. 1). Finally, the metallic spiral SDW undergoes a con-
tinuous transition at into a paramagnetic state at Uc1. We note
in passing that the metal-insulator transition, obtained with
other numerical techniques (e.g., path-integral renormalization
group method [37]), is entirely within the paramagnetic regime
[37,38], implying the existence of a paramagnetic insulator (or
spin liquid) at intermediate U values. This state cannot be ob-
tained with our semiclassical approach because it is stabilized
by strong fluctuations of the HS fields along the imaginary time
axis. However, the existence of this phase remains to be settled.
Recent variational QMC [39] and DMFT [40] calculations
show that spiral SDW is more favorable than the spin liquid
phase. Nonetheless, if a magnetic phase is stabilized by, e.g.,
applying a magnetic field, we expect the incommensurate and
collinear SDWs obtained here to be strong candidates.

II. SEMICLASSICAL DYNAMICS
AND LANDAU-LIFSHITZ EQUATION

Having demonstrated that the semiclassical Hamiltonian
HSDW provides a viable approach to equilibrium SDW phases,
a natural question is whether we can use it to study the
SDW dynamics. To this end, we need to reintroduce physical
dynamics to the “static” auxiliary SDW field. We first note that
the spin-fermion HamiltonianHSDW can also be obtained from
a Hartree-Fock decoupling of the interaction term that varies
from one site to another. The important difference relative to the
HS approach is that the SDW field satisfies the self-consistent
condition mi = 〈si〉 = Tr(ρ si), where ρ is the density matrix
characterizing the physical electron state. Consequently, the
field mi belongs to the sphere of radius 1/2 (0 � |mi | � 1/2).

To derive the time dependence of the SDW field, we start
with the continuity equation associated with the total spin
conservation: dsi/dt = − ∑

j Jij , where si = 1
2c

†
iασ αβciβ is

the electron spin, and Jij = −i
tij
2 σ αβ(c†iαcjβ − c

†
jαciβ) is the

spin current density on bond 〈ij 〉. We then introduce the single-
particle density matrix ρ with elements ρiα,jβ ≡ 〈c†jβ ciα〉.

Taking the average of the continuity equation leads to

dmi

dt
= − i

2

∑
j

tijσ βα(ρiα,jβ − ρjα,iβ ). (5)

The SDW dynamics is thus related to the time evolution
of the density matrix ρ, which obeys the von Neumann
equation dρ/dt = i[ρ,H eff ]. Up to a constant, H eff is the
effective single-electron Hamiltonian defined as HSDW =∑

iα,jβ H eff
iα,jβ c

†
iαcjβ . Using Eq. (2), we obtain the equation

of motion,

dρiα,jβ

dt
= i(tik ρkα,jβ − ρiα,kβ tkj )

+ iU (mi · σ αγ ρiγ,jβ − ρiα,jγ σ γβ · mj ). (6)

The electron density matrix is partly driven by the time-varying
SDW field. Equations (5) and (6) comprise a complete set of
coupled ordinary differential equations for the SDW dynamics.
An alternative is to dispense of Eq. (5) and substitute mi(t) =
1
2ρiα,iβ (t)σ βα in Eq. (6), giving rise to a set of nonlinear
differential equations for ρ.

In general, time dependence of physical quantities in mean-
field approaches can be obtained using the Dirac-Frenkel
variational principle [41,42]. Our derivation here, on the other
hand, is based on the spin density continuity equation, hence
emphasizing the importance of conservation laws in physical
dynamics. This physically intuitive approach can be easily
generalized to obtain dynamics for other symmetry-breaking
phases. Finally, we note in passing that the finite tempera-
ture extension of the semiclassical SDW dynamics will be
discussed elsewhere [51].

Our approach to SDW dynamics here is essentially a
real-space formulation of the time-dependent Hartree-Fock
(TDHF) method [43,44], similar to the familiar time-dependent
Bogoliubov–de Gennes equation for superconductors or
Bose condensates [45,46]. Assuming that the order parame-
ters are characterized by well-defined momenta, e.g., mi =∑

r Mr exp(iQr · ri), the above equations can be simplified
due to the translation invariance. The problem is then re-
duced to a set of coupled differential equations for density-
matrix elements nαβ(k,t) ≡ 〈c†kα ckβ〉 and gr

αβ(k,t) ≡ (Mr ·
σ αβ)〈c†kαck+Qr ,β

〉 in momentum space. This mean-field ap-
proximation of TDHF has recently been applied to the out-of-
equilibrium dynamics of BCS-type superconductors [46,47],
and of Néel-type SDW [48–50]. Since the order-parameter
field Mr is assumed to be uniform, spatial inhomogeneity
and/or fluctuations are ignored in such k-space approaches. Our
formulation here does not require the prerequisite knowledge
of ordering patterns, and are particularly capable of simulating
complex symmetry-breaking phases, inhomogeneous configu-
rations, and disordered phases with preformed local moments,
such as the paramagnetic state in the large U limit.

The SDW dynamics Eq. (5) can be simplified in the
large U limit in the so-called adiabatic approximation, which
assumes that electrons quickly relax to the ground state of
the instantaneous SDW configuration {mi}. Using second-
order perturbation theory, one readily computes the average

spin current: 〈Jij 〉 = 4t2
ij

U
mi × mj . Substituting this into the

right-hand side of Eq. (5) gives rise to a Landau-Lifshitz (LL)
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equation,

dmi

dt
= −

∑
j

4t2
ij

U
mi × mj , (7)

with an effective torque computed using the Heisenberg ex-
change of Eq. (4). More details can be found in Appendix B.

For intermediate and small U/t values, one needs to solve
the von Neumann equation. Since the number of independent
density-matrix elements is of order O(N2) for a lattice of N

spins, the computational cost of integrating the von Neumann
equation is tremendous for large lattices, e.g., N ∼ 105. To
further simplify the numerical calculation, here we derive
the SDW dynamics in a similar adiabatic limit for arbitrary
U . Formally, we employ the multiple-time-scale method [52]
and introduce an adiabaticity parameter ε ∼ |dm/dt | such
that the fast (electronic) and slow (SDW) times are τ = εt

and t , respectively. The single-particle Hamiltonian varies
with the slow time, i.e., H eff ({mi}) = H eff (τ ). Expanding
the density matrix in terms of the adiabaticity parameter:
ρ(t) = ρ(0)(τ ) + ερ(1)(t,τ ) + ε2ρ(2)(t,τ ) + · · · , and plugging
it into the von Neumann equation, we obtain [ρ(0),H eff ] = 0
and dρ(�)

dt
− i[ρ(�),H eff ] = − dρ(�−1)

dτ
for � � 1. This provides a

systematic approach to obtain the time dependence of the
density matrix.

Here we use the leading adiabatic solution ρ(0) to compute
the expectation value of the spin-current density Jij , which is
the right-hand side of Eq. (5). We first write H eff = T + �

where Tiα,jβ = −tij δαβ is the tight-binding Hamiltonian and
�iα,jβ = −Uδij mi · σ αβ is the spin-fermion coupling. It is
then straightforward to show that Eq. (5) is simply dmi/dt =
iσ αβ[ρ,T ]iβ,iα/2. Using the adiabatic equation [ρ(0),H eff ] =
0, we have [ρ(0),T ] = −[ρ(0),�], which gives

dmi

dt
= − iU

2
σ αβ

[(
σ βγ ρ

(0)
iγ,iα − ρ

(0)
iβ,iγ σ γα

) · mi

]
. (8)

The right-hand side of the above equation can be further
simplified using the properties of Pauli matrix multiplication:
σaσ b = δabI2×2 + iεabcσ

c, where a,b,c are x,y,z. For exam-
ple, σ αβ(σ βγ · mi)ρ

(0)
iγ,iα = n

(0)
i mi + imi × σ αβρ

(0)
iβ,iα , where

n
(0)
i = ρ

(0)
iα,iα is the local electron density. After some algebra,

we obtain

dmi

dt
= Umi × σ βα ρ

(0)
iα,iβ = −mi × ∂〈HSDW〉

∂mi

. (9)

The second equality comes from the fact that ρ(0) is computed
from the equilibrium electron liquid described by HSDW. The
local electron spin 〈si〉 = 1

2 〈c†iασ αβ ciβ〉 = 1
2σ βα ρ

(0)
iα,iβ acts as

an effective magnetic field and drives the slow dynamics of the
SDW field. Importantly, this equation shows that the adiabatic
SDW dynamics is described by the Landau-Lifshitz (LL)
equation [53] with an effective energy functional Eeff ({mi}) =
〈HSDW〉, obtained from the equilibrium electronic state of the
instantaneous spin-fermion Hamiltonian.

A. Benchmark with exact diagonalization

We first benchmark our semiclassical SDW dynamics,
with and without the adiabatic approximation, against the
exact diagonalization (ED) calculation of the original Hubbard

FIG. 2. Comparison of the dynamical structure factor of the
Hubbard model on a 4 × 4 square lattice for t = 1 and U = 7.33.
(a) The exact diagonalization result at T = 0, where a Lorentzian
broadening factor η = 0.02 is used. (b) The semiclassical SDW
calculation in the adiabatic approximation described by Eq. (9).
(c) The real-space TDHF calculation. For (b) and (c), the temperature
was set T = 10−4 for generating initial configurations, and the results
were averaged over 27 independent runs starting from different initial
configurations.

model. To this end, we apply our formulation to the two-
sublattice collinear Néel state that is obtained for the half-filled
Hubbard model on a square lattice. Since we only include NN
hopping, the Néel ordering is stable for any positive value
of U/|t |. Specifically, as shown in Fig. 2, we compute the
dynamical structure factor S(k,ω) of a 4 × 4 Hubbard cluster
with periodic boundaries for U/t = 7.33. Details of the ED
calculation are discussed in Appendix C. We compare the ED
result at T = 0 and the semiclassical SDW dynamics at an
extremely low temperature (classical moments freeze at T = 0
[54]). We set the temperature at T = 10−4t and verify that
the results do not change upon decreasing the temperature to
T = 10−5, indicating that our results capture the dynamical
response of the classical moments in the T → 0 limit.

For both the real-space TDHF dynamics [Eqs. (5) and (6)]
and the adiabatic dynamics [Eq. (9)], SDW states are first
generated by means of GL-Langevin simulations described
in Sec. I. The obtained spin configurations, which are rep-
resentative of the canonical ensemble, are used as the initial
condition for dynamical simulations. The dynamical structure
factor,S(k,ω), is calculated by applying the space-time Fourier
transform to the time evolution of the auxiliary field mi(t). In
the SDW dynamics, the elastic peak has a finite width for finite

035120-4



SEMICLASSICAL DYNAMICS OF SPIN DENSITY WAVES PHYSICAL REVIEW B 97, 035120 (2018)

duration of the dynamical simulation [not shown in Figs. 2(b)
and 2(c)]. The area under the elastic peak is proportional to
N〈mi〉2, where N is the number of sites. In contrast, the lowest
energy peak of the exact result appears at a small but finite
frequency arising from quantum fluctuations neglected by the
semiclassical treatment (the exact ground state is a singlet state
for a finite size system). This quasielastic peak becomes the
elastic peak of the spontaneously broken symmetry state in
the thermodynamic limit. In Fig. 2, we normalize the spectral
weights obtained from the SDW dynamics so that the total
weight of inelastic peaks equals that obtained from the ED
excluding the quasielastic peak.

The low-energy spectrum of the original Hubbard model
is not well described by a simple effective spin Hamiltonian
for U/|t | = 7.33 (charge fluctuations can strongly renormalize
the spin-wave dispersion). It is then quite remarkable that all
the approaches produce a rather flat magnon dispersion for the
wave vectors included in a 4 × 4 square lattice. However, the
excitation energies in the adiabatic approximation are roughly
25% lower than the exact result (see Fig. 2). This discrepancy
is attributed to two factors: the semiclassical treatment of
the spin degrees of freedom and the adiabatic approximation.
The excitation energies obtained from the real-space TDHF
method are approximately 15% lower than the exact result.
We thus conclude that the adiabatic approximation accounts
for roughly 10% of the discrepancy, while the semiclassical
treatment accounts for the remaining 15%. In addition, the
normalized spectral weights (areas) in both the semiclassical
dynamics are different only approximately 30% from the exact
result. A much better quantitative agreement is expected for
three-dimensional (3D) systems, but their solutions are beyond
the scope of state of the art ED methods.

The real-space TDHF method captures not only the trans-
verse modes, but also the longitudinal mode arising from
charge fluctuations [55]. We note, however, that the method
does not capture the longitudinal spin fluctuations associated
with quantum fluctuations of the magnetic moments. Unlike
charge fluctuations, quantum (magnetic) fluctuations persist
for arbitrarily large U/t (they arise from fluctuations of the
m field along the imaginary time axis). These longitudinal
fluctuations correspond to two-magnon excitations in a 1/S

expansion [56]. Correspondingly, they have an energy of order
J ∝ t2/U for large U/t . In contrast, the longitudinal spin
fluctuations arising from charge fluctuations lead to the high-
energy peaks at ω ∼ U , which are observed in the real-space
TDHF dynamics, as shown in the inset of Fig. 2(c), while they
are absent in the adiabatic dynamics. Nevertheless, as expected
for this value of U/t , the longitudinal mode is well separated
from the transverse modes.

B. 120◦ SDW order in Hubbard and Anderson-Hubbard model

Our benchmark study shows that both the TDHF and
the adiabatic approach provide a reasonable description of
the SDW dynamics. It is worth noting that the linearized
TDHF equation of motion corresponds to the random phase
approximation (RPA) [57–59]. Our real-space formulation of
the TDHF thus provides an efficient and universal numerical
approach to describe nonlinear dynamics beyond the RPA
level. Moreover, our approach allows for computation of

ω
/t

K Γ M
ω
/t

(b)

0.0

0.2
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FIG. 3. Dynamical structure factor S(k,ω) computed using the
semiclassical SDW dynamics equation Eq. (9) for the 120◦ order in
(a) Hubbard model and (b) Anderson-Hubbard model with an on-site
disorder. The lattice size is 120 × 120. The Hubbard parameter is
U = 7.33 and the standard deviation of the on-site disorder is σV =
0.45, in units of NN hopping tnn.

dynamical response functions at any finite temperature, in-
cluding the high-temperature regime in which the magnetic
moments only exhibit short range correlations.

Another unique feature offered by our real-space method
is the capability of computing the dynamical response of
inhomogeneous SDW. To demonstrate this, here we apply
the above adiabatic dynamics Eq. (9) to compute S(k,ω)
for the 120◦ SDW depicted in Fig. 1(c) for the Hubbard
model with quenched disorder. Specifically, we consider the
Anderson-Hubbard model by adding an on-site potential dis-
order

∑
i,α Vi c

†
iαciα to Eq. (2). This model has served as a

canonical platform for investigating the intriguing interplay of
localization and correlations. Relevant to our study here is the
effect of disorder on long-range SDW order. For Néel-type
SDW on a half-filled bipartite lattice, it has been shown that
increasing the disorder first closes the electron spectral gap,
while the SDW remains finite [60]. The disappearance of the
SDW order parameter occurs at a larger disorder [60,61].
This result is relevant to the nonequilibrium dynamics to be
discussed below.

We first compute the dynamical structure factor for the
pure Hubbard model on a large lattice with N = 120 × 120
sites. The results shown in Fig. 3(a) resemble the linear spin
wave dispersion of the Heisenberg model [62], except for
a significantly renormalized lower-energy branch. Next we
include a Gaussian disorder with zero mean and standard
deviation σV = 0.45 tnn, which is relatively large yet not strong
enough to destroy the SDW order [64]. The S(k,ω) computed
using the adiabatic SDW dynamics is shown in Fig. 3(b). While
the overall dispersion is similar to that of the SDW in the
disorder-free Hubbard model [Fig. 3(a)], there are a few notable
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new features. First, the magnon dispersion is significantly
broadened by the quenched disorder, and the middle of the
low-energy branch is further renormalized. Interestingly, a
rather sharp dispersion remains near the zone center, indicating
that these long-wavelength modes are less sensitive to disorder.
Secondly, several new modes appear at low energies, especially
below the original gap at the M point. Interestingly, similar
disorder-induced low-energy modes are also obtained in the
bi-layer Heisenberg antiferromagnet using the bond-operator
method [63]. A systematic study of the SDW dynamics with
disorder will be left for future studies.

III. NONEQUILIBRIUM DYNAMICS
AT FINITE TEMPERATURES

The adiabatic LL equation can also be used to study
nonequilibrium SDW phenomena as long as the electron
relaxation is much faster than the SDW dynamics. Here we
first generalize the adiabatic dynamics to finite temperatures by
adding dissipation and fluctuations to Eq. (9). It is worth noting
that the adiabatic SDW dynamics preserves the length of local
moments |mi |. Longitudinal spin relaxation and fluctuations
thus come from either higher order terms in the adiabatic
expansion or other processes beyond the self-consistent field
approach. The standard Gilbert damping also preserves the spin
length [65]. Instead, here we combine the Ginzburg-Landau
relaxation discussed in Eq. (3) with the adiabatic dynamics of
Eq. (9) to account for the longitudinal relaxation [25,66]. This
procedure gives rise to the following generalized LL equation,

dmi

dt
= −mi × ∂〈HSDW〉

∂mi

− γ
∂〈HSDW〉

∂mi

+ ξ i(t). (10)

HSDW is the spin-fermion Hamiltonian defined in Eq. (2), γ is
a damping constant, and ξ i is a δ-correlated fluctuating force
satisfying 〈ξ i(t)〉 = 0 and 〈ξμ

i (t)ξν
j (t ′)〉 = 2γ kBT δij δμνδ(t −

t ′). The damping coefficient and the stochastic terms are chosen
such that the dissipation-fluctuation theorem is satisfied and the
above LL equation can be used to faithfully sample the equi-
librium Boltzmann distribution at finite temperatures [68,69].

A microscopic calculation of the damping coefficient γ is
beyond the adiabatic approximation. In the real-space TDHF
method, relaxation of SDW mainly arises from the Landau
damping mechanism, which describes the energy transfer from
the collective SDW mode to single-particle excitations [50,67].
Electron-electron scattering, which is not captured by the
TDHF, also contributes to the damping of SDW, especially
in ultrafast dynamics of metals [70,71]. Moreover, for open
systems as in most pump-probe experiments, coupling of
electrons to other degrees of freedom [72,73], such as phonons,
also play an important role in the relaxation of SDW dynamics.
Here γ is treated as a phenomenological parameter which we
chose to ensure the adiabatic approximation.

That the SDW field obeys the LL dynamics can be under-
stood intuitively from the fact that the Heisenberg equation
of motion for spin operators corresponds to the classical LL
equation [68]. Here we give a microscopic derivation starting
from the Hubbard model, which reveals the condition for the
validity of the LL dynamics (adiabatic approximation of the
von Neumann equation). In fact, the adiabatic approximation
has been widely employed for spin dynamics in the context of

time-dependent spin-density-functional theory [74–76]. Our
results thus provide a theoretical foundation for the LL dy-
namics of SDW, and pave the way for systematic improvements
beyond the adiabatic approximation.

It is worth noting that, in contrast to the conventional LL
method, the energy functional in our approach is obtained by
solving the spin-fermion Hamiltonian HSDW at each time step.
In analogy with the quantum MD simulations [29], our numer-
ical scheme can then be viewed as a quantum LL dynamics
(QLLD) method. Although solving the electron Hamiltonian
on the fly is computationally expensive, large-scale (N ∼ 105)
QLLD simulations are enabled by our recently developed KPM
algorithm with automatic differentiation, such that the “forces”
can be computed along with the total energy without extra
overhead [27,28]; see Appendix A for more details.

We next apply our stochastic QLLD method to investigate
the time evolution of a topological SDW on the triangular
lattice that arises as a weak-coupling instability at filling
fraction n = 3/4 [77]. The combination of a van Hove singu-
larity and perfect Fermi surface nesting at this filling fraction
gives rise to a magnetic susceptibility that diverges as χ (q) ∝
log2 |q − Qη|, where Qη (η = 1,2,3) are the three nesting wave
vectors [77]. The system thus tends to develop a triple-Q
SDW characterized by three vector order parameters: mi =
�1e

iQ1·ri + �2e
iQ2·ri + �3e

iQ3·ri . Note that the phase factors
eiQη ·ri = ±1. In general, there are four distinct local moments,
leading to a quadrupled magnetic unit cell. The SDW instability
of the triangular-lattice Hubbard model at n = 3/4 filling is
similar to that of the half-filled Hubbard model on the square
lattice. However, unlike the simple Néel order in the later case,
there are several possible triple-Q SDWs [27,78].

At the lowest temperatures, the magnetic ordering consists
of a noncoplanar SDW with |�1| = |�2| = |�3| and �1 ⊥
�2 ⊥ �3 [77–79]. This SDW is also called a tetrahedral or
all-out order as spins in the unit cell point to the four corners
of a regular tetrahedron [77]; see Fig. 4(a). Moreover, as
the spins on each triangular plaquette are noncoplanar, the
resulting nonzero scalar spin chirality mi · mj × mk = ±4�3

also breaks the parity symmetry. Consequently, the tetrahedral
SDW is also characterized by a discrete Z2 chirality order
parameter. More importantly, electrons propagating in this
noncoplanar SDW acquire a nonzero Berry phase, which is
equivalent to a uniform magnetic field. Since the Fermi surface
is gapped out by the SDW, the resulting electron state exhibits a
spontaneous quantum Hall effect with transverse conductance
σxy = ±e2/h [77,79].

Motivated by a recent pump-probe experiment on the ultra-
fast SDW dynamics in chromium [80], we perform simulations
of this topological SDW subject to a short heat pulse. For
simplicity, we assume that the effect of the pump pulse is to
inject energy to the electron system, which quickly equilibrates
to a state characterized by temperature Te. This is consistent
with our adiabatic approximation for the SDW dynamics. The
time dependence of the effective electron temperature is gov-
erned by the rate equation CdTe/dt = −G(Te − TL) + Q(t)
[81], where C is the heat capacity of the electron liquid, G

is the coupling to the lattice, TL is the lattice temperature, and
Q(t) ∝ exp[−(t − tp)2/w2] is the heat source due to the pump
pulse. We further assume that TL ≈ 0 throughout the relaxation
process. The resultant Te(t) curve is shown in Fig. 4(b).

035120-6



SEMICLASSICAL DYNAMICS OF SPIN DENSITY WAVES PHYSICAL REVIEW B 97, 035120 (2018)

FIG. 4. (a) Configuration of the topological triple-Q SDW with a
quadrupled unit cell; the four spins in the unit cell point to corners of
a regular tetrahedron. (b) Time dependence of the effective electron
temperature. Also shown is the pump pulse with a Gaussian profile:
Q(t) ∝ e−(t−tp )2/w2

, where tp = 15, and w = 5, in units of 1/tnn. The
green dashed line marks the equilibrium transition temperature of
the tetrahedral SDW. (c) The SDW order parameter M, average
normalized scalar spin chirality χ�, standard deviation of the scalar
chirality σχ� , and the electron energy gap εgap as a function of time.
Both M and εgap are normalized to its maximum value. (d) The
transverse and longitudinal conductivity (normalized to the quantized
e2/h) as a function of time. The (green) shaded area indicates the
temporal window when the electronic gap is closed.

Te(t) is then used for the stochastic noise ξ (t) in our
QLLD simulations of Eq. (10). We use the parameters, U = 3,
damping γ = 0.1, G/C = 0.02, tp = 15, and w = 5, in units
of the NN hopping tnn. The lattice size is N = 1202. Figure 4(c)
shows the evolution of the magnetic order parameter at the
nesting wave vectors: M =

√
|�1|2 + |�2|2 + |�3|2 normal-

ized to its maximum. We also estimate the time dependence
of the electron spectral gap εgap from the instantaneous DOS
[see Fig. 4(c)]. Interestingly, as the temperature rises, the
decline of M is rather slow compared with the closing of

the energy gap. In fact, the SDW order parameters �η remain
finite throughout the process, while the gap closes quickly after
the photoexcitation (at t ≈ 12). In equilibrium the SDW order
parameters disappear along with the gap above the transition
temperature [82], implying that the photoexcited SDW is in a
highly nonequilibrium transient state. As the system relaxes,
the gap reopens at a later time [see Fig. 4(c)].

This picture is further supported by our calculation of in-
stantaneous longitudinal and transverse conductivities shown
in Fig. 4(d). Here we use KPM to compute the Kubo-Bastin
formula for the conductivities [83,84]. The error bars are
estimated from five independent simulations. The electrons
exhibit a negligible longitudinal conductivity σxx ≈ 0 and a
quantized Hall conductivity σxy = e2/h in the gapped regimes,
as expected for this topological SDW. On the other hand,
the longitudinal conductivity increases significantly during the
period of vanishing gap, while the transverse conductance
decreases and exhibits small oscillations in the vicinity of the
gap-closing transitions.

The closing and subsequent re-opening of the SDW gap
have been reported in a recent pump-probe experiment on
chromium [80]. The ultrafast SDW dynamics seem to be well
described by a model that assumes a thermalized electron gas.
However, the closing of the gap is assumed to be always ac-
companied by the disappearance of the SDW order parameter
in Ref. [80], which is not necessarily the case. As demonstrated
in our simulations, an out-of-equilibrium electron state might
be gapless while the spin density remains modulated. Indeed,
similar pump-probe experiments on the charge density wave
(CDW) have revealed a fast collapsing of electronic gap in
the time-resolved photoemission spectroscopy [85,86], and a
reduced, yet finite, modulation of charge density inferred from
core-level x-ray photoemission [87] during the nonequilibrium
melting process. Numerical simulations taking into account
coupling to the lattice distortion showed that the CDW order
parameter can indeed be partially decoupled from the spectral
gap dynamics [88]. However, it should be noted that the lattice
degrees of freedom introduce a new time scale, in addition
to that of the hot electron relaxation. The transient metallic
SDW observed in our simulations is probably due to a different
mechanism.

To understand the origin of this nonequilibrium metallic
SDW, we first note that the electronic gap of this topological
SDW arises from the scalar spin chirality [79]. Indeed, the
electronic gap vanishes for collinear or coplanar triple-Q
SDWs [78,79]. This observation leads us to investigate the
temporal and spatial fluctuations of the scalar chirality. To
this end, we introduce the normalized scalar spin chirality:

χ� = χijk = (mi · mj × mk)/ |m|3 for individual triangular
plaquettes (here the overline indicates average over all trian-
gles). The time dependence of the (spatial) average and the
standard deviation of the scalar chirality χ� are shown in
Fig. 4(c). Interestingly, the average chirality remains finite and
of the same sign, indicating that the chiral symmetry is still
broken in this transient SDW. On the other hand, as shown
in Fig. 4(c), the standard deviation σχ� increases significantly
with T . In fact, the transient gapless regime coincides roughly
with the period when σχ� > χ�, implying that the vanishing
gap is due to thermally induced spatial fluctuations of χijk .

035120-7



CHERN, BARROS, WANG, SUWA, AND BATISTA PHYSICAL REVIEW B 97, 035120 (2018)

 1.5  1.8  2.1  2.4  2.7
0

0.2

0.4

0.6

0.8
 
 
 
 

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

(a) (b)

(c)
ρ( )

(d)

0 

1 

2 

3 

-2 -1  0  1  2

 
 
 
 

t = 5
10
25

100

t = 5 t = 40

h(χ )

χ

FIG. 5. (Top panels) Spatial distribution of the normalized pla-
quette scalar spin chirality χ� at time (a) t = 5 and (b) t = 40
from QLLD simulations on a triangular lattice with 120 × 120 sites.
(c) Histogram of the normalized plaquette chirality χ� at varying
simulation time. The corresponding electronic DOS near the Fermi
level are shown in (d).

Our scenario is confirmed by the spatial distribution of the
normalized plaquette chirality at the initial stage (t = 5) and
the gapless regime (t = 40), shown in Figs. 5(a) and 5(b),
respectively. While the chirality is relatively uniform initially
(χ� ∼ 1), noticeable inhomogeneity develops at later times
[see Fig. 5(b)]. Histograms of the plaquette chirality h(χ�) and
the corresponding electron DOS at various simulation times are
shown in Figs. 5(c) and 5(d), respectively. The chirality distri-
bution becomes asymmetric and very broad during the period
of vanishing gap. This transient gapless SDW is similar to the
disorder-induced metallic antiferromagnetic state observed in
the Anderson-Hubbard model [60]. As discussed above, the
plaquette scalar chirality acts as local magnetic field and it
is known that strongly disordered magnetic flux destroys the
quantum Hall effect, in agreement with our simulations. Our
results thus underscore the importance of thermal fluctuations
and spatial inhomogeneity for the nonequilibrium dynamics of
SDW, which have been overlooked in most dynamical studies
of correlated systems.

IV. SUMMARY AND OUTLOOK

We have developed a new theoretical framework for the
semiclassical dynamics of SDW in Hubbard-like models.
Based on a real-space time-dependent Hartree-Fock (TDHF)
method applied to symmetry-breaking phases, our approach
provides a Hamiltonian formulation for the SDW dynamics.
The time evolution of the SDW field is coupled to the
von Neumann equation that describes the dynamics of the
single-electron density matrix. The formulation correctly re-
duces to the Holstein-Primarkoff dynamics of magnons (linear
spin waves) in the large-U limit at half-filling. We further show

that an adiabatic approximation of the von Neumann equation
gives rise to a quantum Landau-Lifshitz dynamics (QLLD) for
the SDW order parameter. Importantly, the energy functional
of the LL equation is computed from an effective spin-fermion
Hamiltonian that is obtained from a Hubbard-Stratonovich
transformation of the original Hubbard model.

Our benchmark study of the Néel order on a half-filled
Hubbard cluster showed that the semiclassical SDW dynamics
agrees reasonably well with the exact diagonalization calcula-
tion. We apply our QLLD simulations to compute the dynam-
ical structure factor of a 120◦ SDW at intermediate values of
U/t on the triangular lattice. While the overall spectrum resem-
bles that obtained using linear spin-wave theory for the large
U/t limit of the Hubbard model (S = 1/2 Heisenberg model),
charge fluctuations produce a significant renormalization of
the low-energy branch. We note that quantum fluctuations,
not included in our approach, can also produce a significant
renormalization of the spin-wave spectrum of frustrated two-
dimensional (2D) models [89–92], like the one considered
here. However, renormalization due to quantum fluctuations
is much smaller in 3D models, whose dynamical structure
factor is typically well described by semiclassical approaches.
Importantly, our real-space approach allows us to include the
effects of spatial inhomogeneities of the SDW on large lattices.
We have demonstrated this unique capability by computing
the dynamical structure factor of the same 120◦ SDW on an
Anderson-Hubbard model with disordered on-site potentials.
Other than significant broadening of the magnon dispersion,
our result shows that the disorder induces many low-energy
modes, especially at the boundary of the Brillouin zone.

Another important application of our QLLD method is the
study of SDW-related nonequilibrium phenomena. Here we
generalize the LL dynamics by including a Langevin-type
damping and the corresponding stochastic noise to account
for longitudinal relaxation and fluctuation. We then apply
the generalized QLLD scheme to study the evolution of
a topological SDW subject to a heat pulse, similar to the
situation in the pump-probe setup. Our simulation shows an
intriguing transient nonequilibrium SDW on the triangular
lattice. While the SDW order parameter decreases with rising
electron temperature, it remains finite even when the electronic
gap is closed. The gap reopens at a later time as the system
relaxes. Since the electronic gap in this topological SDW
originates from the noncoplanar spin configuration, we show
that the vanishing gap is due to strong spatial fluctuations of the
scalar spin chirality, a quantity measuring the noncoplanarity
of plaquette spins. Our real-space QLLD simulations thus
underscore again the importance of spatial inhomogeneity and
thermal fluctuation of the SDW dynamics.

The theoretical framework and numerical method devel-
oped in this paper can be easily generalized to study the
dynamics of other symmetry-breaking phases, notably charge-
density wave and superconductivity. Compared with other
phenomenological methods (e.g., time-dependent Ginzburg-
Landau simulation for superconductors), keeping the electron
degrees of freedom allows us to also look into the instantaneous
electronic structure during the evolution of the order-parameter
field.

Our efficient semiclassical approach can also be feasibly
integrated with a first-principles method such as density func-
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tional theory (DFT) [93–95]. Here we note the analogy with
molecular dynamics (MD) simulations [30]. While classical
MD simulations use phenomenological interatomic potentials,
the quantum or ab initio MD method computes the forces by
solving, e.g., the Kohn-Sham Hamiltonian on the fly [29,96].
The quantum MD methods have proven a powerful tool in
many branches of physical sciences. Our method can be viewed
as the quantum version of the Landau-Lifshitz dynamics.
We envision that the QLLD method combined with DFT
calculation will provide a new approach to SDW dynamics
in realistic materials.

It is worth pointing out that the numerical method presented
here is complementary to DMFT. Both approaches are not
restricted by the sign problem that plagues the QMC methods.
Conventional DMFT ignores spatial correlations from the
outset and focuses on quantum effects or fluctuations along
the imaginary time axis. Spatial correlations are partially
included in recent cluster or real-space generalization of
DMFT [97–100]. Our semiclassical approach, on the other
hand, emphasizes the large-scale simulations in order to fully
take into account the spatial correlations and fluctuations of
the magnetic order parameter. Taking advantage of recent
developments of the efficient electronic structure method, such
as KPM, our scheme is to progressively include the quantum
corrections at each time step of the dynamical simulations. In
developing this method, we are partly motivated by several
recent studies emphasizing the important role of emergent
nanoscale structures in the functionality of strongly correlated
materials [101,102]. Our work here has laid the groundwork
for systematic improvement beyond the adiabatic or TDHF
approximation, which will be left for future studies.
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APPENDIX A: KERNEL POLYNOMIAL METHOD
AND ITS GRADIENT TRANSFORMATION

The kernel polynomial method (KPM) [83] and the tech-
nique of automatic differentiation [27,28] are crucial to our
implementation of efficient QLLD simulations. Here we briefly
review these numerical techniques. Conventional KPM pro-
vides an efficient approach to computing the system free-
energy F . However, central to our QLLD simulations is the
calculation of the “forces” acting on spins, ∂F/∂mi , where
the effective energy functional is calculated from the quadratic
fermion Hamiltonian, F = 〈HSDW〉. Specifically, the force is

∂F
∂mi

= −U 〈si〉 = −U

2
ρiα,iβ σ βα. (A1)

Computing the force is thus equivalent to evaluating the
single-particle density matrix ρiα,jβ . We first introduce the
single-particle Hamiltonian Hiα,jβ such that the quadratic
spin-fermion Hamiltonian is expressed as (up to a term that
is independent of fermions)

HSDW =
∑
iα,jβ

Hiα,jβc
†
iα cjβ =

∑
IJ

HIJ c
†
I cJ . (A2)

Here we have introduced notation I = (i,α), J = (j,β), . . . for
simplicity. The density matrix is then given by the derivative,

ρIJ = 〈c†J cI 〉 = ∂F
∂HIJ

. (A3)

Next we outline the KPM procedure for computing the free
energy which is expressed in terms of the DOS as F =∫

ρ(ε) f (ε)dε, where f (ε) = −T log[1 + e−(ε−μ)/T ]. KPM
begins by approximating the DOS as a Chebyshev polynomial
series,

ρ(ε) = 1

π
√

1 − ε2

M−1∑
m=0

(2 − δ0,m)μm Tm(ε), (A4)

where Tm(x) are Chebyshev polynomials, and μm are the
expansion coefficients. The expansion is valid only when all
eigenvalues of HIJ have magnitude less than one. This can in
general be achieved through a simple shifting and rescaling of
the Hamiltonian. Moreover, damping coefficients gm are often
introduced to reduce the unwanted artificial Gibbs oscillations.
Substituting ρ(ε) into the free energy expression gives

F =
M−1∑
m=0

Cm μm, (A5)

where coefficientsCm = (2 − δ0,m)gm

∫ 1
−1

Tm(ε)f (ε)
π

√
1−ε2 dε are inde-

pendent of the Hamiltonian and may be efficiently evaluated
using Chebyshev-Gauss quadrature.

The key step of KPM is to replace computation of the
Chebyshev moments μm = Tr Tm(H ) by an ensemble aver-
age μm = 〈Tm(H )〉 = 1

R

∑R
�=1 r

†
�Hr� over random normalized

column vectors r [103]. Taking advantage of the recursive re-
lation of Chebyshev polynomials, Tm(H ) = 2H · Tm−1(H ) −
Tm−2(H ), the moments can be evaluated recursively as follows:

μm = r† · αm, (A6)

where r is a random vector with complex elements drawn from
the uniform distribution |rI |2 = 1. The random vectors αm are
given by

αm =
⎧⎨
⎩

r, m = 0
H · r, m = 1
2H · αm−1 − αm−2, m > 1

. (A7)

The above recursion relation also indicates that evaluation of
μm that is required for computing F only involves matrix-
vector products. For sparse matrix H with O(N ) elements,
this requires only O(MN ) operations, where M is the number
of Chebyshev polynomials. On the other hand, even with the
efficient algorithm for F , a naive calculation of the derivatives
∂F/∂HIJ based on finite difference approximation is not only
inefficient but also inaccurate. The computational cost of finite
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difference is similar to the KPM-based Monte Carlo method
with local updates.

To circumvent this difficulty, we employ the technique
of automatic differentiation with reverse accumulation [104].
Instead of directly using Eq. (A5), the trick is to view F as a
function of vectors αm and write

∂F
∂HIJ

=
M−1∑
m=0

∂F
∂αm,K

∂αm,K

∂HIJ

. (A8)

Here αm,K denotes the Kth component of vector αm, and
summation over the repeated index K is assumed. Using
Eq. (A7), we have

∂α0,K

∂HIJ

= 0,
∂α1,K

∂HIJ

= δIK α0,J ,

∂αm,K

∂HIJ

= 2δIK αm−1,J (m > 1). (A9)

The expression of ∂F/∂HIJ can be simplified by introducing
a new set of random vectors:

βm ≡ ∂F
∂αm+1

. (A10)

From Eqs. (A8) and (A9), we obtain

∂F
∂HIJ

= β0,I α0,J + 2
M−2∑
m=1

βm,I αm,J . (A11)

Remarkably, the vectors βm can also be computed recursively.
To this end, we note that the recursion relation (A7) implies
that F depends on αm through three paths:

∂F
∂αm,K

= ∂F
∂μm

∂μm

∂αm,K

+ ∂F
∂αm+1,L

∂αm+1,L

∂αm,K

+ ∂F
∂αm+2,L

∂αm+2,L

∂αm,K

. (A12)

The various terms above can be straightforwardly calculated:

∂F
∂μm

= Cm,
∂μm

∂αm,K

= r∗
K,

∂αm+1,L

∂αm,K

= 2HLK,
∂αm+2,L

∂αm,K

= −δLK. (A13)

Consequently,

βm = Cm+1 r† + 2βm+1 · H − βm+2, (m < M − 1) (A14)

Restoring the site and spin indices, we obtain the following
expression for the density matrix:

ρiα,jβ = β0,iα α0,jβ + 2
M−2∑
m=1

βm,iα αm,jβ . (A15)

As in standard KPM, there are two independent sources of
errors in our method [27,83]: the truncation of the Chebyshev
series at order M − 1, and the stochastic estimation of the
moments using finite number R of random vectors. The per-
formance of the stochastic estimation can be further improved
using correlated random vectors based on the probing method
[105]. Most simulations discussed in the main text were done
on a 120 × 120 triangular lattice. The number of Chebyshev

polynomials used in the simulations is in the range of M =
1000 to 2000. The number of correlated random vectors used
is R = 64 to 144.

APPENDIX B: LARGE-U LIMIT: FORMAL DERIVATION

Here we present a formal derivation of the effective SDW
Hamiltonian in the large-U limit, which is expected to be
equivalent to that of the original Hubbard model. Our first
step is to write the spin-fermion Hamiltonian Eq. (2) in a new
reference frame, such that the local quantization axis of site
i coincides with the direction of the SDW field. Let mi =
|mi |(sin θi cos φi, sin θi sin φi, cos θi), the fermionic operators
in the new reference frame are

c̃
†
i,+ = e−iφi/2 sin(θi/2) c

†
i,↓ + eiφi/2 cos(θi/2) c

†
i,↑,

c̃
†
i,− = e−iφi/2 cos(θi/2) c

†
i,↓ − eiφi/2 sin(θi/2) c

†
i,↑. (B1)

The inverse transformation is

c
†
i,↑ = e−iφi/2 cos(θi/2) c̃

†
i,+ − e−iφi/2 sin(θi/2) c̃

†
i,−,

c
†
i,↓ = e+iφi/2 sin(θi/2) c̃

†
i,+ + e+iφi/2 cos(θi/2) c̃

†
i,−. (B2)

We separate the spin-fermion Hamiltonian into two parts
HSDW = T + U . The kinetic hopping term can be re-expressed
in the new reference frame as

T = −
∑
〈ij〉

∑
μν=±

tij
(
η

μν

ij c̃
†
iμ c̃jν + H.c.

)
, (B3)

where

η++
ij = + cos

(
φj − φi

2

)
cos

(
θj − θi

2

)

+ i sin

(
φj − φi

2

)
cos

(
θj + θi

2

)
,

η+−
ij = − cos

(
φj − φi

2

)
cos

(
θj − θi

2

)

− i sin

(
φj − φi

2

)
cos

(
θj + θi

2

)
,

η−+
ij = − cos

(
φj − φi

2

)
cos

(
θj − θi

2

)

+ i sin

(
φj − φi

2

)
cos

(
θj + θi

2

)
,

η−−
ij = + cos

(
φj − φi

2

)
cos

(
θj − θi

2

)

− i sin

(
φj − φi

2

)
cos

(
θj + θi

2

)
. (B4)

To derive the effective Hamiltonian, we use the standard per-
turbation approach by treating the hopping T as a perturbation
to the coupling term,

U = −U
∑

i

|mi |(c̃†i,+c̃i,+ − c̃
†
i,−c̃i,−) + U

∑
i

|mi |2. (B5)
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For convenience, we first introduce the resolvent ofU : Ĝ0(ε) =
1/(ε − U ). The effective Hamiltonian up to second order in tij
is given by

Heff = P T Ĝ0(ε0)T P, (B6)

where P is a projector onto the lowest energy subspace with
one electron per site whose spin is parallel to local moment
mi , and ε0 = −NU/4 is the energy of the degenerate large-
U ground state (N is the number of lattice sites). Then, in
the new reference frame, the only processes contributing to
Heff are the spin-flip hoppings which annihilate electrons with
spin μ = + and create electrons in a difference site with spin
μ = −. Given that each state of the lowest energy subspace is
fully characterized by the field configuration {mi}, the effective
Hamiltonian can be expressed in terms of the SDW field:

Heff = −
∑
〈ij〉

t2
ij

U
(|η−+

ij |2 + |η+−
ij |2)

=
∑
〈ij〉

t2
ij

U
[1 − sin θi sin θj cos(φi − φj ) − cos θi cos θj ]

=
∑
〈ij〉

4t2
ij

U

(
mi · mj − 1

4

)
, (B7)

which is the expected Heisenberg exchange interaction for
spin-1/2 in the large U limit [36].

We next derive the dynamics equation in the large-U limit,
which is given by the Landau-Lifshitz equation. To this end,
we first consider the Heisenberg equation of motion for local
spin operator dsi/dt = −i[si ,HH]. Here si = 1

2c
†
iασ αβciβ , and

HH is the Hubbard Hamiltonian. Expressing the on-site U

interaction in terms of spin operators, it is given by

HH = −
∑
〈ij〉,α

tij (c†iαcjα + H.c.) − 2U

3

∑
i

s2
i + NeU

2
,

(B8)

where Ne is the number of electrons. Obviously, the U term
of the Hubbard Hamiltonian commutes with the spin operator,
and we have dsi/dt = −i[si ,T ]. For example, we consider
the z component first. Using commutation relations [sz

i ,c
†
i,↑] =

1
2c

†
i,↑ and [sz

i ,c
†
i,↓] = − 1

2c
†
i,↓, we have

−i
[
sz
i ,(c

†
iαcjα + c

†
jαciα)

]

= − iσα

2
(c†iαcjα − c

†
jαciα)

= − i

2

(
c
†
iασ̂ z

αβ cjβ − c
†
jασ̂ z

αβ ciβ

)
. (B9)

Here σα = ±1 for α = ↑,↓, respectively. Summing over re-
peated indices is also implied. The equation for the x and y

components of si can be obtained by applying π/2 rotations to
this equation. We have

dsi

dt
= −

∑
j

Jij , (B10)

where we have defined the spin current density operator Jij .

Jij = − iσ αβ

2
(c†iαcjβ − c

†
jαciβ). (B11)

It is worth noting that Eq. (B10) is simply the continuity
equation for the spin density. Taking the expectation value with
respect to the ground state gives rise to the equation of motion
for the SDW field,

dmi

dt
= −

∑
j

〈Jij 〉. (B12)

Next we compute the expectation value of Jij in the large U

limit. In the t/U → 0 limit, obviously 〈Jij 〉 = 0. A nonzero
contribution comes from the second-order perturbation due to
electron hopping. The procedure is similar to what we did to
derive the effective Hamiltonian. Specifically, we project the
spin current operator into the degenerate low-energy manifold
of HSDW with the electronic eigenstates corrected up to first
order in the perturbation. For the z component, we have〈

J z
ij

〉 = 1
2

[
PJ z

ijG0(ε0)T P + PT G0(ε0)J z
ijP

]
. (B13)

Once again, it is convenient to work in the new reference frame.
For example, the current density operator,

J z
ij = − itij

2

∑
μν=±

(
τ

μν

ij c̃
†
iμ c̃jν − (

τ
μν

ij

)∗
c̃
†
jν ciμ

)
. (B14)

Here we have introduced

τ++
ij = + cos

(
φj − φi

2

)
cos

(
θj + θi

2

)

+ i sin

(
φj − φi

2

)
cos

(
θj − θi

2

)
,

τ+−
ij = − cos

(
φj − φi

2

)
cos

(
θj + θi

2

)

− i sin

(
φj − φi

2

)
cos

(
θj − θi

2

)
,

τ−+
ij = − cos

(
φj − φi

2

)
cos

(
θj + θi

2

)

+ i sin

(
φj − φi

2

)
cos

(
θj − θi

2

)
,

τ−−
ij = + cos

(
φj − φi

2

)
cos

(
θj + θi

2

)

− i sin

(
φj − φi

2

)
cos

(
θj − θi

2

)
. (B15)

Using expressions (B14) and a similar one for the kinetic term
Eq. (B3), we obtain

〈
J z

ij

〉 = − it2
ij

U
{[τ−+

ij (η−+
ij )∗ − (τ−+

ij )∗η−+
ij ]

+ [τ+−
ij (η+−

ij )∗ − (τ+−
ij )∗η+−

ij ]}. (B16)
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Using the definitions for τ
μν

ij and η
μν

ij , it can be shown that

[τ−+
ij (η−+

ij )∗ − (τ−+
ij )∗η−+

ij ]

= [τ+−
ij (η+−

ij )∗ − (τ+−
ij )∗η+−

ij ]

= 2i sin(φj − φi)

[
sin2

(
θj + θi

2

)
− sin2

(
θj − θi

2

)]

= 2i sin(φj − φi) sin θi sin θj . (B17)

In terms of the SDW field mi , the right-hand side of the above
equation is 2i m̂i × m̂j · ẑ, where m̂i is a unit vector along the
local moment direction. Using the fact that |mi | = 1/2 in the
large U limit at half-filling, this result indicates the following
vector identity for the spin current,

〈Jij 〉 = 4t2
ij

U
mi × mj . (B18)

Substituting this into Eq. (B12) gives the well-known Landau-
Lifshitz equation of motion (7) in the main text for the
Heisenberg exchange Hamiltonian.

APPENDIX C: EXACT DIAGONALIZATION
CALCULATION OF DYNAMICAL STRUCTURE FACTOR

Here we provide details of the exact diagonalization (ED)
calculation of the Hubbard model on a 4 × 4 square lattice
with the periodic boundary condition (PBC). For simplicity,
we consider the case where SU (2) symmetry is conserved in
the model, which leads to S(q,ω) = 3Szz(q,ω).

To calculate Szz(q,ω) at T = 0, we first obtain the ground
state |�0〉 in the total Sz = 0 sector at half-filling, by using
the implicitly restarted Arnoldi method provided through the
ARPACK libary [106]. The dynamical structure factor can be
expressed through the fluctuation-dissipation theorem:

Szz(q,ω) = −2Imχzz(q,ω)

= −2〈�0|Sz
qS

z
−q |�0〉

× Im〈φ0|(ω + iη + E0 − H )−1|φ0〉, (C1)

where |φ0〉 ≡ Sz(−q)|�0〉/
√

〈�0|Sz
qS

z
−q |�0〉, and E0 is the

ground-state energy, H |�0〉 = E0|�0〉.

The matrix inverse (z − H )−1 can be calculated through the
Lanczos algorithm [107,108]:

Algorithm 1: Lanczos algorithm

Input : |φ0〉 = Sz(−q)|�0〉/
√

〈�0|Sz
qS

z
−q |�0〉, b0 = 0

1 for j = 0,1,2, . . . do

2 |wj 〉 = H |φj 〉 − bj |φj−1〉;
3 aj = 〈wj |φj 〉;
4 |wj 〉 = |wj 〉 − aj |φj 〉;
5 bj+1 = √〈wj |wj 〉;
6 |φj+1〉 = |wj 〉/bj+1;

7end

In the new basis {|φ0〉,|φ1〉,|φ2〉, . . .}, the Hamiltonian is
expressed by a tridiagonal matrix,

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 b1

b1 a1 b2

b2 a2
. . .

. . .
. . . bn

bn an

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C2)

With Cramer’s rule, the first element of the inverse matrix
can be expressed as a continued fraction,

〈φ0|(z − H )−1|φ0〉 =
⎡
⎣(z − a0) − b2

1

(z − a1) − b2
2

(z−a2)−···

⎤
⎦

−1

,

(C3)

which leads to

Szz(q,ω) = −2〈�0|Sz
qS

z
−q |�0〉

·Im
⎡
⎣(z − a0) − b2

1

(z − a1) − b2
2

(z−a2)−···

⎤
⎦

−1

, (C4)

where z ≡ ω + iη + E0.
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