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Approximating quantum many-body wave functions using artificial neural networks
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In this paper, we demonstrate the expressibility of artificial neural networks (ANNs) in quantum many-body
physics by showing that a feed-forward neural network with a small number of hidden layers can be trained to
approximate with high precision the ground states of some notable quantum many-body systems. We consider
the one-dimensional free bosons and fermions, spinless fermions on a square lattice away from half-filling, as
well as frustrated quantum magnetism with a rapidly oscillating ground-state characteristic function. In the latter
case, an ANN with a standard architecture fails, while that with a slightly modified one successfully learns the
frustration-induced complex sign rule in the ground state and approximates the ground states with high precisions.
As an example of practical use of our method, we also perform the variational method to explore the ground state
of an antiferromagnetic J1-J2 Heisenberg model.
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I. INTRODUCTION

A central challenge in quantum many-body physics is devel-
oping efficient numerical tools for strongly correlated systems,
whose Hilbert space dimensionality grows exponentially with
the system size, so does the information required for character-
izing a generic state of the system. However, for many physical
systems of practical interest, the ground states may have a
simplified structure, thus, it can be appropriately approximated
using an exponentially smaller number of parameters than that
required for characterizing generic states. Typical examples
include low-dimensional strongly correlated systems, whose
ground states can be represented in terms of matrix product
states by taking advantage of limited entanglement entropy
in the ground states [1–3]. For higher-dimensional systems, a
different routine involving stochastic sampling applies for cer-
tain types of strongly correlated systems with positive-definite
ground states, with quantum Monte Carlo (QMC) algorithm
providing a well-controlled method to evaluate the physical
quantities of interest based on an exponentially small fraction
of all possible configurations [4–6]. In spite of the remarkable
achievement of these numerical methods, developing a general
strategy to represent typical many-body wave functions that
bypasses the exponential complexity remains a formidable, if
not impossible, task and is a question of principal interest in
the condensed matter community.

In general, a many-body wave function can be expanded in
terms of a set of orthogonal bases (e.g., the Fock basis) and can
be fully characterized by a function where one feeds in a basis
and gets the output the set of corresponding coefficients in the
wave function. Consider a spin lattice system as an example; in
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this case, an arbitrary wave function can be expanded as � =∑
σ C[σ ]|σ 〉, where |σ 〉 = |σ1 . . . σL〉 are {Sz

i } eigenstates
spanning the Hilbert space of the spin configurations. There-
fore, the task amounts to efficiently approximating the function
C[σ ] using an exponentially smaller number of parameters
than the Hilbert space dimensionality ∼2L. Among the existing
modern techniques used for approximating functions, artificial
neural networks (ANNs), as a powerful tool for data fitting
and feature extraction, have not only achieved remarkable
successes in machine learning and cognitive science fields
in the past decades [7,8], but have also recently attracted
considerable attention of researchers in the condensed matter
community. Applying machine learning methods to problems
in condensed matter physics is not only interesting in its own
right [9–12], but it may also potentially provide new ideas
and have practical applications for solving complex physics
problems, such as identifying classical and quantum phases
of matter and locating the phase transition points [13–21],
categorizing and designing materials [22–24], improving ex-
isting numerical techniques [25–29], and even developing new
methods in the quantum many-body physics [30,31]. Owing to
its tremendous capability in function approximations, ANNs
can also be considered as novel representations of many-body
wave functions [30,32–35], e.g., in a seminal work, Carleo
et al. proposed a new kind of variational wave functions using
the restricted Boltzmann machine [30].

Even though it can be proven mathematically that ANNs
can in principle approximate any smooth function to any
accuracy [36–38], what matters in practice is the efficiency
of the method: the amount of resources an ANN needs to
approximate a given multivariable function. In this paper,
we will demonstrate the expressibility of neural networks in
approximating and characterizing quantum many-body wave
functions using some notable examples of physical interest.
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For a wave function with completely random coefficients,
the information encoded in it cannot be compressed; thus, an
exponentially large number of parameters are needed. The goal
of this paper is to express the ground states of several notable
many-body systems in terms of neural networks of feasible size
and a small number of hidden layers, and, most importantly,
networks learn in a reasonable time. The success of this
approach relies on the specialty of the ground state compared
to a generic eigenstate, where the underlying physical laws
encoded in the ground state’s wave function can be extracted
by the neutral networks through a large amount of training.

In the following, we show which ground-state wave func-
tions can be efficiently expressed by a simple neural network,
and for those who cannot, how the ANN’s architecture should
be modified to achieve this goal. The scaling of the computation
resources with the system size is also investigated. Special
attention is devoted to wave functions with the “sign problem,”
where the function C[σ ] may alter its sign even for a local
change in the input [σ ], and thus cannot be considered a
“smooth” function. The sign problem not only hinders the
application of QMC methods, but also make it more difficult for
a simple ANN to learn a wave function. However, as we have
shown, this problem can be circumvented by dividing the task
into two subtasks and by designing ANNs with corresponding
architectures. This is a typical example that illustrates the
neural network’s ability of extracting the physics laws, even
for those too complex to be written explicitly.

The rest of the paper is organized as follows: First, we intro-
duce the structure of the ANN, then use it to investigate some
notable examples, including one- (1D) and two-dimensional
(2D) free bosons and fermions, whose exact ground states
are compared to those predicted by the ANN. To determine
whether the ANN approach can work for large systems, we
adopt the importance sampling algorithm to calculate physical
quantities instead of wave functions, and compare them to the
exact ones. Then, we attack the most difficult part: approx-
imating the ground state of a frustrated quantum magnetism
whose characteristic function can dramatically change its sign,
thus being very different from a smooth function, which makes
it extremely difficult for a regular ANN to approximate. In
spite of this, we find that a slight modification of neurons
in the ANN allows to capture the sign rule of the frustrated
quantum magnetism, even at the phase transition point. Finally,
we discuss the practical application of this method based on
the variational method.

II. METHODS

Before we proceed further to discuss specific examples,
let us describe the details of the ANNs and the optimization
methods we will use. We consider a fully connected feed-
forward neural network consisting of an interconnected group
of nodes (neurons) with a stacked layered structure, and
its expressibility is encoded in sets of adaptive weights of
connections between neurons in adjacent layers. As shown in
Fig. 1, we consider a four-layer ANN, with two hidden layers
(each containing Nb neurons) that are sandwiched between
the input layer [accepting the Fock basis ([n] or [σ ])] and the
output layer that output the corresponding coefficient predicted
by the ANN (CP [σ ]). A neuron can be considered to be an

FIG. 1. (Left) The structure of the feed-forward ANN we used
to approximate quantum many-body ground-state wave functions;
(right) three types of neurons with different activation functions.
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The activation function f (x) can be any smooth nonlinear
function. However, as we show below, choosing a proper
nonlinear function may significantly increase the ANN’s
efficiency for approximating certain target functions. We
introduce a fidelity function

F = 1 −
∣∣∣∣∣
∑

σ

〈C∗
T [σ ]CP [σ ]〉

∣∣∣∣∣ (2)

to measure the difference between the target function CT [σ ]
and the one predicted by the ANN CP [σ ]. Here, we should
point out that to calculate this quantity, the target functions
are known in advance. We will discuss how to generalize the
current method to explore new quantum many-body systems
with previously unknown ground states in Sec. V. The problem
now reduces to an optimization problem with the goal of
finding the minimum of F in the landscape of ANN parameters
(weights of the connection and bias, which are denoted as
{W } in the following). In the following, we adopt the ANN
construction methods and the optimization techniques that are
readily available in the machine learning libraries TensorFlow
[39], with the training time measured in the units of T0,
corresponding to the period of a single optimization iteration
that depends on the details of the ANN; more details about
the initialization and training can be found in the Appendixes.

III. FREE BOSONS/FERMIONS SYSTEMS

The first class of wave functions that we investigate are the
ground states of the simplest many-body systems composed of
free bosons or fermions. In spite of their extreme simplicity,
these wave functions are perfect touchstones to test the ex-
pressibility of the ANN, for two reasons: first, the well-known
analytic forms of these wave functions serve not only as a
target function during the training process of a neural network,
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but also a tester of the accuracy of its predictions; second, in
some cases, e.g., the ground state of 2D free fermions away
from half-filling, the wave function is simple but not trivial,
in the sense that it is difficult to be characterized using the
existing numerical methods such as the matrix product state
(MPS) and the path-integral QMC method, because this wave
function suffers from the entanglement area law and the sign
problem simultaneously.

The examples we studied in this section include the ground
state of free bosons in 1D lattice, and those of free fermions
in 1D and 2D lattices, with the filling factor away from
half-filling. For free bosons (FB) in a 1D lattice with length L

and unit filling factor (with the overall number of bosons N =
L), the ground-state wave function can be written as �FB =∑

n CFB[n]|n〉 where |n〉 = |n1 . . . nL〉 is the occupation num-
ber basis spanning the Hilbert space under the constraint
N = L. The analytic form of the multivariable characteristic
function is CFB[n] = √

L!/n1! . . . nL!/LL/2. The wave func-
tion of a free-fermion (FF) lattice system has a similar form
while ni can only be 0 or 1. We assume there are N particles
and CFF[n] = det[M], where M is an N × N matrix with the
matrix elements Mij = fi(xj ), with xj denoting the position
of the j th fermion, and fi(x) denoting the ith single-particle
eigenstate, in a 1D chain with a periodic boundary condition
(PBC), fi(x) = 1√

L
eikix with ki being the ith momentum. In

a 2D lattice, both xj and ki are replaced by a 2D vector x j

and ki . Based on the above exact results, we implemented the
training process, aiming to minimize the fidelity function F

by adjusting the parameters of the ANN. To avoid the problem
of overfitting, the number of the variational parameters in
the ANN was chosen to be on the order of O(N2

b ) ∼ 103,
significantly smaller than the typical Hilbert space dimension-
ality of the systems we studied here (∼106). As shown in
Fig. 2(a), for cases of 1D free bosons or fermions, an ANN
with only a few neurons Nb ∼ O(101) can easily approximate
the corresponding target function with an extraordinarily high
precision. For 2D fermions, a direct approximation of CFF[n]
based on the ANN with the current structure seems to fail
because the sign of CFF[n] can dramatically change owning to
the fermionic statistics in two dimensions. We will reconsider
this point later on. To avoid this problem, here we chose

|CFF[n]| instead of CFF[n] as our target function, which
still allowed us to calculate the average values of diagonal
operators in the Fock basis [e.g., the nearest-neighbor (NN)
density correlation Onn = 1

L

∑
i〈nini+1〉 and the local density

operator On1 = 〈n1〉]. As shown in Fig. 2(c), an ANN with
Nb ∼ O(102) can give rise to values of Onn and On1 with
precisions ∼O(10−3). We also notice that the ground state
of interacting quantum models (e.g., the quantum spin model
[30] and Bose-Hubbard model [40,41]) have been studied by
other machine learning methods, where the ANNs are trained
to minimize the ground-state energy, instead of the fidelity of
the wave function.

In all of the above-studied cases, the system size is relatively
small since we want to compare our results with the exact
ones. In what follows, we show that, in principle, there is no
intrinsic difficulty to use ANNs to simulate larger systems,
whose Hilbert space dimensionality is much larger than the
memory of any computer, thus making it impossible to store
the predicted wave functions and calculate its overlap with the
exact ones. As a consequence, we focus on physical quantities
in the ground states instead of focusing on the wave functions
themselves, to test the accuracy of the ANN. The key point is
that we approximate the characteristic functions only training
the ANN only over a tiny fraction of the entire configuration
space and we assume that the predicted functions are also
valid for other configurations once the ANN finds the correct
form of the target function. Obviously, the efficiency of the
function approximating strongly depends on the choice of
training configurations, which need to be “representative” in
the Hilbert space. In other words, the probability of choosing
a certain configuration [n] should be proportional to its weight
|C[n]|2 in a given wave function, which can be achieved
by the importance sampling in the Monte Carlo algorithm.
Consider the ground state of a 1D L = 64, N = 31 free-
fermion system as an example. For this system, we first
implemented importance sampling to generate millions of
“representative” configurations based on the exact value of
|CT [n]|2, and use these generated configurations to train the
ANN and approximate the target function. After completing
the training, a new set of “representative” configurations were
generated according to their weights predicted by the ANN

FIG. 2. (a) Fidelity F = 1 − |〈�ED|�ANN〉| as a function of the number of neurons Nb, for 1D free bosons with L = 12, N = 12, and the
corresponding Hilbert space dimensionalityD = 1 352 078 and for 1D free fermions with L = 24, N = 11, andD = 2 496 144. (b) The precision
function δ = |OANN − OED|/OED for two different quantities Onn = 1

L

∑
i〈nini+1〉 and On1 = 〈n1〉 for 2D free fermions with L = 24(4 × 6),

N = 13, and D = 2 496 144, the inset shows a typical Fock configuration. (c) The precision function δ for Onn = 1
L

∑
i〈nini+1〉 as a function

of Nb obtained by the importance sampling algorithm for a 1D free fermion, where both the amount of the training and the sampling data are
chosen as H = 106 in the simulations of various system sizes; the inset shows δ as a function of L with a fixed H = 106 and Nb = 200.
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|CP [n]|2, and we calculated the value of the physical quantities
based on these new configurations and compared them with
their exact values. The result is shown in Fig. 2(c), where
we observe that the precision of Onn evaluated based on the
above-described sampling scheme can reach O(10−3). For a
fixed amount of training and sampling data, the scaling relation
between the precision and system size is shown in the inset of
Fig. 2(c).

IV. NON-POSITIVE-DEFINITE WAVE FUNCTIONS

In general, neural networks perform much better on ap-
proximating smooth functions rather than rough ones, which
may restrict their applicability in quantum many-body physics,
because for certain types of important wave functions, their
characteristic functions may drastically change and even alter
their sign in response to a slight change in the input con-
figuration. The sign problem, in its different forms, imposes
challenges on both existing methods (e.g., QMC) and the
current neural network function approximating. For example,
the ANN with a simple structure illustrated in Fig. 1 fails to
approximate the ground state of one of the simplest models:
a 1D antiferromagnetic Heisenberg model. In QMC, the sign
problem in such a bipartite lattice can be avoided by performing
a basis rotation. In the current method, we attack the problem
by separately approximating the amplitude and the sign of
the target function by two different ANNs. The ANN that
approximates the amplitude is similar to those studied above,
with the only difference that the target function is replaced by
its absolute value. This “amplitude ANN” performs as well as
that in the previously described ones in Sec. III.

The difficult part is to approximate the sign function:
S[σ ] = (C[σ ]/|C[σ ]| + 1)/2, which takes the values of 1(0)
if C[σ ] is positive (negative). For a 1D lattice (or more
generally, a bipartite lattice) model, it is well known that the
sign of C[σ ] obeys the Marshall sign rule: S[σ ] = 1/0 if in
σ the total number of down spins in the odd sites is even
or odd. This mathematical theorem enables us to perform a
basis rotation in the even or odd sites to eliminate the sign
problem in QMC simulations. For the current method, the
question is without the prior knowledge of the Marshall sign
rule, whether a ANN can automatically extract it from the
training set data? Based on our numerical tests, we found that
a standard ANN, as the one shown in Fig. 1, fails to extract the
Marshall sign rule, but a modified ANN with the activation
function of neurons in the first hidden layer replaced by a
cosine function (hereafter denoted as “sign ANN”) succeeds.
This modification can significantly increase the efficiency
of the ANN with the accuracy of 100% because the cosine
function is more capable of capturing the even/odd features
in the input data. Another important wave function is the
ground state of the Majumdar-Ghosh model: the dimerized

state � = ⊗ L
2
i=1

1√
2
[|↑〉2i−1|↓〉2i − |↓〉2i−1|↑〉2i], with the sign

function S[σ ] = [
∏ L

2
i=1(Sz

2i−1 − Sz
2i) + 1]/2. We found that

this sign rule can also be satisfactorily learned by the sign
ANN with the accuracy of 100%.

In the two examples above, the sign rules are rather simple
in the sense that they can be written explicitly in a simple form.
However, for a generic wave function with the sign problem,

this is not the case. The sign rule may be too complex to be
captured by programming or designing explicit algorithms,
which on the other hand is exactly what ANNs are good
at. Approximating the sign function becomes a classification
problem, which reminds us of one of the most successful
applications of ANN: recognizing handwritten digits. In this
classical problem, the ANN was shown to automatically and
successfully infer the rules of classification using the training
set examples. Here, we adopt a similar strategy to extract the
elusive sign rule for the ground state of a frustrated quan-
tum magnetism model: the 1D J1-J2 antiferromagnetic (AF)
Heisenberg model with the Hamiltonian H = ∑

i[J1 Si Si+1 +
J2 Si Si+2] (where both J1 and J2 are non-negative). The two
cases studied above are exactly the ground state of this model
in two limits: α = 0 and 0.5 with α = J2/J1.

For a general α, there is no exact solution of the ground
state; thus, we used the Lanczos method to calculate the sign
function for a finite-size system and compared it to the one
predicted by the sign ANN. The accuracy versus α is plotted
Fig. 3(a) for various Nb, and we observe that in the entire region
0 � α � 0.5, the accuracy predicted by the sign ANN is high,
reaching 99%, while the minimum of the accuracy corresponds
to the phase transition point. Aside from the accuracy, the
efficiency of an ANN also depends on the typical training time
and how this time scales with the system size. The “time”
evolution of the accuracy during a training process is shown
in Fig. 3(b), where we observe that the ANN first experiences
a period of “confusion” with the prediction accuracy P 	 0.5
until a certain timeTc, after which the machine finally learns the
correct approximation of the exact sign function and the accur-
acy will increase rapidly before saturating. This time scale Tc,
together with the number of the neurons Nb, can be understood
as the computation resources one needs to capture the sign rule
using the ANN. The scaling relation between Tc and the system
size L is plotted in the inset of Fig. 3(b). The system size we
studied is relatively small, thus, it is difficult to tell whether Tc

scales with L in a polynomial or exponential manner, which
remains an open question.

Now, we discuss more details of the ANN. First, even
though throughout this paper we choose a ANN with a
two-hidden-layer structure, one may wonder whether further
increasing the number of the layers can improve the prediction
accuracy or not. To address this issue, we calculate P for
different ANN with different hidden layer (up to three) with
fixed iteration steps. As shown in Fig. 2(c), we found that, at
least for this example, even though an ANN with two hidden
layers indeed performs much better than that with only one
hidden layer, further increasing the number of layers does
not significantly improve the performances. We also check
the correlation between the erroneously assigned signs for a
certain coefficient and the coefficient’s absolute value. To do
that, we define a parameter ε to measure the ratio between the
average absolute value of the coefficient with the erroneously
assigned sign and that of the whole training set:

ε =
1
D′

∑
σ ′ |C[σ ′]|

1
D

∑
σ |C[σ ]| , (3)

where [σ ′] denotes the set of input basis with the erroneous
assigned sign, with the dimensionality D′, while [σ ] denotes
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FIG. 3. (a) The accuracy function P (α) of the sign rule in the ground state of 1D J1-J2 model with L = 24 and various Nb, with the inset
showing the modified ANN used to capture the sign rule with neurons in the first hidden layer replaced by those with the cosine activation
functions f (x) = cos(πx). (b) The evolution of P during the training with fixed Nb = 200 and various systems sizes, with the inset showing
a typical “confusion” time Tc in the training as a function of system size with Nb = 200. (c) The accuracy P predicted by the sign ANN as a
function of the layer of the ANN with a fixed Nb = 120. (d) The ratio between the average absolute value of the coefficient with the erroneously
assigned sign and that of the whole training set with Nb = 120. (e) The fidelity as a function of Nb for the amplitude ANN. (f) The fidelity
in the J1-J2 model and various α as a function of Nb predicted by the combination of the sign (with Ns

b = Nb) and amplitude ANNs (with
Na

b = Nb/2). For (c)–(f), the system size L = 24.

all the training bases with the dimensionality D. As shown in
Fig. 3(d), we can find that ε ∼ O(10−2) � 1, indicating that
the erroneous predictions of the sign ANN tend to occur for
those input bases whose coefficients have small absolute value.

By combining the results of the amplitude [as shown in
Fig. 3(e) for examples] and sign ANNs, we can calculate
the ground state of this frustrated quantum magnetic model,
which agrees very well with the exact results, as shown in
Fig. 3(f). In summary, by dividing the ANN into two parts with
different architecture, we can approximate the ground state of
a frustrated quantum magnetism with high precisions. This
strategy may shed light on using ANNs to solve the complex
quantum many-body systems with sign problems.

V. VARIATIONAL RESULTS

In all the cases studied above, because the target functions
(the ground-state wave functions) are given, either analytically
or numerically, one may expect that the current method would
not be useful for exploring new quantum many-body systems
with previously unknown ground states. However, our previous
results have established that the ground states of some quantum
many-body systems can be efficiently represented by ANNs,
which enables us to consider an ANN as a variational wave
function for the true ground state of a new system. The
connection weights and the bias in an ANN are the variational
parameters with respect to which we seek to minimize the
expectation value of the Hamiltonian (energy), instead of the
fidelity function as described above. For a given ANN with a

set of parameters {W }, the corresponding variational energy
E({W }) can be estimated using Monte Carlo simulations, with
a procedure similar to those used for previously studied free-
fermion cases in Sec. III. The minimum of E({W }) in the space
of parameters can be found using the stochastic reconfiguration
optimization method. Similar strategy has been used in a
different type to ANN: the restricted Boltzmann machine [30]
to solve the nonfrustrated quantum magnetic models, e.g., the
Heisenberg model and transverse Ising model. For the complex
problems like the frustrated quantum magnetisms, we shall
show that the strategy we proposed by dividing the ANNs into
amplitude and sign parts can also improve the efficiency of this
variational method.

In the following, we use the ANN combined with variational
Monte Carlo (VMC) methods (the details of the method can
be found in the Appendix) to solve the ground state of a 1D
L = 30 J1-J2 AF Heisenberg model. The structure of the ANN
we used in the variational method is shown in Fig. 4(a). We
adopt the strategy proposed in Sec. IV that the ANN has been
divided into the amplitude and sign parts, and the final output
is the product of them. However, one of the crucial differences
is that the output of the sign ANN is a continuous number
instead of a discrete one. The reason is that a discrete function
is usually nondifferentiable, which may decrease the efficiency
of the variational method. We also notice that the structure of
the ANN in Fig. 4(a) is much simpler than the one we used
in Sec. IV: there is only one hidden layer instead of two in
both amplitude and sign ANN. We will turn back to this point
later.
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(a)

FIG. 4. (a) The structure of the ANN we used in the variational
method calculations. (b) The “time” evolution of the excess energy per
site �e = (Ev − E0)/L during the training process for a 1D J1-J2 AF
Heisenberg model with L = 30 using the trial wave function as shown
in (a) with the neuron number in the hidden layer of the amplitude
ANN Nb = 30.

Since the target wave function is unknown, the cost function
to be minimized during the training process is the variational
energy of the system, which can be evaluated by the VMC
method for a given trial wave function (ANN). In Fig. 4(b),
we plot the “time” evolution of the excess energy per site
�e = (Ev − E0)/L during the training process, where Ev

is the variational energy evaluated by VMC and E0 is the
exact ground-state energy calculated by the density matrix
renormalization group method. As shown in Fig. 4(b), an ANN
with a simple structure shown in Fig. 4(a) can give rise to a
value of the ground-state energy with precisions ∼O(10−3).

It is interesting to notice that compared to the ANN we
used in Sec. IV, the structure of the ANN we used in this
variational method is much simpler (only one hidden layer),
but its performance is even better. There are several reasons for
this counterintuitive fact: (i) In the variational method, the sign
and amplitude ANN are trained as a whole, while in Sec. IV
they are trained separately. However, for the sign ANN, an
extremely high accuracy may not be very necessary for the final
results, since as shown in Fig. 3(d) the erroneous predictions
of the sign ANN tend to occur for those input bases whose
coefficients have very small absolute value, which give very
little contribution to the final results, especially to the energy.
(ii) In all the sections except Sec. V, during the optimization
process the training data sets are divided into N batches
and the optimization is performed batch by batch, while in
the variational method, all the entries in wave function are
optimized simultaneously. (iii) In Sec. IV, we choose the cost
function as the overlap of the wave functions (fidelity), which
is a global quantity, thus is usually difficult to be minimized,
while in the variational method, we only need to minimize a
local quantity: the variational energy.

VI. CONCLUSION AND OUTLOOK

In this paper, we demonstrated the powerful applicability
of a simple ANN in approximating the ground-state wave
functions of some notable quantum many-body systems. Even
though an ANN with a simple structure can already approxi-
mate some of them with a high precision, there is still a long
way to go before this method can learn to solve problems that
remain inaccessible by any other well-established numerical
method, and the efficiency improvement plays a key role in
this process.

Some avenues along this line suggest the directions for
future studies. First, as with many existing numerical meth-
ods, imposing the Hamiltonian symmetries on the ANN will
significantly improve its efficiency. Consider a 2D system
for example. An ANN with translational symmetry does not
only reduce the number of the variational parameters and
training data, but also learns the lattice geometry from the
beginning. Inspired by the impressive success of deep learning
techniques, we expect that an ANN can be more powerful
when networks are made deeper. In numerical simulations, we
found that even though an ANN with two hidden layers indeed
performs much better than that with only one hidden layer,
further increasing the number of layers does not significantly
improve the performances. One of the possible reasons is
that for an ANN with more hidden layers, even though its
expressibility may be more powerful, the computational cost
to find the optimal representation is significantly increased
since the landscape in the parameter space is more complex.
Incorporation of “deep learning” into our simulations remains
an open issue and deserves further studies.

A fully connected ANN used in our simulations may contain
many redundant connections that complicate the optimization
process. Adopting ANN with more advanced architectures
(e.g., convolutional neuron networks) may help to avoid this
redundancy, thus likely significantly improve its efficiency.
Recently, the relation of the quantum entanglement and the
range of the connections in the ANN have been built, and we
expect the convolutional neuron networks may work well for
those ground states with short-range entanglement [16]. Last
but not least, it is known that the artificial neural network,
in general, is a heuristic algorithm whose efficiency largely
depends on the designer’s experience and intuition; however,
to make this approach valuable in the physics, a systematic
understanding of its validity and limitation, at least for this
concrete problem, is still needed, which may be also beneficial
to the artificial intelligence community.
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APPENDIX A: DETAILS OF THE OPTIMIZATION
ALGORITHM

During the training process of the artificial neural network,
one needs to adjust the parameters in ANN to minimize the
distance function, which turns to a multivariable optimization
problem. In our simulations, we use two optimization tech-
niques depending on the concrete problems: the stochastic
gradient descent (SGD) [8] and an adaptive learning rate
optimization algorithm: adaptive moments (Adam). Here, we
only explain the details of the SGD method, and the Adam op-
timization algorithm has been explicitly illustrated in Ref. [42].
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In our simulation, each input data is composed of the basis
and the corresponding coefficient (label) calculated by exact
diagonalization (ED) or other methods (e.g., {[σ ],C[σ ]}). For
a state with large Hilbert space dimension D, the typical
coefficient is pretty small C[σ ] ∼ O(1/

√
D). In general, the

nonlinear activation function is not sensitive in the regime
where the input/output is too small, therefore, to make the ANN
more efficient, we multiply the target function by a factor of√
D, thus C[σ ] ∼ O(1). This renormalization does not change

the results of any physical observable, but can significantly
improve the efficiency of the fitting. The input data set are
randomly divided into two groups: 80% of them are used for
training and the rest are testing data sets, and we choose a
random set of ANN parameters W0 as the initial parameters.
The training set of data are randomly reshuffled and divided
intoN batches, each of which containM data. In each batch, the
training data are labeled as {σ (1), . . . σ (M)} with corresponding
target C[σ (i)].

After the initializations are finished, we start the optimiza-
tion process. In each step of the SGD update, we choose one
batch and calculate the gradient estimate in the parameter
landscape W:

g = ∇W
1

M

M∑
i=1

L(Cp[σ (i)],C[σ (i)]), (A1)

where Cp[σ ] is the coefficient predicted by the ANN and
L(Cp[σ ],C[σ ]) = (C[σ ] − Cp[σ ])2 is a function of W, de-
noted as loss function. Once we obtain the gradient, the
parameter W is updated as

W ← W − εg, (A2)

where ε is the parameter controlling the learning rate, which
gradually decreases over time. The above optimization pro-
cesses continue until all the batches are chosen, then one
iteration of the training is finished. In our simulations, the
training time is measured in the unit of the time of a single
iteration T0. The typical training time ranges from 102 ∼
103 T0 depending on the convergency of the problems. The
SGD method is the most used optimization technique for
machine learning. In our simulations, we use the GPU to speed
up the computational efficiency of the training. A set of raw
data generated during the training process can be found in the
Supplemental Material [43].

APPENDIX B: DETAILS OF THE VARIATIONAL METHOD

In this Appendix, we will show the variational analysis of
using the artificial neural network to explore new ground states.
In this case, the target function is previously unknown, there-
fore, during the training process, what we need to minimize is
not the distance function F , but the variational energy (the ex-
pectation value of the Hamiltonian over the ANN trial wave
function), which can be calculated using the variational Monte
Carlo method, as we will show in the following. In general,

a Hamiltonian can be split into the diagonal and nondiagonal
parts: Ĥ = T̂ + V̂ in the basis |σ 〉 (or Fock basis). For a given
trial wave function in terms of the ANN with a set of variational
parameter {W }, the expectation value of the diagonal part

V ({W }) = 〈V̂ 〉 =
∑
[σ ]

pσ {W }〈σ |V̂ |σ 〉, (B1)

where pσ {W } = |CANN[σ ]|2 is the probability predicted by the
ANN. The summation

∑
[σ ] is over the whole Hilbert space,

whose dimensionality exponentially grows with the system
size. Following in the spirt of Monte Carlo, the summation
over the whole Hilbert space can be replaced by the summation
over those important configurations:

V ({W }) 	
∑
[σ̄ ]

pσ̄ {W }
Z{W } 〈σ̄ |V̂ |σ̄ 〉 (B2)

with Z{W } = ∑
[σ̄ ] pσ̄ {W }, and [σ̄ ] is an exponentially small

fraction of the whole configuration, denoting the set of rep-
resentative configurations chosen by the importance sampling
using Metropolis algorithm according to its probabilitypσ̄ . The
expectation value of the off-diagonal term can be evaluated in a
similar way, without loss of generality, we assume T = |σ ′〉〈σ |
with |σ 〉 = |σ ′〉, thus,

T ({W }) 	
∑
[σ̄ ]

pσ̄ {W }
Z{W } × CANN[σ̄ ′]

CANN[σ̄ ]
〈σ̄ ′|T̂ |σ̄ 〉, (B3)

where the observable we need to calculate during the sampling
is not only 〈σ̄ ′|T̂ |σ̄ 〉, but 〈σ̄ ′|T̂ |σ̄ 〉CANN[σ̄ ′]/CANN[σ̄ ]. By
combining Eqs. (B2) and (B3), we can obtain the variational
energy for a given trail ANN wave function. To minimize
the variational energy, one needs to calculate the derivative
of H ({W }) with respect to {W }, and the variational parameters
can be determined by solving the equation

∂H ({W })
∂wi

= ∂V ({W })
∂wi

+ ∂T ({W })
∂wi

= 0. (B4)

Notice that an ANN is a combination of a set of nonlinear
functions whose explicit forms are already known; as a conse-

quence, one can easily obtain its derivative ∂C
{W }
ANN[σ ]
∂wi

, thus,

∂V ({W })
∂wi

=
∑
[σ ]

pσ {W } × ∂C
{W }
ANN[σ ]

∂wi

2〈σ |V̂ |σ 〉
C

{W }
ANN[σ ]

,

∂T ({W })
∂wi

=
∑
[σ ]

pσ {W } × 〈σ ′|T̂ |σ 〉
C

{W }
ANN[σ ]

×
[

∂C
{W }
ANN[σ ′]
∂wi

+ ∂C
{W }
ANN[σ ]

∂wi

C
{W }
ANN[σ ′]

C
{W }
ANN[σ ]

]
.

By performing the importance sampling, one can calculate the
∂V ({W })

∂wi
and ∂T ({W })

∂wi
, then substitute them into Eq. (B4) to solve

the variational parameters.
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