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On the use of twisted photons for spectroscopy of impurity centers in crystals
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Absorption of twisted photons for quadrupole 4f - 4f transitions in Re3+ impurity ions in micro- and
macrocrystals is considered. Two types of twisted photon beams—the Laguerre-Gaussian and the Bessel-Gaussian
beams—are considered and compared. Twisted photons have a nonzero transverse field gradient, which leads to
selection rules for quadrupole transitions other than those in the case of the usual quadrupole transitions caused
by a longitudinal field gradient. This allows one to observe new spectral lines which are absent in the usual
absorption spectra. For microcrystals placed at the beam axis of twisted photons the otherwise dominating forced
dipole 4f - 4f transitions are absent, which simplifies the observation of new spectral lines.
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I. INTRODUCTION

In recent years, there has been considerable interest in the
optical fields that carry an optical orbital angular momentum
and have helical phase fronts (see, e.g., [1–15] and references
therein). The orbital angular momentum (OAM), together
with spin angular momentum from light circular polarization,
contributes to the overall angular momentum of a light beam
and becomes thus important in various light-matter interaction
processes. In particular, the OAM can be transferred to the
external angular momentum of a free atom if the size of the
wave function of its external motion is comparable or larger
than λ [2]. This may take place, e.g., in the case of atomic
Bose-Einstein condensate [12].

On the quantum level, the light beam with OAM l may
be considered as a ray of photons having the momentum lh̄ in
addition to the spin momentum (polarization) h̄ per photon [1–
5]. Such photons are called “twisted” photons [3]. The twisting
of photons shows up at a distance of ∼ λ/|l|. This >∼λ scale of
twisting raises the question of whether the twisting is able to
affect the optical transitions in atoms. In other words, is an
atom too small to “feel” this lengthy twist of photons, or not?
Here we have in mind atoms localized in space (e.g., in solids).

Recently it was shown that the dipole-allowed optical
transitions in atoms in solids are not affected by the OAM
(twist) (see, e.g., [6]). However, the dipole-forbidden but
quadrupole-allowed transitions in localized atoms can “feel”
the OAM if the beam waist w0 is sufficiently small [7–11].
It becomes possible because the quadrupole transitions take
place due to the gradient of the electromagnetic field, and the
OAM affects this gradient. Moreover, the OAM is ultimately
associated with the field gradient. This gradient differs from
the field gradient of usual plane waves: The OAM gradient
is directed perpendicularly to the propagation direction, while
for nontwisted light the essential gradient is directed along
the beam propagation. This difference results in different
selection rules for optical transitions, and makes it possible
to distinguish twisted and nontwisted photons. For example,
for free atoms in the external magnetic field the use of twisted

photons propagating along this field allowed the observation
of optical transitions forbidden in the case of nontwisted pho-
tons [6,11,13–15]. The spectral lines corresponding to these
transitions can be distinguished from other allowed transitions
due to the Zeeman splitting as was done in Ref. [15], where
an additional quadrupole transition at 729 nm was observed in
Ca+ spectra under excitations by twisted photons.

In this report, we are considering the absorption of twisted
photons by impurity centers in crystals due to quadrupole-
allowed transitions in these centers. We show that the spectra
for twisted photons depend on the absolute value |l| of twisted
photons. The dependence on the sign of l is absent, which is a
consequence of the small size of the centers, as compared to
the spatial size of the twist. An exception arises for the centers
located exactly at the axis of the beam of twisted photons; these
centers can also “feel” the sign of the OAM l. However, the
number of such centers is negligibly small.

In a nano- or microcrystal placed close to the symmetry axis
of the beam with OAM |l| = 1 the field takes the zero value,
but the transverse gradient achieves the maximum value (for
beams possessing |l| > 1 this component of the field gradient
is zero at the axis). In this case, the intensities of new lines
in the spectra of quadrupole-allowed transitions are maximal.
Outside the axis, the transverse field gradient exists for any
l. Therefore, for macroscopic crystals the absorption in new
spectral transitions exists for any l.

Two types of light beams with OAM will be considered: the
Laguerre-Gaussian (LGBs), and the Bessel-Gaussian (BGBs)
beams. To calculate the field gradient for LGBs, we take into
account that the mathematical expression for the Laguerre-
Gaussian beam, after a proper transformation of variables,
reduces (up to a normalization factor) to the eigenfunctions of
a dimensionless twofold degenerate harmonic oscillator. These
functions are orthogonal and normalized, which essentially
simplifies the calculations of the field gradient for LGBs and
the corresponding matrix elements of absorption. BGBs with
OAM are more tightly focused than LGBs with the same
Gaussian envelope; therefore, for |l| = 1 and p > 0 they have
also a larger field gradient in the beam center than LGBs. In
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addition, BGBs with inclination angles close to π/2 have a
strongly reduced longitudinal gradient. As a result, within the
axial region of such beams only new quadrupole transitions,
initiated by the transverse field gradient, take place while the
dipole transitions and the usual quadrupole transitions due
to the longitudinal field gradient are absent. New spectral
transitions can be observed also for beams without OAM but
with a transverse field gradient. The brief discussion of the use
of the Hermite-Gaussian beams without OAM is given in the
Appendix.

As a promising object for observation of the effects of OAM
in absorption spectra, we consider the impurity centers of triply
charged ions of rare-earth (RE) atoms in crystals that have
4f - 4f optical transitions. An example is the cubic symmetry
optical center in the Nd3+-doped CaF2. These centers have
a very long (tens of milliseconds) spontaneous emission
lifetime and low spontaneous emission dipole transition rates,
because they are parity forbidden [16]. In some cases, using
ordinary light for excitation, one cannot see all possible optical
transitions between the crystal-field splitting states of various
RE manifolds in dielectric crystals, the number of which is
determined by the maximum possible splitting in the crystal
field [which is 2J + 1 for non-Kramers ions and (2J + 1)/2
for the Kramers ions]. In these cases, photons with OAM
can allow quadrupole transitions between these states: Twisted
photons can result in new transitions corresponding to different
values of the projections m of the total momentum J of 4f

electrons on the symmetry axis in the initial and final states.
These transitions result in the appearance of new narrow lines
in optical spectra and make hitherto invisible crystal-field
splitting states visible.

We should also note the Re3+ ions in LiYF4 and other
crystals with a similar structure. At least some of these centers
have an inversion symmetry (point group S4) and strongly
forbidden dipole transitions. In these centers, the selection
rules for the magnetic quantum number m also depend on
the direction of the light field gradient. Therefore, the use of
twisted photons with their specific field gradient can initiate
transitions forbidden for ordinary nontwisted photons.

In this connection, especially interesting would be the
experiments with nano- or microcrystals placed at the beam
axis. In this case, the forced dipole transitions, giving (ac-
cording to the Judd and Ofelt theory [17–19]) an essential
contribution to the spectra of the 4f - 4f transitions, will be
suppressed and only quadrupole-allowed transitions forced by
the transverse components of the field gradient will contribute.
Instead of measuring the absorption spectra, the effects caused
by the OAM of photons can be detected by a very sensitive
method of monitoring the excitation spectra of emission. Such
experiments may allow one to also get additional experimental
information about the energy levels of centers, not available for
spectroscopy with the usual photons.

The transitions with very low spontaneous emission prob-
abilities (long spontaneous emission lifetimes), excited by
twisted photons, can be used for bioimaging in the near-
IR spectral range that will increase the signal-to-noise ratio
not only in the presence of nanosecond autofluorescence of
biotissues, but in the case of any parasitic luminescence of
microsecond duration. In this way it is possible to reduce the
adverse effect on healthy cells.

II. LAGUERRE-GAUSSIAN AND BESSEL-GAUSSIAN
BEAMS WITH OAM

We consider the excitation of an atom (optical center in a
crystal) by a ray of twisted photons, with OAM l propagating
in the z direction. Two types of such beams are considered: (a)
Laguerre-Gaussian and (b) Bessel-Gaussian beams. By using
the polar coordinates φ, ρ, and z the operator of the vector
potential of a Laguerre-Gaussian beam can be presented in the

form �̂Alp ≡ �e0Âlp(ϕ,ρ,z), where �e0 is the polarization (spin)
of photons,

Âlp ≡ Âlp(ϕ,ρ,z) = Â0�l,p(ρ,φ)e−ikzz−ρ2/2w2
z . (1)

Here Â0 is the operator of the vector-potential operator of
the mode (kz,l,p), kz = k cos ϑ is the longitudinal component
of the wave vector of the photon,

�LG
l,p (ρ,φ) = w−1

z

√
p!

π (|l| + p)!

(
ρ

wz

)|l|
L|l|

p

(
ρ2
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z

)

× eilφ+ikzρ
2/ 2(z2+z2

R)+i	G(z), (2)

p � 0 is an integer, wz = w0

√
1 + (z/zR)2/

√
2 is the ra-

dius of the beam passing at the distance z from the opti-
cal center, zR = 2πw2

0/λ, w0
>∼ λ/

√
2π is the beam waist,

and 	G(z) is the Gouy phase shift. The beam (2) is
normalized:

∫
ρdρdφ|�LG

l,p (ρφ)|2 = 1.

In the case of the Laguerre-Gaussian beams, L
|l|
p (x) are the

generalized Laguerre polynomials. In the case of BGBs,

�BG
l,p (ρ,φ) =

√
p√

πλw0
Cl,pJl

(pρ

λ

)
eilφ, (3)

where Jl(x) is the Bessel function, p = kρλ = 2π sin ϑ , kρ =
k sin ϑ is the radial component of the wave vector of photons,
ϑ = arctan(kρ/kz), and Cl,p is the normalization factor. In
particular,

C1p =
√√

πw0λ/p
[
e−p2w2

0/2λ2
I1

(
p2w2

0/2λ2)]−1/2
. (4)

In the case of |w0p/λ| � 1 one gets Cl,p ≈ 1. For both
LGBs and BGBs the larger p is, the higher the powers of ρ

that give the main contribution. However, in BGBs, unlikely
to LGBs, the parameter p has continuous values in the finite
interval |p| � 2π . Below, pLG and pBG are used for the values
of p for LGBs and BGBs, respectively. If w0 � λ, then for
ρ <∼ w0 one gets |�BG

l,p | � |�LG
l,p |; i.e., BGB is more focused

than LGB. This is a consequence of an additional focusing due
to the conical wave front of BGBs.

To find the intensities of new spectral lines, one needs to
calculate the field gradient ∂�l,p/∂ρ. In the case of a Laguerre-
Gaussian beam it is convenient to perform this calculation by
applying the relation between two-dimensional (2D) Hermite
polynomials and Laguerre polynomials, derived in Ref. [20].
One gets (see the Appendix)

∂�LG
|l|,p

∂ρ
= (−1)p

2w0

(√|l| + p�LG
|l|−1,p − √

p�LG
|l|+1,p−1

+
√

p + 1�LG
|l|−1,p+1 −

√
|l| + p + 1�LG

|l|+1,p

)
. (5)
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In the case of a Bessel-Gaussian beam, simple calculation
gives

∂�BG
|l|,p

∂ρ
=

√
p√

πλw0
Cl,p

[|l|
ρ

J|l|
(pρ

λ

)
− p

λ
J|l|+1

(pρ

λ

)]
. (6)

III. MATRIX ELEMENTS OF ABSORPTION

Here we are studying the absorption of twisted photons by
an impurity atom/ion in a crystal. The interaction Hamiltonian
of the electromagnetic field with an electron is equal to
[21,22]

Hint = − e

2mec
( �̂A �̂p + �̂p �̂A) + e2

mec2
Â2, (7)

where e and me are the charge and mass of the electron (hole);
�̂p is the operator of electron (hole) momentum. Note that the
second term in the interaction Hamiltonian (7) can usually be
neglected. If the system under consideration has more than one
optical (valence) electron, then one should take a sum over all
of them.

We suppose that the axis of the beam of twisted photons is
displaced from the nucleus of the atom by some distance ρ0

in the x direction. The nucleus of the atom/ion is situated at a
point with x = ρ0, y = z = 0. Then the spherical coordinates
of the optical electron in the atom are x = r sin(ϑ) cos(ϕ), y =
r sin(ϑ) sin(ϕ), and z = r cos(ϑ). We take into account that,
due to the small size of an atom/ion a0, the contribution to the
matrix element of the electronic transition is given by terms
with x,y, z ∼ a0 � w0, ρ0. Therefore, the OAM-dependent
phase factor eiφl ∼= 1 does not depend on the actual value of
the coordinate of the optical electron in a center. Thus the
centers, due to their smallness, do not “feel” the OAM (l) sign.
However, they can feel the absolute value |l| of the OAM.
An exception arises for the centers located very close to the
axis of the beam of twisted photons at a distance less than or
comparable to the smallest size of the electronic wave function
of the contributing electronic states. These centers can also feel
the sign of the OAM. However, the number of such centers is
small and their contribution is negligible.

To calculate the matrix element 〈4f |Hint|4f0〉 of the
quadrupole-allowed transition |4f0〉 → |4f 〉 in the atom we
expand the acting-to-the-center vector potential operator Â

in the series with respect to the coordinates of the elec-
tron in the atom and take into account up to the first-
order terms, which are included. We get A(�r) = Â0 + Â1z +
Â2x, where Â0 ≡ Â(0,ρ0,0), Â1 = ikÂ0�lp(ρ0,0), and A2 =
Â0∂�lp(ρ,0)/∂ρ|ρ=ρ0 are the operators of the longitudinal
and the transversal gradients of the field, respectively. The
first term contributes to the electric dipole transition and
does not contribute to the electric quadrupole transition under
consideration. To find the contributions of last two terms we
apply the identity

rαp̂β + p̂βrα ≡ rαp̂β + p̂αrβ + εαβγ L̂γ ,

where α,β,γ are indices of Cartesian coordinates x,y,z;

rx,y,z = x,y,z; εαβγ is the Levi-Civita symbol; �̂L is the an-
gular momentum operator (on repeated indices summation
is carried out). The latter operator does not contribute to
the electric quadrupole transitions (it contributes to magnetic

dipole transitions). Also taking into account the relation
rαp̂β + p̂αrβ = ime[rαrβ,H0] (the units h̄ = 1 are used), and
the ratios H0|f0〉 = Ef0 |f0〉 and 〈f |H0 = Ef 〈f |, where H0

is the Hamiltonian of the electrons of the atom, and [a,b] =
ab − ba is the commutator of the operators a and b, the matrix
element under consideration can be presented as the sum of
following two terms:

M
(1)
f0,f

� −√
ω(ke/c)�l,p(ρ0,0)〈f |(�e0�r)r · cos(ϑ)|f0〉, (8)

M
(2)
f0,f

� i
√

ω

(
e

cw0

)
∂�l,p(ρ,0)

∂ρ

∣∣∣∣
ρ=ρ0

×〈f |(�e0�r)r · sin(ϑ) · (cos ϕ)|f0〉, (9)

where ω = Ef − Ef0 (the multiplier ω−1/2 comes from the
operator Â0). The matrix element M

(1)
f0,f

describes the usual
quadrupole transitions due to the longitudinal component of
the field gradient (i.e., perpendicular to the wave front, it is
presented also in the case of plane waves), while the matrix
element M (2)

f0,f
describes the quadrupole transitions for photons

with OAM due to the transversal component of the field
gradient (parallel to the wave front). In Re3+ ions with several
charged carriers (several f electrons or f holes) all these
charge carriers contribute to the initial and final electronic
states. For the matrix elements of such ions, one needs to take
a sum over all these charge carriers.

IV. ABSORPTION IN A NANOCRYSTAL

The maximal gradient of the field is achieved at the axis of
the beam with |l| = 1. Therefore, the largest effect from the
twist of photons is expected to be obtained for quadrupole
transition by the optical centers situated close to the beam
axis. Correspondingly, the maximal effect of the twist of such
photons can be obtained for a nano- or microcrystal situated at
small distances ρ < w0 from the axis. For such crystals,∣∣∂�LG

1,p

/
∂ρ

∣∣
ρ=0 = w−2

0

√
p + 1,

∣∣∂�BG
1,p

/
∂ρ

∣∣ = C1,p

√
(p/λ)3w0/

√
π. (10)

Using now Eqs. (8) and (9) we get the following equations
for the squares of absolute value of matrix elements for the
transitions caused by the longitudinal and the transversal
components of the field gradient, respectively:∣∣M (1)

f0,f

∣∣2 � ω(ke/cw0)2|�1,p|2|〈f |(�e0�r)r cos ϑ |f0〉|2, (11)∣∣M (2),LG
f0,f ;1,p

∣∣2 � ω
(
e/cw2

0

)2
(p + 1)|〈f |(�e0�r)r

× sin(ϑ) cos(ϕ)|f0〉|2, (12)

∣∣M (2),BG
f0,f ;1,p

∣∣2 � ωe2p2

c2λ3w0
√

π
C2

1,p|〈f |(�e0�r)r sin(ϑ) cos(ϕ)|f0〉|2,

(13)

where |�1,p|2 = αρ2
0 , αLG = 1/π (p + 1)w4

0, αBG = pC2
1.p/√

πλ3w0. Equations (11)–(13) determine the absorption prob-
ability. As expected, the light with large p has a large transverse

035115-3



V. HIZHNYAKOV, V. PEET, AND YU. V. ORLOVSKII PHYSICAL REVIEW B 97, 035115 (2018)

field gradient and, thus, a stronger effect on the absorption
caused by this gradient. Due to the zero value of the field �1p

at the beam axis, the transitions caused by the longitudinal field
gradient, as well as the forced dipole transitions between the
4f levels, considered in Refs. [17–19], are absent in this case.

If w0 > λ(pLG + 1)1/3/pBG then C1,p ≈ 1, and the absorp-
tion probability of BGB is larger than that of LGB. To get the
same probability, one needs to use a more tightly focused LGB.
Another possibility is to use an LGB with large p. Note also the
special case of a standing cylindrical wave as a limiting case of
BGBs with the inclination angle ϑ ≈ π/2. In this case cos ϑ ≈
0 and the quadrupole transitions caused by the longitudinal
component of the field gradient vanish. Thus the use of the
Bessel beams with the angle ϑ ≈ π/2 should allow one to
suppress the contribution from the competing quadrupole
transitions caused by the longitudinal field gradient. We remind
the reader that in this case, due to the zero value of the field
at the beam axis, the contribution from the usually dominating
forced dipole 4f - 4f transitions is also suppressed. Therefore,
all lines in the absorption spectra of nano- or microcrystals
placed close to the axis of such beams should be entirely due
to the quadrupole transitions caused by the transverse field
gradient of the twisted photons.

V. ABSORPTION IN A MACROCRYSTAL

To find the absorption of twisted photons by impurity
centers in a macrocrystal, one must take into account that the
centers (impurity atoms/ions) are situated at different distances
ρ0 from the beam axis. If the size of the crystal is macroscopic,
then the centers become distributed over a large distance
ρ0 � λ, w0 from the beam axis. Therefore, to find the total
absorption, one should integrate the squares of the matrix
elements given by Eqs. (8) and (9) over all the distances ρ0

and all the angles φ0. This gives

〈∣∣M (1)
f0,f

∣∣2〉 � ω(ke/c)2|〈f |(�e�r)r cos ϑ |f0〉|2, (14)〈∣∣M (2)
f0,f

∣∣2〉 � ω(e/2cw0)2|〈f |(�e�r)r sin(ϑ) cos(ϕ)|f0〉|2Wl,p,

(15)

where the factor

Wl,p = 〈∣∣∂�LG
l,p /∂ρ

∣∣2〉 =
∫ 2π

0
dφ0

∫ ∞

0
ρ|∂�l,p/∂ρ|2dρ (16)

describes the dependence of the transition probability on
the twist of photons. For LGB, inserting Eq. (5) here and
taking into account that the functions �LG

l,p are orthogonal and
normalized [20], we get

WLG
l,p

= 1
2 (|l| + 2p + 1). (17)

From Eq. (17) it follows that for the LGBs with large values
of |l| and p one can substantially increase the absorption
by quadrupole-allowed transitions in macroscopic crystals.
Thus, in principle there exists a possibility of increasing the
probability of such quadrupole-allowed transitions by using
the Laguerre-Gaussian beams with large radial and azimuthal

quantum numbers. In the case of BGBs we get

WBG
l,p

≈ p/
√

π, (18)

where p = 2π sin ϑ . The largest intensity of new spectral lines
for BGBs is obtained for the beams with ϑ ≈ π/2. The use of
BGBs with the angle ϑ ≈ π/2 allows one also to suppress the
contribution from the competing quadrupole transitions caused
by the longitudinal field gradient ∝ kz = 2π sin ϑ/λ.

VI. ABSORPTION BY TRIVALENT RARE-EARTH IONS

To be specific, we are considering here the absorption of
photons with OAM at 4f - 4f quadrupole transitions in the 4f

shell of the trivalent rare-earth ions in crystals. In these optical
centers, the squared matrix elements of optical transitions can
be calculated, e.g., by using the Judd-Ofelt theory [17–19].
According to this theory, the forced electrodipole transitions in
Re3+ centers usually give the main contribution to the intensity
of the spectral lines of 4f - 4f transitions (due to the presence of
a weak non-central-symmetric field). An excitation by twisted
photons of a nano- or microcrystal placed close to the beam
axis allows one to suppress this contribution (due to the fact
that the strengths of the field in such a beam are zero on
the axis). In this case, the twisting of photons should have
a remarkable effect in the absorption spectrum. Besides, there
exist crystals with optical centers having inverse symmetry. In
these crystals the forced dipole-allowed transitions are absent
and only quadrupole-allowed transition exists. One can use
such crystals also of macroscopic size for observing the effects
of the photons’ twist in the spectra.

In the spherical coordinates r,ϑ,ϕ the wave functions of
the electrons (holes) in the 4f shell, due to an almost perfect
spherical symmetry of the effective potential energy of each
electron, have a factorized form consisting of the product of
radial and angular functions. The latter can be presented as
linear combinations of spherical harmonics Ym

n (ϑ,ϕ) (the states
under consideration can be considered in the Russell-Saunders
scheme). The weak crystal field causes a small (∼100 cm−1)
Stark splitting of the levels with different m and mixes the m

states with different m. In symmetric centers the states m are
mixed with states m ± n, where n is the order of the symmetry
axis. The latter mixing leads to the following azimuthal angular
dependence of the wave function of the 4f state with the energy
(2S+1)EJ,m:∣∣(2S+1)Fm

J (ϕ)
〉 ∝ eimϕ[1 + ςJ,S,m cos(nϕ)]. (19)

Here ςJ,S,m is the small parameter describing the contri-
bution of the effect of mixing the states by the S4 field, and
S is the full spin. As a result, the crystal field leads to the
appearance of additional optical transitions. However, these
additional transitions are rather weak and can be neglected
here.

As an example, we consider the 4I9/2 → 4G5/2 transition
in cubic centers of Nd3+ in CaF2 crystals with the energy ≈
17 000 cm−1 (see, e.g., [23]). In both states (ground, 4I9/2, and
excited, 4G5/2) the spin is 3/2 and it is antiparallel to the orbital
momenta L = 6 and L = 4, respectively. We are considering
the absorption of twisted circularly polarized photons with
OAM |l| = 1. The spin (polarization) of the photon is equal
to s = ±1, where s = 1 corresponds to the left-circularly
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TABLE I. Crystal-field components of the |4I |m|
9/2 〉 → |4G|m′ |

5/2 〉
transition in CaF2 : Nd3+.

|m| 5/2 3/2 1/2
9/2 tw2

7/2 UN tw2

5/2 tw0 UN tw2,
3/2 UN tw0 UN, tw2

1/2 tw2 tw2 UN, tw0

polarized light, and s = −1 to the right-circularly polarized
light. Therefore, (�e0�r) = x + isy = r sin ϑeisϕ , which gives

〈∣∣M (1)
4I9/2,m;4G5/2,m′

∣∣2〉 = (πh̄ω/4)m2
ek

2w2
0

∣∣〈4G5/2,m′ |r2

× sin(2ϑ)eisϕ |4I9/2,m〉|2, (20)〈∣∣M (2)
4I9/2,m;4G5/2,m′

∣∣2〉 � ω(e/cw0)2|〈f |(�e�r)r2[1 + cos(2ϑ)]

× cos(ϕ)eisϕ |f0〉|2Wl,p. (21)

Now, by performing the integration over the azimuthal angle
ϕ, one gets the selection rules for the absorption of circularly
polarized photons with an OAM l. There are three groups of
such transitions with the following �m = m′ − m:

(1) �m = s = ±1, (2) �m = s + l/|l| = ±2, 0,

(3) �m = s − l/|l| = 0,∓2.

These selection rules work differently for the centers with
even and with odd number of 4f electrons, i.e., for the centers
with an integer m (diamagnetic centers) and a half integer m

(paramagnetic centers). For diamagnetic centers, the energies
of the Stark sublevels depend on m, while for paramagnetic
centers the energies of the Stark sublevels depend only on
|m| (Kramers degeneracy). Correspondingly, the absorption
spectrum of twisted photons in the case of a diamagnetic center
should depend on the polarization of light. In the opposite,
the absorption spectrum of twisted photons in the case of a
paramagnetic center should not depend on the polarization of
light (although it should depend on |l| and p of the beam).
However, in a strong external magnetic field the Kramers
degeneracy will be removed. In this case, the absorption spectra
produced by twisted photons in paramagnetic centers should
also depend on the polarization of light.

The allowed transitions between the Stark components of
the levels |4I |m|

9/2 〉 → |4G|m′|
5/2 〉 in an Nd3+ center for nontwisted

(UN) and twisted photons (tw0,2) are given in Table I (bold font
corresponds to a more intense transition, the subscript stands
for |�m|).

Note that the transitions between several Stark components
are allowed only for twisted photons. The Nd3+ ions in CaF2

crystal are good emitters of light. Therefore, the corresponding
transitions can be observed in the excitation spectra of the
emission of CaF2: the Nd3+ crystal at the |4I |m|

9/2 〉 → |4G|m′|
5/2 〉

transition. The symmetric crystal field plays a dual role here:
(a) It leads to selection rules for the transitions, and (b) due to
the Stark splitting of levels it distinguishes the spectral lines
for twisted photons from other lines. As a result, the effect of

OAM can be observed both in micro- and macrocrystals and
without an external magnetic field. This allows one to study
the effects caused by the OAM of photons by a very sensitive
method of monitoring the excitation spectra of emission.

Similar effects are also possible in the Re3+:LiYF4 and
other crystals with a similar structure where at least some
of the centers have the inversion symmetry (point group S4)
that makes it possible to observe new spectral lines for these
centers. Here again, the use of twisted photons may result in
the onset of the transitions which are forbidden for nontwisted
photons. Especially promising are the experiments with nano-
or microsamples placed at the axis of the beam of twisted
photons, while the usually dominating forced dipole transitions
do not contribute there. The nano- or microsamples may be
disordered or even amorphous. The use of BGBs with the angle
ϑ ≈ π/2 should allow one also to suppress the contribution
from the competing usual quadrupole transitions caused by
the longitudinal field gradient.

VII. CONCLUSION

The presented results allow one to conclude that the use
of twisted photons may result in the formation of absorp-
tion spectra that are different from those for the usual non-
twisted photons. The difference exists for dipole-forbidden
but quadrupole-allowed transitions as a consequence of the
dependence of the latter transitions on the light field gradient.
The absorption of twisted photons by an optical center depends
on the absolute value |l| of the azimuthal quantum number of
twisted photons. The dependence on the sign of l is absent.
It is a consequence of the small size of the electronic states
of active centers as compared to the large spatial scale of the
twist.

For the nanocrystals situated close to the beam axis new
lines in the absorption spectra should appear for photons
with |l| = 1. Note that in this case, due to the zero value of
the field at the beam axis, the contribution from the usually
dominating dipole 4f - 4f transitions is suppressed. The use of
the Bessel beams with the angle ϑ ≈ π/2 should allow one also
to suppress the contribution from the competing quadrupole
transitions caused by the longitudinal field gradient. Therefore,
all lines in the absorption spectra of nano- or microcrystals
placed close to the axis of such beams should be entirely due
to the quadrupole transitions caused by the transverse field
gradient of the twisted photons.

In macroscopic crystals, the new lines in the absorption
spectra appear for twisted photons with |l| �= 1. This is the
result of a finite field gradient in any paraxial beam with
|l| �= 1 at the finite distances ρ >∼ w0 from the axis. Moreover,
the absorption of twisted photons by macroscopic crystals in-
creases with |l| and p as |l| + 2p + 1. Consequently, the use of
the Laguerre-Gaussian beams with large radial and azimuthal
quantum numbers |l| and p should allow one to increase the
absorption caused by quadrupole-allowed transitions.

A promising object for the observation of the considered
effects is the symmetric optical centers of three-valence rare-
earth impurity ions in crystals, where the differences in the
absorption spectra of nontwisted and twisted photons can
appear for 4f - 4f quadrupole transitions in the 4f shell of
these ions. These centers are good emitters of light, which
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allows one to use the luminescence excitation spectra to
observe the new spectral lines. For example, several transitions
between different Stark components of quadrupole 4I9/2 →
4G5/2 transitions in the cubic centers of Nd3+ in CaF2 crystals
are forbidden for usual nontwisted light excitation, but they can
be observed through the appearance of new spectral lines under
excitation by twisted photons. Note that these new lines should
appear without any external magnetic field. When excited by
twisted photons, the luminescence of such centers with their
spontaneous emission lifetimes of tens of milliseconds can be
used for bioimaging in the near-IR spectral range, which should
increase the signal-to-noise ratio not only in the presence of
nanosecond autofluorescence of biotissues, but in the case of
any parasitic luminescence of microsecond duration as well.
In this way it is also possible to reduce the adverse effect on
healthy cells.

The differences in the absorption spectra of the usual and
twisted photons must also exist for Re3+ optical centers in
LiYF4 and other crystals with a similar structure. The sym-
metric crystal field in such crystals leads to specific selection
rules for transitions and, due to the Stark splitting, it gives a
possibility to distinguish the spectral lines of twisted photons
from other lines. In such a way, the use of twisted photons can
allow one to get additional experimental information about the
energy levels of centers, not available from the spectroscopy
with the usual nontwisted light. Similar effects are also possible
in the Re3+:LiYF4 and other crystals with a similar structure
where at least some of the centers have the inversion symmetry
(point group S4) that makes it possible to observe new spectral
lines for these centers. Here again, the use of twisted photons
may result in the onset of transitions which are forbidden for
nontwisted photons.
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APPENDIX

1. Laguerre-Gaussian beams

To find the intensities of the new spectral lines of the
quadrupole transitions, one needs to calculate the transverse
component of the beam field gradient. In the case of a Laguerre-
Gaussian beam it is convenient go perform this calculation by
applying the following relation between the 2D Hermite and
Laguerre polynomials, derived in Ref. [20]. One gets (see Eqs.
(2.6) and (3.6) in Ref. [20])

zn−n′
Ln−n′

n′ (zz̄) = (−1)n
′
Hn(z)Hn′(z̄)/n′!, n � n′, (A1)

where z,z̄ ≡ ρe±iφ → (x ± iy)/
√

2. Multiplying both sides
of this equation by e−zz̄/2 we find that Eq. (A1) reduces
(up to the sign) to the eigenfunction of a two-dimensional
harmonic oscillator with the given momentum l = n − n′ and
with the radial quantum number p = min(n,n′). For l � 0 the
corresponding relation gets the form

∣∣�l
p

〉 = (−1)p
∣∣ψ (+)

l+p

〉∣∣ψ (−)
p

〉
, (A2)

where |ψ (±)
n 〉 = √

1/n! (â+
±)n|ψ (±)

0 〉 is the eigenstate number n

of the Hamiltonian of the dimensionless harmonic oscillator
with the corresponding Hamiltonian,

H± = â+
± â± + 1/2, (A3)

where â+
± = (â+

x ± iâ+
y )/

√
2 and â± = (âx ± iây)/

√
2 are

the creation and destruction operators of the quanta with
positive (+) and negative (−) rotational momentum; âx =
(x/w0 + w0∂/∂x)/

√
2 is the destruction operator of the one-

dimensional oscillator with the coordinate x/w0. In a similar
way, the operator ây and the operators â+

x and â+
y are defined.

From these equations it follows that

∂/∂x = (â+ + â− − â+
− − â+

+)/2w0, (A4)

∂� |l|
p

/
∂x = [(−1)p/2wz]

(√|l| + p� |l|−1
p − √

p�
|l|+1
p−1

+
√

p + 1�
|l|−1
p+1 −

√
|l| + p + 1� |l|+1

p

)
. (A5)

2. Hermite-Gaussian beams

The effect of the transverse gradient of a light beam can be
observed also for beams without OAM, e.g., for a Hermite-
Gaussian beam:

�n,n′ (x,y) = Hn(x/wx)Hn′(x/wy). (A6)

To suppress the dipole transitions in microcrystals placed
close to the beam axis one needs to use a beam with zero
intensity close to the axis. Therefore one needs to use a beam
with at least one quantum number, n or n′, to be odd. To
calculate the field gradient at the origin we take into account
the relation H ′

2j+1(0) = (−1)n2(2j + 1)!/j !. We get that the
probability of absorption by nano- or microcrystals situated
close to the beam’s axis for such a beam has the factor
wn + wn′ , where the nonzero values of wn are (for n = 2j + 1)

w2j+1 = (2j + 1)!√
π(2j j !)2 . (A7)

This factor is smaller than the corresponding factor (1 + p)
for LGB with p = min(n,n′) and l = n − n′. For macroscopic
crystals the field gradient also in the case of the Hermite-
Gaussian beams gets nonzero values for a great majority
of centers. A simple calculation shows that the probability
factors for these beams are the same as for the LGBs with
p = min(n,n′) and l = n − n′.
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