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Motivated by dimensional crossover in layered organic κ salts, we determine the phase diagram of a system of
four periodically coupled Hubbard chains with frustration at half filling as a function of the interchain hopping
t⊥/t and interaction strength U/t at a fixed ratio of frustration and interchain hopping t ′/t⊥ = −0.5. We cover
the range from the one-dimensional limit of uncoupled chains (t⊥/t = 0.0) to the isotropic model (t⊥/t = 1.0).
For strong U/t , we find an antiferromagnetic insulator; in the weak-to-moderate-interaction regime, the phase
diagram features quasi-one-dimensional antiferromagnetic behavior, an incommensurate spin density wave, and
a metallic phase as t⊥/t is increased. We characterize the phases through their magnetic ordering, dielectric
response, and dominant static correlations. Our analysis is based primarily on a variant of the density-matrix
renormalization-group algorithm based on an efficient hybrid–real-momentum-space formulation, in which
we can treat relatively large lattices albeit of a limited width. This is complemented by a variational cluster
approximation study with a cluster geometry corresponding to the cylindrical lattice allowing us to directly
compare the two methods for this geometry. As an outlook, we make contact with work studying dimensional
crossover in the full two-dimensional system.
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I. INTRODUCTION

How dimensional crossover between one-dimensional and
two-dimensional behavior takes place in antiferromagnetic
spin systems and in fermionic systems with Hubbard inter-
actions is a question that has long been of interest [1–4],
especially in the context of ladder and anisotropic cuprate sys-
tems [5–8] and in Bechgaard salts [9,10]. Recent experimental
investigations of the universality class of the Mott transition
in layered organic charge-transfer salts [11–14] have reopened
the question of dimensional crossover, but with several new
ingredients. The half filled systems are quasi-two-dimensional,
anisotropic, and frustrated. The relative strength of these
ingredients as well as of the relative interaction strength can be
tuned experimentally by changing the molecular composition
of the salts, by applying physical pressure, and by carrying
out chemical substitution. In particular, a Mott metal-insulator
transition (MIT) takes place which can be analyzed very
precisely by measuring the conductivity as a function of
temperature and ambient pressure [15].

On the theoretical side, a relatively simple model that
is thought to capture the essential features of dimensional
crossover is the two-dimensional, anisotropic, frustrated Hub-
bard model at half filling. Note that for the layered organic
κ salts, effective models have been postulated that are based
on the anisotropic triangular lattice [16,17], whereas, for the
Bechgaard and Fabre salts, models based on the anisotropic
square lattice have been postulated [18,19]. Let us nevertheless
first consider what is known about the isotropic square-lattice
case with isotropic frustration. Geometrical frustration can
most easily be introduced by taking the single-band Hubbard
model on a square lattice geometry and adding next-nearest

neighbor hopping terms t ′ in either one (equivalent to the
anisotropic triangular lattice) or in both diagonal directions.
Phase diagrams for both cases have been obtained using
the cluster dynamical mean-field theory (CDMFT) [20] in
Ref. [21], the variational cluster approximation (VCA) [22] in
Refs. [23,24], the path-integral renormalization group (PIRG)
[25] in Refs. [26,27], the density-matrix embedding theory
(DMET) [28] in Ref. [29], and the determinant quantum Monte
Carlo method (DQMC) [30] in Ref. [31]. Mott-insulating,
metallic, antiferromagnetic, and superconducting phases ap-
pear depending on the level of frustration and the interaction
strength. The antiferromagnetic phase further subdivides into
regions of different magnetic ordering characterized by distinct
ordering wave vectors [23,24,27]. Despite the enormous efforts
made, completely conclusive phase diagrams have yet to be
found, and the results obtained by the different methods often
differ in the details. Open questions include the exact deter-
mination of the various magnetic orderings and the existence
and nature of an intermediate phase between the insulating
strong-coupling and the conducting weak-coupling regimes of
the phase diagrams.

We now return to dimensional crossover, i.e., consider
the effect of anisotropy in the couplings in the spatial di-
rections. Here we want to make a clear distinction between
dimensionality and frustration, i.e., be able to treat the two
effects separately. Thus, in the following, we treat the square
lattice geometry with next-nearest-neighbor hopping terms
of equal strength in both diagonal directions. By tuning the
interchain hopping t⊥ the crossover between uncoupled chains
over the “quasi-one-dimensional” case of weakly coupled
chains to the isotropic two-dimensional model can be in-
vestigated [32–35]. In the presence of frustration, the most
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straightforward parametrization is to keep the ratio between
the value of the frustration, t ′, and t⊥ fixed.

A direct motivation for the present work is Ref. [35], in
which quantum critical behavior was identified using quantum
cluster techniques at zero and finite temperature. In particular,
the paramagnetic Mott transition was found to change from a
discontinuous transition at Tc > 0 at large interchain coupling
to a continuous transition at zero temperature for small cou-
pling strengths. In other words, the interchain hopping strength
serves as a tuning parameter to realize a quantum phase transi-
tion when going below a critical value t⊥ c. This is an interesting
starting point for further investigations of quantum critical
behavior, which is seen in the layered organic charge-transfer
salts, in particular, in the temperature-dependent behavior.

The study of Ref. [35], however, has a significant limitation
in that only the paramagnetic case was treated, i.e., the
possibility of magnetic ordering was explicitly excluded.

The goal of the present study is to go beyond this restriction
by utilizing an unbiased numerical method, the density-matrix
renormalization-group (DMRG), and by applying a variation
of the VCA that allows for antiferromagnetic ordering. Since
the variation of the DMRG that we use, which works in a hybrid
of real and momentum space, most efficiently treats lattices
with cylindrical geometry, we focus on them in both methods.
Our study thus addresses the effect of antiferromagnetic
fluctuations and benchmarks the VCA against the numerically
exact hybrid-space DMRG results. Note that our aim here is
not to specifically model the κ salts; to do this one would have
to treat an anisotropic triangular model. Here we investigate
the effect of dimensionality systematically, which is believed to
be—together with frustration—one of the driving mechanisms
of the crossover in these systems. Due to the limitations of the
entropy area law [36], it is exponentially difficult to make the
cylinders wider. Thus, we generically consider cylinders of
width 4 in the following, but also present results for cylinders
of width 5 for selected values of the parameters. In particular,
we study the ground-state properties as a function of the
interaction strength and the anisotropy, fixing the frustrating
hopping element t ′ = −0.5 t⊥, where t⊥ is the interchain
hopping.

The low-energy properties of systems of coupled Hubbard
chains can be treated in weak coupling using a field-theoretical
treatment based on the renormalization group and bosonization
[37–40]. While Ref. [38] does work out a detailed weak-
coupling ground-state phase diagram for the four-chain case, it
does not explicitly treat the half filled case, in which umklapp
processes are relevant, and it does not include next-nearest-
neighbor hopping, which is relevant for us here, in the band
structure; therefore the results are of limited usefulness here.
However, we will discuss relevant features of the four-chain
band structure with next-nearest-neighbor hopping in the
following, with a view to making contact with weak-coupling
treatments.

The paper is organized as follows: the model is introduced in
Sec. II, and details concerning the DMRG and VCA algorithms
used are described in Secs. III and IV, respectively. The results
are presented in Sec. V, which is subdivided into Sec. V A,
DMRG results, and Sec. V B, VCA results. Section VI contains
a detailed discussion of the results and their implications and
Sec. VII concludes.
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FIG. 1. (a) Depiction of the anisotropic Hubbard model on a
square lattice with frustration, indicating the longitudinal hopping
t , which we set to 1, transverse hopping t⊥, and diagonal hopping
t ′. (b) Fermi surface of the noninteracting model at half filling with
0 � t⊥ � 1, and t ′/t⊥ = −0.5. The green, blue, and red lines indicate
t⊥ = 0, t⊥ ≈ 0.622, and t⊥ = 1, respectively.

II. ANISOTROPIC FRUSTRATED HUBBARD MODEL

We treat the anisotropic Hubbard model with frustration,

H = − t
∑

〈r,r′〉‖ σ

c†r σ cr′ σ − t⊥
∑

〈r,r′〉⊥ σ

c†r σ cr′ σ

− t ′
∑

〈〈r,r′〉〉 σ

c†r σ cr′ σ + U
∑

r

nr ↑ nr ↓ , (1)

where c
†
r σ , cr σ , and nr σ = c

†
r σ cr σ are the creation, annihila-

tion, and density operators for lattice site r = (x,y) with spin
σ ∈ {↑, ↓}. As depicted in Fig. 1(a), the amplitudes t , t⊥, and t ′
are for hopping in the longitudinal (i.e., intrachain), transverse
(i.e., interchain), and diagonal directions; 〈r,r′〉‖ and 〈r,r′〉⊥
denote nearest-neighbor pairs of sites in the longitudinal and
transverse directions, respectively, whereas 〈〈r,r′〉〉 denotes
next-nearest-neighbor pairs, here along the diagonals. The
dispersion relation for the infinite lattice then has the form

ε(k) = −2t cos kx − 2t⊥ cos ky − 4t ′ cos kx cos ky, (2)

leading to the noninteracting Fermi surface depicted for vary-
ing t⊥ in Fig. 1(b). We study the model on lattices with
periodic boundary conditions in the transverse direction and
open boundary conditions in the longitudinal directions, i.e.,
on a cylinder geometry. Taking the lattice spacing to be unity,
we denote the length in the longitudinal direction Lx , the
width (in the transverse direction) Ly , and the number of sites
N = Lx Ly .

Since our purpose is to study the influence of the interchain
coupling for a sufficient degree of frustration, we take the
intrachain hopping as the unit of energy, i.e., set t = 1, and
simultaneously vary the anisotropy t⊥ and the frustration t ′,
keeping the ratio of the two fixed to a fairly strong value:
t ′/t⊥ = −0.5. We then tune t⊥ between the limiting cases of
uncoupled Hubbard chains at t⊥ = 0 and the isotropic case
at t⊥ = 1. We work at half filling, where we note that the
Hamiltonian (1) is symmetric with respect to the sign of t ′/t⊥
if a particle-hole transformation is carried out, so that only the
absolute value of t ′/t⊥ is relevant. We take t ′/t⊥ to be negative
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FIG. 2. Band structure for four coupled Hubbard chains with
frustration t ′/t⊥ = −0.5 and interchain hopping (a) t⊥ = 0.1, (b)
t⊥ = 0.5, and (c) t⊥ = 0.9. The designation εj (kx) refers to a band
with transverse momentum ky = j π/2. The blue lines indicate the
corresponding Fermi energy at half filling. The arrows qa and qb

indicate interband scattering processes between the ky = π/2 and
ky = 3π/2 bands and the ky = 0 and ky = π bands, respectively.

here in order to retain the form of the band structure in Fig. 2
and to maintain notational consistency with other work.

In the present study, we concentrate on cylinders with a
width of four lattice sites, Ly = 4. In the infinite-cylinder-
length limit, the four bands εj (kx) for transverse momentum
ky = j π/2 read

ε0(kx) = −2 (t − t⊥) cos kx − 2 t⊥,

ε1(kx) = ε3(kx) = −2 t cos kx,

ε2(kx) = −2 (t + t⊥) cos kx + 2 t⊥. (3)

In Fig. 2, the band structure is depicted for t⊥ = 0.1, t⊥ = 0.5,
and t⊥ = 0.9 with the Fermi level for the noninteracting case at
half filling indicated. We denote the Fermi points within each
band by kF

j . For the case of weak interchain coupling, Fig. 2(a),
the four bands approach each other, and the longitudinal
Fermi momenta kF

j x converge towards ±π/2 for t⊥ → 0. In
the t⊥ = 0 limit, kF

j x = ±π/2 for j = 0, . . . ,3, the Fermi
surface becomes nested, and intraband umklapp processes
with momentum transfer of (2 π,0) are allowed within all
four bands. For intermediate interchain coupling, Fig. 2(b),
the Fermi points deviate from π/2, and intraband umklapp
processes are not permitted. Still, interband umklapp processes

utilizing all four bands with a total momentum transfer of kF
0 +

kF
1 + kF

2 + kF
3 = (2 π,2 π ) remain possible. Note that this is

possible because at half filling
∑3

j=0 kF
j x = 2 π , assuming that

all bands are partially filled. The scattering vectors involved,
qa : kF

1 → −kF
3 and qb : kF

0 → −kF
2 , are depicted as gray

dashed and solid arrows in Fig. 2(b). Note that other interband
umklapp processes involving all four Fermi bands are also
allowed; however, we only show the scattering vectors qa and
qb since our DMRG results (see Sec. V A) indicate that the
relevant processes have transverse momentum π . For strong
interchain coupling, Fig. 2(c), the ky = 0 band becomes flat
and completely filled, only three bands remain active, and no
umklapp processes are allowed.

The transition between the latter scenarios shown in
Figs. 2(b) and 2(c), i.e., the exact point where ε0(kx) has a
maximum at kF

0 x = π , marks a Van Hove singularity. In the
two-dimensional case, this transition corresponds to the point
where the noninteracting Fermi surface undergoes a topolog-
ical change, changing from an open to a closed surface, as
depicted in Fig. 1(b). Note that the critical interchain hopping
strength for the width-4 cylinder is t⊥ ≈ 0.707, somewhat
displaced from that of the two-dimensional case, where the
singularity is at t⊥ ≈ 0.622.

III. DMRG METHODS

We apply the DMRG within a hybrid-space representation
that is composed of a real-space representation in the longi-
tudinal and a momentum-space representation in transverse
direction, as was recently introduced for the fermionic Hof-
stadter model [41] and the two-dimensional Hubbard model
[42]. In this representation, the transverse momentum ky is
conserved; this can be utilized to speed the DMRG algorithm
up significantly. The retention of a real-space representation in
the longer spatial direction makes it possible to avoid the un-
desirable volume-law scaling of the entropy [43] that severely
restricts the applicability of the pure momentum-space DMRG
[44]. Our implementation [42] is based on the matrix product
state (MPS) formulation of the DMRG [45]. The utilization of
conserved transverse momentum, total charge, and total spin
quantum numbers enables us to push the dimension of the
virtual bonds of the MPS, m, to up to 35 000 states; a detailed
analysis of the performance of the hybrid-space DMRG for the
two-dimensional Hubbard model is contained in Ref. [42].

Despite the enhanced performance of the hybrid-space
formulation, the DMRG can still suffer from convergence
difficulties. First, the convergence of the DMRG, both in the
real-space and in the hybrid-space formulations, is exponen-
tially costly in system width due to the entropy area law
[36]. Therefore, we study the system at a relative small width
of Ly = 4, i.e., four coupled chains. For isolated parameter
points, we will show results for Ly = 5 in order to roughly
determine how the behavior changes as the number of chains
is increased. Calculations for Ly = 5, for which convergence
to the qualitatively consistent ground state only occurs for
m � 20 000, are prohibitively expensive to carry out for the
full parameter space treated here.

Second, the algorithm sometimes gets trapped in a
metastable state, which then, for calculations of finite accuracy,
converges as the apparent ground state of the system. Such
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FIG. 3. Determination of the discontinuous phase transitions at
t⊥ = 0.7 and t ′/t⊥ = −0.5 on a 16×4 lattice. Panels (a) and (b) show
the energy density E as a function of U with level crossings at Uc 1

and Uc 2; (c) shows the double occupancy per site, D/N , as a function
of U , with Uc 1 and Uc 2, determined from (a) and (b), respectively,
indicated. The black and gray solid lines show right-moving and
left-moving DMRG calculations, where U is changed in steps of
�U = ±0.05 at the beginning of every second sweep after the
initial sweeps, respectively. The circles show results obtained by the
standard ground-state search procedure, which are extrapolation to
zero discarded weight. The error bars indicate the difference between
extrapolated and nonextrapolated values.

behavior is often found for parameter values close to a dis-
continuous transition. In order to minimize such problems and
define the phase boundaries as accurately as possible, we use a
variation of the standard DMRG ground-state search: we start
DMRG calculations for two sets of model parameters located
on either side of, but sufficiently far from, a discontinuous
phase transition. We initialize both calculations by following
the standard ground-state search procedure, in which the model
parameters are kept fixed and m is increased during the initial
sweeps. Once sufficient convergence has been attained for a
particular starting point, we fix m, continue sweeping, and alter
the model parameters in small steps towards the other phase.
As the system goes through a discontinuous phase transition,
we typically obtain a hysteresis effect and can then track the
ground states of both phases into the parameter regime of
the other phase. By determining the exact point at which the
energies of the two states cross, we obtain the phase boundary
with maximal accuracy.

As an example, Fig. 3 shows calculations at fixed t⊥ = 0.7
as a function of U . In this case, we find two discontinuous phase
transitions at the critical interaction strengths Uc 1 and Uc 2. The
first two panels, Figs. 3(a) and 3(b), show the energy-level
crossings for the first and second transitions, respectively.
These crossings correspond to finite jumps in the double
occupancy D = ∑

r〈nr ↑nr ↓〉, as can be seen in Fig. 3(c). This
example shows that the hysteresis effect is present in the double
occupancy as well as in the energy. Thus, we can determine
the point of the transition and the height of the jump in the
double occupancy accurately. Results from standard DMRG
calculations, carried out separately for every distinct value of
U , are depicted as blue circles for comparison.

The procedure described above has both an advantage and
disadvantages: the advantage is that convergence problems
close to the phase boundary are diminished because the critical
initial phase of the DMRG algorithm takes place in a more
stable region of the parameter space. One disadvantage is that,
since m is fixed during the second phase of the calculation, the
results cannot be extrapolated in the truncation error without
further effort. Another is that the CPU time needed for a
single calculation is comparably high because a large number
of sweeps in which the maximum m is kept must be carried
out. In our calculations, we have used a fixed MPS bond
dimension of m = 10 000 after the initial sweeps, which was
large enough to converge the calculations and keep run times
at an acceptable level.

In order to validate our results qualitatively, we have
carried out additional calculations in which we used the
standard DMRG ground-state search at all points of parameter
space. For these calculations, we have used a maximum bond
dimension between m = 20 000 and m = 35 000, have varied
the chain length, and have extrapolated the results in the
truncation error.

IV. VARIATIONAL CLUSTER APPROXIMATION

The variational cluster approximation (VCA) [22] is a
quantum cluster technique [46] which is used to study strongly
correlated electron systems with local interactions and to inves-
tigate phases with broken symmetries [47]. Its validity has been
successfully demonstrated for the one-dimensional Hubbard
model [22,48], and it has been applied to two-dimensional
Hubbard systems [47,49], allowing for both the investigation
of magnetically ordered phases [23,24,47] and of the Mott
transition [35,50].

The VCA is based on Potthoff’s self-energy functional
theory [51–53], in which the grand-canonical potential of the
infinite system is written as a functional of the self-energy �,

�[�] = F [�] − tr log
(−G−1

0 + �
)
, (4)

where F [�] denotes the Legendre-transformed Luttinger-
Ward functional [54,55], and G0 = (ω + μ − t)−1 is the non-
interacting single-particle Green’s function. At the physical
self-energy �phys, this functional is stationary as a function
of the self-energy, i.e., δ�[�]/δ�|�phys = 0. Since F [�] is
usually not known, one has to resort to approximations to
determine the self-energy so that this stationary condition is
fulfilled.
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In the VCA, a reference system consisting of decoupled
clusters is used to calculate the self-energy functional. This
reference system, described by a Hamiltonian H ′, has the
same interaction terms as the original system and the cluster
self-energy can be computed exactly, for example, using exact
diagonalization. Since F [�] is universal in the sense that it
only depends on the interaction part of the Hamiltonian, both
the original and the reference systems have the same Luttinger-
Ward functional. Therefore, the self-energy functional can be
expressed in terms of the reference system as

�[�] = �′[�] + tr log
(−G′

0
−1 + �

)

− tr log
(−G−1

0 + �
)
, (5)

where all cluster quantities are denoted by a prime. Through
variation of the one-body parameters t′ of the reference system,
the stationary point of the functional can be determined because

δ�[�]

δt′ = δ�[�]

δ�

δ�

δt′ = 0. (6)

The approximation of the VCA thus lies in restricting the
variational space of all possible self-energies in Eq. (6) to a
limited set of cluster-representable self-energies �′.

In order to account for phases with broken symmetry such as
an antiferromagnetic phase, additional Weiss fields are added
to the cluster Hamiltonian, and their field strength is used
as one of the variational parameters to find the stationary
point of �[�]. In this way, short-range correlations within
the cluster are treated exactly, but longer-ranged correlations
are treated on a mean-field level [49]. In order to properly
describe the discontinuous (paramagnetic) Mott transition, it
was shown that it is necessary to include noninteracting bath
sites in the reference cluster [50]. This is permitted within
self-energy functional theory because additional couplings
to noninteracting sites do not change the Luttinger-Ward
functional, and the clusters thus are a valid reference system.

V. RESULTS

In the following, we present our results for the DMRG,
Sec. V A, and the VCA, Sec. V B. The DMRG results cover a
detailed phase diagram in the t⊥ and U plane and determine
the static magnetic and electric properties of the phases. For
the VCA, we focus on four different values of t⊥, for which
we determine the position and nature of the metal-insulator
transitions and compare them to the DMRG results.

A. DMRG results

We now use the tracking method described in Sec. III to
locate phase-transition lines in the t⊥-U plane for cylinders
with 16 × 4 sites. We find two phase-transition lines in the
regime between t⊥ = 0 and t⊥ = 1, both of which are due
to level crossing scenarios in the ground state for the entire
range of t⊥. The resulting phase diagram is depicted in Fig. 4.
Note that the transition lines are determined only for the
16 × 4 lattice. In order to unambiguously determine the order
of the phase transitions, a finite-size scaling analysis would
be needed. Due to the high computational costs, we refrain
from doing this here. However, as discussed further below in
this section, we perform a finite-size scaling analysis for the
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FIG. 4. (a) DMRG phase diagram of the anisotropic half filled
Hubbard model with frustration t ′/t⊥ = −0.5, obtained for width-4
cylinders, including the VCA results for selected values of t⊥. The
designations for the phases are metallic conductor (M), antiferro-
magnet (AF), quasi-one-dimensional antiferromagnet (Q1D-AF), and
incommensurate spin-density wave (ISDW). Discontinuous phase
transitions are depicted as solid lines. The case of uncoupled chains,
t⊥ = 0, is marked by a gray dashed line, and corresponds to the purely
one-dimensional antiferromagnet. The transition points between the
metallic phase and the antiferromagnetic insulator as seen by the
VCA (see Sec. V B) are indicated: black crosses mark discontinuous
transitions for t⊥ = 0.5, t⊥ = 0.8, and t⊥ = 1.0, and the black square
marks a continuous transition found for t⊥ = 0.2. (b) Jump in
the double occupancy per site, �D/N , along the transition lines,
parametrized with t⊥, for the transition between the ISDW and the
metallic phases (green line with circles) and between the ISDW and
the AF/Q1D-AF phases (red line with triangles), obtained for the
16 × 4 lattice.

electrical susceptibility, and investigate in detail the behavior
of the spin structure factor. The behaviors of both quantities
support that the lines of level crossings depicted in Fig. 4
will indeed remain discontinuous phase transitions in the
infinite-length limit.

The phase diagram in Fig. 4(a) features a metallic phase,
an antiferromagnetic phase (AF), a quasi-one-dimensional
antiferromagnetic phase (Q1D-AF), and an incommensurate
spin-density-wave phase (ISDW) that separates the metallic
and the antiferromagnetic phases. Both transition lines are
characterized by finite jumps in the double occupancy, �D,
Fig. 4(b), along the lines indicating the presence of discon-
tinuous phase transitions. The metallic phase extends from
U = 0.0 to U ≈ 6.0 in the isotropic case (t⊥ = 1), becomes
narrower with decreasing t⊥, and vanishes at t⊥ ≈ 0.6. Note
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FIG. 5. (a) Double occupancy per site, D/N , and (b) averaged von
Neumann entropy, S [Eq. (7)], for different system sizes Lx × Ly at
t⊥ = 0.7. Note that D/N is shifted by 0.03U to improve the visibility
of the jumps between the indicated phases.

that close to the latter point, at t⊥ ≈ 0.707, a Van Hove
singularity marks the transition between three and four active
bands in the band structure for width-4 cylinders; see Sec. II.
The ISDW phase bounds the metallic phase and is present
for transverse hopping strength 0.4 � t⊥ � 1.0. These DMRG
results for the phase diagram are compared to transitions found
by the VCA at t⊥ = 0.5, 0.8, and 1.0. As can be seen in Fig. 4,
discontinuous transitions from a metallic to an AF phase are
found for large values of t⊥, which agree very well with the
locations of the transitions identified by the DMRG. At smaller
values of t⊥, a continuous transition is seen, which is difficult
to capture using the DMRG. These results and the comparison
to the DMRG phase diagram will be discussed in detail in the
following and in Sec. V B.

Figure 5 shows the behavior of the double occupancy and
the block entropy at the two transitions between the metallic
and the ISDW phases and between the ISDW and AF phases
at fixed t⊥ = 0.7 for width-4 cylinders with different lengths
and for the width-5 cylinder of length 16. In Fig. 5(a), the
double occupancy is shifted by 0.03 U to compensate for
the linear growth in U and to emphasize the jumps between
the phases. For width-4 cylinders, the jump between the ISDW
and AF phases seems to be stable as a function of the system
length. At the transition between the ISDW and the metallic
phase, the jump is present for all system lengths, but shrinks

somewhat with increasing Lx . Thus, from the behavior of the
double occupancy alone, we cannot rule out that this transition
becomes continuous in the infinite-length limit. In order to
confirm this, one would need to perform a scaling analysis,
which cannot be done reliably with the data set available.

The discontinuous behavior is also marked by a discon-
tinuity in the entropy. Figure 5(b) shows the averaged von
Neumann entropy,

S = 1

N

∑

i

S(i), (7)

where S(i) = −tr(ρi ln ρi) is the von Neumann, entanglement
entropy [56] calculated for a bipartite partitioning of the system
at the ith MPS bond and ρi the corresponding reduced density
matrix of one of the subsystems. (Note that the state obtained
within the DMRG is a pure state, usually an approximation to
the ground state of the system.) Again, for width-4 cylinders,
the jump is stable for the transition between the ISDW and AF
phases, but the data do not allow for a definite statement on the
nature of the transition between the metallic and ISDW phases.

For the 16 × 5 lattice, the signatures of both transitions are
evident in the double occupancy and in the entropy. For width
5, a scaling in system length is not possible due to the high
computational costs.

We classify the magnetic ordering of the AF, Q1D-AF, and
ISDW phases by examining the static structure factor

SS(k) = 1

N

∑

r r′
eik(r−r′) S(r,r′) (8)

of the static spin correlations

S(r,r′) = 〈Sz(r) Sz(r′)〉 − 〈Sz(r)〉〈Sz(r′)〉 (9)

with Sz(x,y) = c
†
x y ↑ cx y ↑ − c

†
x y ↓ cx y ↓. Since we have open

boundary conditions in the x direction, we use particle-in-
a-box eigenmodes for the transformation in that direction to
approximate momentum modes, as in Ref. [57]. Figure 6
depicts the structure factor with panel (a) showing the result for
a single chain and panels (b)–(e) following a cut through the
phase diagram at constant U = 4.0 with increasing interchain
coupling. For weak t⊥ = 0.075, Fig. 6(b), SS(k) has one peak
at kx = π in all four transverse momentum branches, but the
form of SS(k) only varies weakly with transverse momentum,
ky . The shape of SS(k) in the longitudinal direction has almost
exactly the same form as that of the one-dimensional case,
Fig. 6(a), especially for the ky = π branch. For larger t⊥, the
two-dimensional antiferromagnetic phase is characterized by
a very strong peak in SS(k) at k = (π,π ), which contrasts with
much weaker peaks at kx = π in the other ky channels, as can
be seen in Fig. 6(c) for a representative point at t⊥ = 0.5.

The U dependence of the height of the peak at k = (π,π )
is displayed in Fig. 7. For small to moderate t⊥ � 0.3, the
height of the peak at k = (π,π ) grows as U is increased. For all
t⊥ � 0.3, the growth follows that of the one-dimensional case,
t⊥ = 0.0, up to U ≈ 1.5. Above U ≈ 1.5, the peak heights
continue to follow the one-dimensional case for smaller t⊥
(t⊥ � 0.1), but for 0.1 � t⊥ � 0.3, the peak height grows
significantly more strongly with U than the one-dimensional
case. This is an indication of the crossover to a two-dimensional
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FIG. 6. (a) Static spin structure factor SS(kx) [Eq. (8)] of the
one-dimensional 32-site Hubbard model at U = 4.0. (b)–(e) Static
spin structure factor SS(k) of 32 × 4 Hubbard cylinders for U = 4.0
with varying interchain hopping: (b) t⊥ = 0.075, (c) t⊥ = 0.5,
(d) t⊥ = 0.7, and (e) t⊥ = 0.9.

antiferromagnetic phase. The crossover line determined in this
way is marked by the blue dashed line in Fig. 4(a).

The ISDW phase, Fig. 6(d), is characterized by an incom-
mensurate ordering wave vector Q∗ = (±q∗,π ), where the
longitudinal wave vector of the peak, q∗, depends on U and
t⊥. This incommensurate structure corresponds to antiferro-
magnetic spin correlations in real space with a sine-shaped
modulation in the longitudinal direction, where the envelope
has a wavelength of 2 π/(π − q∗). Figure 8 shows plots of
SS(kx,π ) within the ISDW phase for varying Lx , t⊥, and U .
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m
ax
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FIG. 7. Peak height of the spin structure factor, max[SS(k)]
[see Eq. (8)], as a function of the interaction strength U for the
one-dimensional Hubbard chain (t⊥ = 0.0) and for 32 × 4 Hubbard
cylinders.

In the metallic phase, depicted for t⊥ = 0.9 and U = 4.0 in
Fig. 6(e), the structure factor SS(k) lacks a distinct peak in all
transverse momentum sectors.

Figure 8(a) shows that the wave vector of the incommensu-
rate peak, q∗, is stable as a function of system length Lx for Lx

larger than the corresponding wavelength. All but one of the
curves shown are calculated with open boundary conditions in
the x direction. The additional curve is calculated on a 16 × 4
lattice with periodic boundary conditions (the largest periodic
lattice size for which we obtained good convergence). While
the finite-size effects and the placement of momentum points
are different for periodic than for open boundary conditions (in
particular, the momentum points are more widely spaced), the
values of SS(kx,π ) and the approximate position of the peak are
consistent with the open-boundary-condition results, showing
that the incommensurate peak structure is not an artifact of the
boundary conditions.

As t⊥ and U are varied, Figs. 8(b) and 8(c), q∗ changes,
ranging between 3 π/4 and π , with q∗ moving towards π , i.e.,
with the wavelength of the modulation becoming longer as the
AF phase is approached, and q∗ moving towards 3 π/4 (shorter
modulation wavelength) as the metallic phase is approached.
Note that this movement of the peak position q∗ can only be
observed for systems of sufficient length; if Lx is too small,
the wavelength can get locked in at a particular discrete value
due to the boundary conditions. This effect causes the large
discrepancy in the double occupancy in Fig. 5(a) between
system lengths 16, 24, and 32.

In order to roughly gauge the effect of cylinder width, we
display the spin structure factor for the 16 × 5 cylinder in
Fig. 8(d). Note that the antiferromagnetic ordering is frustrated
by the odd system width, and, for the periodic transverse
boundary conditions used here, transverse momentum ky = π

is not available, so that we take the closest point, ky = 4 π/5.
As can be seen, the incommensurate peak characterizing the
ISDW phase is still present, but less distinct for U = 3.4–4.2.
At U = 4.4, the peak is at kx = π , as expected for the
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FIG. 8. Spin structure factor SS(kx,π ) [Eq. (8)] in the ISDW phase
for the indicated model parameters and (a) for fixed t⊥ = 0.7 and
U = 4.0 for width-4 cylinders as a function of system length Lx

and for a 16 × 4 lattice with toroidal lattice topology, (b) for 48 × 4
cylinders as a function of t⊥ at fixed U = 3.0, and (c) for 48 × 4
cylinders as a function of U at fixed t⊥ = 0.7. (d) SS(kx,4 π/5) for
16 × 5 cylinders as a function of U at fixed t⊥ = 0.7. In panels (b)–(d),
the black dashed and gray solid lines depict SS(kx,π ) within the
metallic and antiferromagnet phases, respectively.

antiferromagnetic phase, and, at U = 3.2, the form is as
expected for the metallic phase. Note that the peaks are also
weakened due to the small system length; compare to Fig. 8(a).
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FIG. 9. Peak height of the spin structure factor [Eq. (8)],
max[SS(kx,π )], for width-4 cylinders of the indicated lengths at
t⊥ = 0.7 as a function of U , with the metallic, ISDW, and AF phases
indicated.

The static spin structure factor can also be used to charac-
terize the transitions between the ISDW and the metallic and
between the metallic and the AF phases. The peak height and
position changes smoothly within the ISDW phase, but changes
abruptly at the transition points toward the metallic and
antiferromagnetic phases; compare Fig. 6(d) with Figs. 6(e)
and 6(c), respectively. These discontinuous transitions are most
evident in the behavior of the peak height of the structure factor,
as plotted for width-4 cylinders of different lengths in Fig. 9. It
can be seen that, although the position of the transition between
the metallic and the ISDW phases changes, the size of the jump
in the peak height at the transition remains stable as a function
of Lx . For the transition between the AF and the ISDW phase,
the position of the peak is stable and the height of the jump
increases with system length. In the AF phase, the peak height
increases with cylinder length. However, we note that the
scaling is quasi-one-dimensional because we scale with system
length only. In one dimension, long-range antiferromagnetic
order cannot occur; the correlations can decay at most with
a power law [58]. Increase of the peak height with system
size will only occur if the power-law correlations fall off more
slowly than 1/x (with logarithmic scaling occurring at 1/x).
This picture is consistent with the scaling of the AF peak in
Fig. 9, which seems to grow sublinearly with cylinder length.
In the ISDW phase, there is no significant scaling of the peak
height with cylinder length, especially for the two larger Lx

values. Thus, if power-law decay is present, it must be more
rapid than 1/x, and we cannot differentiate between such a
decay and exponential decay with a relatively long decay
length, i.e., between a weakly critical and a weakly gapped
phase.

For sufficiently weak interaction strength, one might expect
that longitudinal wave vectorq∗ of the peak of the spin structure
factor would be determined by wave vectors characteristic of
relevant scattering processes in a weak-coupling picture. Such
scattering wave vectors are determined by the U = 0 band
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FIG. 10. Symbols: Position of the maximum of SS(kx,π ) [Eq. (8)]
for 48 × 4 cylinders at U = 1.0 and U = 1.6 as a function of t⊥.
Lines: Scattering wave vectors qa = kF

0 x + kF
2 x and qb = kF

1 x + kF
3 x ;

see Fig. 2.

structure, Eq. (3), as described in Sec. II, and are depicted
in Fig. 2. Figure 10 shows the position of the maximum of
SS(kx,π ) as a function of t⊥ for U = 1.0 and U = 1.6. For
small t⊥, the maximum is at transverse momentum π . Within
the ISDW phase, the single maximum splits into two maxima
symmetric to π , which move towards (1 ± 1/4)π as t⊥ is
increased, and finally, in the metallic phase, the positions of the
maxima remain stable at around (1 ± 1/4)π . For comparison,
scattering wave vectors qa = kF

0 x + kF
2 x and qb = kF

1 x + kF
3 x ,

defined as in Fig. 2(b), are depicted. As can be seen, the DMRG
results for both U = 1 and U = 1.6 are in good agreement with
the scattering wave vectors given by the U = 0 band structure,
including the signature of the Van Hove singularity at t⊥ ≈ 0.7.

Since translational invariance is broken in the longitu-
dinal direction by the boundary conditions, the structure
of the phases can be seen in the behavior of local quan-
tities, in particular, the deviation of the local charge den-
sity, �n(x) = L−1

y

∑
y〈n(x,y)〉 − 1, from its average value

n = 1.0 and the deviation of the local z-spin moment
squared, �S2

z (x) = L−1
y

∑
y〈S2

z (x,y)〉 − S2
z (x,y), from its av-

erage value S2
z = N−1 ∑

r〈S2
z (r)〉 as a function of x, the

position in the longitudinal direction. In the AF phase, as
depicted in Fig. 11(a), spatial fluctuations in both the charge
and spin densities are strongly suppressed, with the end effects
from the open boundaries damping out very quickly. Thus,
the dominant antiferromagnetic correlations strongly suppress
all spatial fluctuations in the charge and spin density. Note
that the average value S2

z = 0.825 of the z-spin moment
squared is relatively large, i.e., the polarization of the local
spin moment suppresses fluctuations. In the ISDW phase,
Figs. 11(b) and 11(c), �S2

z exhibits a wave pattern consistent
with the incommensurate wave vector q∗ found in the spin
structure factor. The rapidity of the decay of the fluctuations
away from the ends depends on the location within the ISDW
phase; for larger U the SDW is more pronounced, and the

0 16 32 48
x
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0.02 (d) M
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Δ
n
(x

),
Δ

S
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ΔS2
z (x) Δn(x)

FIG. 11. Fluctuations of the spin and charge density, �S2
z (x) and

�n(x) for system size 48 × 4 for selected points in the phase diagram:
(a) t⊥ = 0.7 and U = 5.0, (b) t⊥ = 0.7 and U = 4.0, (c) t⊥ = 1.0 and
U = 6.0, and (d) t⊥ = 0.7 and U = 3.0.

modulations reach more deeply into the bulk of the system.
Note that the charge-density fluctuations are comparably small
in the ISDW phase, albeit not as small as in the AF phase. In the
metallic phase, Fig. 11(d), fluctuations in the spin density are
relatively small, but still present, and fluctuations in the charge
density are significantly larger than in the other phases, and
have a high-frequency component that extends to the center of
the lattice.

In order to investigate the metallic nature of all three phases,
we have calculated the electric susceptibility Xe for different
system lengths Lx . By applying an electric field E in the
longitudinal direction, we can measure the polarization

P =
∑

x σ

x 〈� | nx σ | �〉, (10)

which, in turn, allows us to obtain the electrical susceptibility

Xe = P

E Lx

, (11)

assuming that E is chosen small enough so that the response
is in the linear regime. (See Ref. [59] for a detailed description
of the method.) Figure 12 depicts the scaling of Xe with the
inverse system length 1/Lx for different U and t⊥ = 0.7. In
the metallic phase, Xe grows proportionally to L2

x , as can be
seen from its approximately linear behavior with a slope of
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FIG. 12. Electrical susceptibility Xe [Eq. (11)] of width-4 cylin-
ders at t⊥ = 0.7 as a function of the inverse system length 1/Lx on
a log-log scale. The dashed line shows the analytic result for the
noninteracting (conducting) one-dimensional Hubbard model [59].

−2 on the log-log scale. Such a scaling is characteristic of
quasi-one-dimensional metallic behavior [59]. In contrast, in
the AF phase Xe clearly saturates as Lx becomes larger (i.e.,
1/Lx → 0). In the ISDW phase, Xe is significantly larger than
in the AF phase, but still saturates as Lx becomes larger, thus
indicating that the ISDW phase is, indeed, insulating. Note
that, since the determination of the electrical susceptibility be-
comes progressively more difficult with decreasing interaction
strength, this analysis cannot be continued along the transition
lines towards smaller t⊥.

Finally, we address the question of whether d-wave pairing
correlations are enhanced in any part of the phase diagram.
Since the system is quasi-one-dimensional, we, in general,
expect at most power-law decay of the correlation functions
with distance and must compare the strength of the decay in
the different channels. We thus calculate the equal-time spin,
charge, and pair-correlation functions,

S(r,r′) = 〈Sz(r) Sz(r′)〉 − 〈Sz(r)〉 〈Sz(r′)〉,
C(r,r′) = 〈n(r) n(r′)〉 − 〈n(r)〉 〈n(r′)〉, (12)

Dy y(r,r′) = 〈�†
y(r) �y(r′)〉,

with the local spin density, local charge density, and pair-
creation operators

Sz(x,y) = c
†
x y ↑ cx y ↑ − c

†
x y ↓ cx y ↓,

n(x,y) = c
†
x y ↑ cx y ↑ + c

†
x y ↓ cx y ↓,

�†
y(x,y) = 1√

2
(c†x y+1 ↑ c

†
x y ↓ − c

†
x y+1 ↓ c

†
x y ↑). (13)

Figure 13 shows the decay of the correlation functions as a
function of distance in the longitudinal direction, lx = |x − x ′|.
In the AF and ISDW phases, Figs. 13(a) and 13(b), respectively,
the spin correlations are markedly dominant, as expected. In
the ISDW phase, the modulations of the spin correlations
are compatible with the wave pattern seen in the local spin
fluctuations in Fig. 11(b). In the metallic phase, Fig. 13(c),
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FIG. 13. Equal-time spin, charge, and pairing correlations, S(lx),
C(lx), and Dy y(lx) [Eqs. (12)], as a function of the longitudinal
distance lx , for system size 32 × 4, transverse hopping t⊥ = 0.7, and
interaction strengths (a) U = 4.8, (b) U = 4.0, and (c) U = 3.0.

all correlations decay at approximately the same rate. Thus,
there is no clearly dominant correlation. Note, however, that
we have not systematically investigated the dependence of
the relative strength of the correlations on the model parameters
within the metallic phase.

B. VCA results

In this section we apply the VCA to the Hamiltonian of
Eq. (1) on a four-leg tube geometry, Fig. 14(a), to obtain results
that can be compared with the hybrid-space DMRG results on
width-4 cylinders. Our reference system consists of a 2 × 4
cluster with periodic boundary conditions in the y direction,
which is coupled to four bath sites, as depicted in Fig. 14(b). In
order to find the stationary point of the self-energy functional,
we use the hybridizationV between interacting cluster sites and
bath sites [60], the chemical potential μ′ of the cluster [61],
the chemical potential μ of the system [62], and the strength
of an antiferromagnetic Weiss field on the bath sites [63] as
variational parameters.

Figure 15 depicts the energy and double occupancy for the
different solutions found by the VCA for interchain couplings
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(a)

(b)

FIG. 14. (a) The four-leg cylinder, showing nearest- and next-
nearest-neighbor connections. (b) The 2 × 4 cluster with four bath
sites, periodically repeated in the x direction. On the noninteracting
bath sites, an antiferromagnetic Weiss field, indicated in the sketch
by plus and minus signs, is applied.

t⊥ = 0.5, t⊥ = 0.8, and t⊥ = 1.0, together with DMRG results
for 16 × 4 cylinders. Since the VCA only captures correlations
within the cluster exactly, the ISDW phase found in the DMRG
cannot be seen within the VCA. Within the VCA, at interaction
strengths below a critical value Uc , a paramagnetic (PM) metal
is realized; at larger interaction strengths, the system is found
to be an antiferromagnetic insulator.

A paramagnetic insulating solution is found at large inter-
action strengths (black line in Fig. 15), which, however, is
always higher in energy than the antiferromagnetic insulator
and is therefore not realized. Note that we find a crossing of
the energies of the two paramagnetic solutions at U ∗

c , which is
marked by the black dashed lines in Figs. 15(b) and 15(c). The
crossing is associated with a jump in the double occupancy at
U ∗

c . This, together with the substantial coexistence region of

the paramagnetic insulating and metallic solutions around U ∗
c ,

shows that the relatively small number of bath sites used in
our cluster is indeed sufficient to capture the discontinuous
transition in the paramagnetic channel. In contrast, using
the VCA without bath sites not only leads to a continuous
paramagnetic metal-insulator transition with a much smaller
U ∗

c , but also yields a Uc that is significantly smaller (e.g,
Uc = 3.8 for t⊥ = 0.8).

Comparing the VCA data to the DMRG results, we find that,
for t⊥ = 0.8 and t⊥ = 1.0, the energies of the antiferromag-
netic insulator in the VCA and in the DMRG calculation on the
16 × 4 cylinder nearly coincide, and the agreement between
the double occupancies in this phase is also very good. The
phase transition between the antiferromagnetic insulator and
the paramagnetic metal in the VCA occurs within the ISDW
phase seen by the DMRG, i.e., UDMRG

c 1 < Uc < UDMRG
c 2 . This

is consistent to within the limitations of the methods, since,
as discussed before, the intermediate ISDW phase cannot be
found by the VCA for the cluster sizes treated. Nevertheless, it
is interesting to see that both a transition from an AF insulating
phase to a PM metal as well as discontinuous behavior are
found by both methods. For smaller interaction strengths, the
energies of the metallic phases within the VCA and the DMRG
are again closer to each other. Note that the degree of numerical
agreement has been examined here for particular (different)
fixed sizes of the DMRG lattice and the VCA cluster; a more
complete analysis would compare results only after separate
finite-size scaling for each method.

The double occupancy of the paramagnetic metal is a little
higher than in the DMRG. This overestimation of the strength
of the paramagnetic phase might be due to the fact that two
cluster sites must share one bath site: For the isotropic unfrus-
trated two-dimensional Hubbard model, Balzer et al. found
that either the metallic or the insulating phase is preferred,
depending on whether an even or an odd number of bath sites
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FIG. 15. Panels (a)–(c) energy density and (d)–(f) double occupancy obtained using the VCA for the paramagnetic-metallic (PM-M),
paramagnetic insulating (PM-I), and AF solutions for t⊥ = 0.5, t⊥ = 0.8, and t⊥ = 1.0, as indicated. The black solid and dashed lines designate
the metal-insulator transition between the PM-M and AF and between the PM-M and PM-I solutions, respectively. DMRG results on 16 × 4
cylinders are plotted for comparison. Here, the gray vertical lines indicate the transitions between the metallic and ISDW phases and between
the ISDW and AF phases at UDMRG

c 1 and UDMRG
c 2 , respectively.
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is coupled to each cluster site [50]. We expect that the choice
of the number of bath sites would have a similar effect in the
present case. In order to check this assumption, one would have
to treat a cluster that includes at least eight bath sites. The fact
that we are using a band-Lanczos solver at zero temperature
and a variational space of dimension 4 means that treating
the 16-site cluster would, unfortunately, have a much higher
computational cost, precluding a systematic investigation of
this question.

Whereas the DMRG and the VCA are in good quantitative
agreement for the system or cluster sizes used, respectively, for
large values of t⊥, qualitative as well as quantitative differences
are present at intermediate transverse hopping, t⊥ = 0.5. At
relatively strong coupling, the VCA ground state remains an
antiferromagnetic insulator, just as in the DMRG analysis.
A comparison of the energies of the AF solution of the
VCA and the (AF) DMRG ground-state energy down to the
transition to a ISDW again yields good agreement. However,
while the DMRG finds the ISDW phase for moderate to low
U , the VCA finds a paramagnetic metal at small U , yielding a
metal-insulator transition at Uc ≈ 2.9. This transition point is
comparable to the value of U ≈ 2.3 for the transition from the
AF insulator to the ISDW obtained by the DMRG. Since the
VCA on the treated cluster size is fundamentally unable to find
an ISDW phase, the AF-to-ISDW transition cannot be seen.
Nevertheless, it is interesting to see that the VCA identifies a
phase transition in a similar parameter region as the DMRG.

Finally, Fig. 16 shows how the situation changes for an even
smaller value of the interchain hopping, t⊥ = 0.2. In the VCA,
an antiferromagnetic solution is still realized for U > 1.5,
Fig. 16(a), but, in contrast to the previous cases at larger t⊥, the
energies of the AF insulator and PM metal approach each other
smoothly as U is decreased, Fig. 16(b), and a level crossing
cannot be observed. At U = 1.5, both solutions have almost
the same energy (|EPM-M − EAF| < 10−5), and the double
occupancy exhibits no measurable jump at the transition point,
as can be seen in Fig. 16(c). For U < 1.5, an AF solution cannot
be found within the VCA. For the same t⊥, the DMRG results
show that the AF ordering in the form of a distinct peak in SS(k)
at k = (π,π ) smoothly vanishes around the same interaction
strength, U ≈ 1.5; see Figs. 4(a) and 7. Since, within the VCA,
it is not possible to introduce a Weiss field that captures the
quasi-one-dimensional order without introducing some kind
of order in y direction, the Q1D-AF cannot be reproduced.
Still, the VCA finds a vanishing AF order and consequently a
crossover to a paramagnetic phase.

VI. DISCUSSION

We now discuss the relation between our results and
those of other studies. For systems of a finite number of
coupled Hubbard chains with varying interchain coupling
strength, a number of calculations using bosonization and
renormalization-group techniques in the weak-coupling limit
have been carried out [37–40]. The case of four periodically
coupled chains was treated in detail in Ref. [38]. However,
the half filled system, for which additional umklapp processes
are relevant, was not handled explicitly. In addition, next-
nearest-neighbor hopping, which generates frustration and is
essential to our study here, was also not included. Thus, we
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FIG. 16. (a) Energies from the VCA and the DMRG, (b) differ-
ence in energy between the antiferromagnetic and the paramagnetic
solutions obtained by the VCA, and (c) double occupancy for
t⊥ = 0.2. The blue dashed vertical line indicates the interaction
strength at which the antiferromagnetic and paramagnetic solutions
become energetically indistinguishable for the accuracy accessible
within the VCA.

know of no weak-coupling studies that would be directly
applicable to the system studied here. Such calculations would
be extremely useful, in particular, in clarifying the role of the
umklapp processes within the ISDW phase and in determining
the phases present in the U → 0 limit. However, such a study
would go beyond the scope of the present work.

For the isotropic case, a number of studies are available that
investigate the phase diagram of the two-dimensional Hubbard
model as a function of the level of frustration. For the value
of the frustration treated here, t ′ = −0.5, VCA calculations
of Nevidomskyy et al. [23], in which no bath sites were
included, found a transition from a superconducting phase
to a (π,π ) antiferromagnet, with an intermediate region of
phase coexistence for 3.0 � U � 4.0. For the same level of
frustration, Mozusaki and Imada reported a transition from
a metallic phase to an antiferromagnetic insulating phase
separated by an insulating, nonmagnetic, intermediate phase
between U ≈ 4.0 and U ≈ 6.0 in their PIRG study [27]. In
another study using the VCA without bath sites, Yamada
et al. found either a transition between a metallic phase and
an insulating antiferromagnetic or between a metallic phase
and an insulating paramagnetic phase [24], depending on the
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size of the cluster considered. The above studies also treated
stronger levels of frustration, at which they found different
antiferromagnetic phases: for t ′ � 0.8, all three studies find
a “striped” phase, q = (π,0), and the PIRG and, depending
on the cluster size, the VCA, find antiferromagnetic ordering
with periodicity of two lattice sites, q = (π,π/2), in the region
between the (π,π ) and (π,0) phases.

In Ref. [35], the VCA with bath sites was used at zero
temperature and the CDMFT at finite temperatures to study
the anisotropic model restricted to the paramagnetic case.
These calculations yield a zero-temperature phase diagram
containing two phases: a paramagnetic metallic phase at small
U and a paramagnetic insulating phase at large U for all
t⊥ > 0.0. In particular, the transition between the two phases
was found to occur at finite values of the Coulomb repulsion for
all t⊥. Interestingly, the transition was found to be continuous
for t⊥ � 0.2 and discontinuous for t⊥ � 0.2.

Dimensional crossover in weakly coupled chains at finite
temperature was studied by Raczkowski et al. [34] using
DQMC. For U = 2.3 the authors found a transition be-
tween quasi-one-dimensional and two-dimensional antiferro-
magnetic ordering similar to the one we find.

In the context of the two-dimensional Hubbard model, it
is important to address the limitations of our calculations in
understanding the discrepancies with other calculations using
different methods. The primary limitation of our calculations
was that of small system width. Indeed, we focused on systems
of width 4, although, as mentioned above, calculations for
t⊥ = 0.7 were also carried out for width 5. This raises the
question of what features of our phase diagram are robust with
regard to scaling in the lattice width. In particular, it is possible
that some features are remnants of the quasi-one-dimensional
nature of the lattice, i.e., of four-chain physics.

The first feature to be considered is the presence of the
intermediate ISDW phase. As shown, umklapp processes
are available for the width-4 cylinders that involve a wave
vector that is compatible with that of the incommensurate
structure of the magnetic correlations as found in the DMRG
calculations for low U . This indicates that the ISDW phase
might indeed be a feature of the four-chain system. On the other
hand, width-5 cylinders for t⊥ = 0.7 also show the signatures
of both transitions, metallic phase to ISDW and ISDW to
antiferromagnetic phase.

The insulating ISDW phase with incommensurate magnetic
ordering found in our DMRG calculations has, at least up to
now, not been found in treatments of Hamiltonian (1) in two
dimensions. It is possible that this discrepancy is due to the
small cluster or lattice sizes used in the other calculations,
including the VCA results presented in Sec. V B of this
work. This argument can be supported by considering other
work treating the Hubbard model on another two-dimensional,
anisotropic, frustrated lattice, namely the anisotropic triangular
lattice. Treating 12 × 12 anisotropic triangular lattices, Wang
et al. found magnetic ordering in the half filled system at
different wave vectors away from (π,π ) in DQMC calculations
[31]. In addition, a recent treatment using dynamical mean-
field theory after a local spin-rotating gauge transformation
was applied to the system finds a phase with incommen-
surate magnetic ordering for t ′ > 0.7 for the triangular ge-
ometry [64]. Incommensurate spiral magnetic ordering was

also found by Tocchio et al. in a variational Monte Carlo
calculation [65].

Furthermore, mean-field Hartree-Fock and slave-boson cal-
culations find phase diagrams for the frustrated square lattice
that feature incommensurate phases [66–68]. In particular,
Ref. [68] finds a MIT with an incommensurate intermediate
phase at half filling with a modulation of the ordering wave
vector that is consistent with our findings (see Fig. 1 in
Ref. [68]).

The second feature is the discontinuous nature of both
transition lines, which for the four-chain case extends over the
entire length of the lines. Here we note that the discontinuous
nature of the transition between the AF and ISDW phases
appears to be stable with regard to scaling in the system
length, whereas it is uncertain how the transition between the
ISDW and metallic phases scales in the infinite-length limit.
However, we cannot perform a rigorous extrapolation of the
jump in double occupancy at both transitions with system
size and therefore cannot completely rule out either transitions
becoming continuous somewhere along the transition lines.

The third feature is that both transition lines curve down,
reaching the U = 0 axis at finite t⊥; see Fig. 4(a). The lower
transition line, i.e., that between the metallic and the ISDW
phases, goes to zero U at a value of t⊥ close to a Van Hove
singularity. Note that for the two-dimensional lattice, the Van
Hove singularity associated with a change from open to closed
topology of the Fermi surface occurs at t⊥ ≈ 0.622, while
for the four-chain system, the related Van Hove singularity
associated with a four-band to three-band transition occurs at
t⊥ ≈ 0.707. This three-band–four-band transition point could
have consequences in a weak-coupling picture. In particular,
it is possible that umklapp processes could lead to a Mott
transition at arbitrarily weak U in the four-band regime
(t⊥ � 0.707), but not in the three-band regime, leading to a
Mott transition as a function of t⊥ at weak U .

The potential behavior of the upper transition line (between
the ISDW and antiferromagnetic phases) upon system-width
scaling is unclear. Methods that are not restricted to small
finite widths, in particular, the VCA [35], obtain lines for
the transition from the paramagnetic or antiferromagnetic
insulators to the paramagnetic metal that lie above our upper
transition line and do not curve down to the U = 0 axis at
finite t⊥, suggesting that the behavior of our transition line
could be a finite-width effect. Since we cannot perform an
extrapolation in the lattice width at that point, we avoid further
speculation about the possible outcome of such extrapolation.
As mentioned above, weak-coupling renormalization-group
calculations could help clarify these questions in the weak-U
regime. In order to make statements at larger U , it would be
desirable to be able to accurately treat systems of larger width
with the numerical methods; however, significant improvement
in the algorithms would be needed to do this.

VII. CONCLUSION

We have investigated the ground-state phase diagram of
the frustrated anisotropic Hubbard model for the case of four
periodically coupled chains, i.e., width-4 cylinders, at half
filling when increasing the interchain coupling with fixed ratio
of interchain hopping and frustration, t ′/t⊥ = −0.5.
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Using the hybrid–real-momentum-space DMRG, we have
mapped out the phase diagram as a function of the inter-
chain hopping and the interaction strength. In the region of
weak on-site interaction and strong interchain coupling, we
find a metallic phase which vanishes at the point where the
noninteracting Fermi surface undergoes a topological change
at the Van Hove singularity. At higher interaction strengths,
we find an antiferromagnetic insulator that smoothly changes
from quasi-one-dimensional antiferromagnetic ordering for
weak interchain coupling to two-dimensional ordering for
stronger interchain coupling. The quasi-one-dimensional an-
tiferromagnetic behavior remains present as the interaction
strength becomes weaker and even extends to larger interchain
coupling at sufficiently weak interaction strength. The metallic
and antiferromagnetic phases are separated by an interme-
diate incommensurate spin-density-wave state, i.e., a state
characterized by dominant incommensurate spin correlations
and insulating behavior. For fixed lattice size, we find that
the transitions between these phases are discontinuous, as
characterized by finite jumps in the double occupancy and the
von Neumann entropy and discontinuous changes in the static
spin structure factor.

Our numerical calculations were carried out on a lattice
with cylindrical topology and cylinders of lengths ranging
from 16 to 48 lattice spacing and, primarily, of width 4.
Here, the discontinuous nature of the transition between the
antiferromagnetic and the incommensurate spin-density wave
is stable as a function of the length, while we cannot determine
whether the transition between the latter and the metallic phase
becomes continuous in the infinite-length limit. We have been
able to carry out a minimal check of robustness of the results
on lattice width by comparing results for width-4 and width-5
lattices at one value of t⊥, t⊥ = 0.7 as a function of interaction
strength for one length, 16; the signatures of the two transition
points found on the width-4 lattices are also present in the
width-5 results.

For selected values of the interchain coupling, we apply
the VCA within a cluster geometry that corresponds to the
cylindrical lattice geometry used in the DMRG calculations
so that the VCA results can be compared to the unbiased
DMRG results. For intermediate to strong interchain coupling,
the VCA obtains a discontinuous phase transition between
a metallic conducting and an antiferromagnetic insulating

phase with energies and double occupancies that agree well
with the DMRG results. However, the restricted cluster sizes
in the VCA hinders the treatment of incommensurate spin
correlations, and the VCA results hence cannot pick up the
intermediate incommensurate spin-density-wave phase. For
weaker interchain coupling, the metal-insulator transition be-
comes continuous in the VCA and occurs around the same
value of the interaction strength at which the antiferromag-
netic order with distinct ordering wave vector (π,π ) vanishes
smoothly in the DMRG. Thus, we find good agreement
between the VCA and DMRG results in the region where
we expect it, at intermediate to strong interchain hopping
and moderate to strong interaction strength. The absence of
the incommensurate spin-density-wave-phase in the VCA and
the discrepancies at weak interchain coupling are understood
by the limitations of the VCA clusters used. One central
question raised by our study is whether the intermediate
incommensurate spin-density-wave phase is pertinent to the
two-dimensional system or, indeed, to finite-width cylinders of
larger width. On the one hand, we have found that the magnetic
structure in this phase is compatible with possibly relevant
umklapp scattering processes in width-4 Hubbard cylinders,
indicating that the intermediate phase could be specific to
four-chain physics. On the other hand, we have found some
indications of the presence of an intermediate incommensurate
phase in the width-5 cylinder and, as described above, some
studies on related two-dimensional systems also find similar
intermediate phases. Further investigation of this issue, for
example, using the renormalization group and bosonization at
weak coupling, or by jointly applying and comparing various
numeric methods, as has recently proven to be fruitful for
the doped two-dimensional Hubbard model [69,70], would
certainly be very interesting.
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