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Linked cluster expansions for open quantum systems on a lattice
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We propose a generalization of the linked-cluster expansions to study driven-dissipative quantum lattice models,
directly accessing the thermodynamic limit of the system. Our method leads to the evaluation of the desired
extensive property onto small connected clusters of a given size and topology. We first test this approach on the
isotropic spin-1/2 Hamiltonian in two dimensions, where each spin is coupled to an independent environment that
induces incoherent spin flips. Then we apply it to the study of an anisotropic model displaying a dissipative phase
transition from a magnetically ordered to a disordered phase. By means of a Padé analysis on the series expansions
for the average magnetization, we provide a viable route to locate the phase transition and to extrapolate the critical
exponent for the magnetic susceptibility.

DOI: 10.1103/PhysRevB.97.035103

I. INTRODUCTION

The recent technological breakthroughs in the manipulation
of many-body systems coupled to an external bath are setting
the foundation for a careful testing of a new wealth of physical
phenomena in the quantum realm [1–3]. Specifically, several
promising experimental platforms aimed at investigating the
scenario emerging from driven-dissipative quantum many-
body systems have recently been proposed and realized in
the laboratory. The most remarkable ones are atomic and
molecular optical systems through the use of Rydberg atoms,
trapped ions or atomic ensembles coupled to a condensate
reservoir [4], arrays of coupled QED cavities [5], or cou-
pled optomechanical resonators [6]. These implementations
are scalable enough to enable the construction of tunable
and interacting artificial lattice structures with hundreds of
sites.

The coupling between different unit cells can give rise
to a plethora of cooperative phenomena determined by the
interplay of on-site interactions, nonlocal (typically nearest-
neighbor) processes, and dissipation [7–11]. Recently, a large
body of theoretical work has been devoted to the investigation
of the collective behavior emerging in dynamical response
[12], many-body spectroscopy [13–15], transport [16–20], as
well as stationary properties. In the latter context, a careful
engineering of the coupling between the system and the
environment can stabilize interesting many-body phases in the
steady state [21,22]. The phase-diagram of such lattice systems
has been predicted to be incredibly rich [23–30] and can display
spontaneous ordering associated with the breaking of a discrete
[31–33] or continuous symmetry [34,35] possessed by the
model. Recently, the critical behavior emerging at the onset
of phase transitions started to be investigated by means of
different analytical and numerical approaches [36–39].

Theoretically, while at equilibrium we have reached a
fairly good understanding of several aspects of the many-
body problem under the framework of textbook statistical
mechanics, this is no longer the case for quantum systems
coupled to some external bath. In such a case, we are indeed
facing an inherently out-of-equilibrium situation, where the
Hamiltonian of the system Ĥ is no longer capable of describing
it in its whole complexity, and the environmental coupling
needs to be accounted for and suitably modeled. Due to the
intrinsic difficulty of the problem, a number of approximations
are usually considered, which assume a weak system-bath
coupling, neglect memory effects in the bath, and discard fast
oscillating terms. In most of the experimental situations with
photonic lattices, these assumptions are typically met [5,40].

As a result, in many cases of relevance, the coupling
to the environment leads to a Markovian dynamics of the
system’s density matrix ρ, according to a master equation in
the Lindblad form [41]:

∂tρ = L[ρ] = −i[Ĥ ,ρ] + D[ρ], (1)

where L denotes the so called Liouvillian superoperator (we
will work in units of h̄ = 1). While the commutator on the
right-hand side of Eq. (1) accounts for the unitary part of the
dynamics, the dissipative processes are ruled by

D[ρ] =
∑

j

[
L̂jρL̂

†
j − 1

2
{L̂†

j L̂j ,ρ}
]
, (2)

where L̂j are suitable local jump operators that describe
the incoherent coupling to the environment. To give
a specific example, in the case of spin-1/2 systems,
L̂j = √

�(σ̂ x
j − iσ̂

y

j )/2 and
√

�′σ̂ z
j [σ̂ β

j (β = x,y,z) being
the Pauli matrices] describe a local relaxation process along
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the z direction (at a rate �) and a dephasing noise (at a rate
�′) on the j th spin, respectively [see, e.g., Eq. (9)]. The
master equation (1) covers a pivotal role in the treatment of
open quantum systems, since it represents the most general
completely positive trace-preserving dynamical semigroup
[42]. In the following, we will restrict our attention to it, and
specifically address the steady-state (long-time limit) solution
ρSS = limt→∞ exp(Lt)ρ(0) (and thus ∂tρSS = 0) in situations
where the steady state is guaranteed to be unique [43].

Solving the long-time dynamics ruled by Eq. (1) for a
many-body system is a formidable, yet important, task. Indeed
contrary to equilibrium situations, the effect of short-range
correlations can be dramatic in a driven-dissipative context,
and thus they deserve an accurate treatment through the
(in principle) full many-body problem. Exact solutions are
restricted to very limited classes of systems, which are typically
represented by quadratic forms in the field operators and
specific jump terms [44]. A number of viable routes have
thus been proposed in the past few years. Under certain
hypotheses, analytic approaches such as perturbation theory
[45] or renormalization-group techniques based on the Keldysh
formalism [9,46] are possible. However, their limited regime
of validity calls for more general numerical methods that do
not have these limitations.

From a computational point of view, the main difficulty
resides in the exponential growth of the many-body Hilbert
space with the number N of lattice sites. Moreover, the non-
Hermitian Liouvillian superoperator L acts on the space of
density matrices (whose dimension is the square of the corre-
sponding Hilbert space dimension), and its spectral properties
are generally much more difficult to addres than the low-lying
eigenstates of a Hamiltonian system. The difficulty remains
even for the fixed point of the dynamics ρSS, that is, the density
matrix associated with the zero eigenvalue of L.

While in one dimension tensor-network approaches based
on a straightforward generalization of matrix product states to
operators can be effective [47–49], and alternative strategies
have been proposed in order to improve their performances
[50–52], going to higher dimensions is much harder. Numerical
strategies specifically suited for this purpose have recently
been put forward, including cluster mean-field [53], correlated
variational Ansätze [54,55], truncated correlation hierarchy
schemes [56], corner-space renormalization methods [57],
and even two-dimensional tensor-network structures [58]. The
nonequilibrium extension of the dynamical mean-field theory
(which works directly in the thermodynamic limit) has also
been proved to be very effective in a wide class of lattice sys-
tems [59–61]. Each of such methods presents advantages and
limitations, and typically performs better on specific regimes.

In this paper, we will adapt a class of techniques that, in
the past, has been shown to be extremely useful and versatile
in the study of thermal and quantum phase transitions [62].
The key idea consists in computing extensive properties of
lattice systems in the thermodynamic limit, out of certain
numerical series expansions. The method, dubbed the linked-
cluster expansion (LCE), sums over different contributions
associated with clusters of physical sites. In combination with
perturbation theories, LCEs have already proved their worth
in the context of equilibrium statistical mechanics, both in
classical and quantum systems (see Ref. [62] and references

therein). Their predictive power lies beyond the range of
validity of the perturbation expansion: using established tools
for the analysis of truncated series [63], it has been possible
to study equilibrium quantum phase transitions, and to extract
critical exponents. Here we focus on numerical linked-cluster
expansions (NLCEs), where the kth-order contribution in the
LCE is obtained by means of exact diagonalization techniques
on finite-size clusters with k sites [64]. The NLCE has been
successfully employed in order to evaluate static properties at
zero [65] and finite temperature [66], as well as to study the
long-time dynamics and thermalization in out-of-equilibrium
closed systems [67,68]. Moreover, it has also revealed its
flexibility in combination with other numerical methods that
can be used to address finite-size clusters, such as density-
matrix renormalization-group algorithms [69]. Nonetheless,
to the best of our knowledge, it has never been applied in the
context of open quantum systems.

Here we see NLCE at work in an interacting two-
dimensional spin-1/2 model with incoherent spin relaxation
[32], which is believed to exhibit a rich phase diagram, and
it represents a testing ground for strongly correlated open
quantum systems [39,53,58]. We will test our method both far
from critical points and in proximity to a phase transition: in
the first case, NLCE allows us to accurately compute the value
of the magnetization, while in the second case we are able to
estimate the critical point as well as the critical exponent γ for
the divergent susceptibility.

The paper is organized as follows. In Sec. II we introduce
our NLCE method and discuss how it can be applied to the
study of the steady-state of a Markovian Lindblad master
equation. The NLCE is then benchmarked in a dissipative
two-dimensional spin-1/2 XYZ model (Sec. III). By prop-
erly tuning the coupling constants of the Hamiltonian, we
are able to study steady-state properties far away from any
phase boundary (Sec. III A), and a more interesting scenario
exhibiting a quantum phase transition from a paramagnetic to a
ferromagnetic phase (Sec. III B). In the latter case, we discuss
a simple strategy (based on the Padé analysis of the expansion)
in order to locate the critical point and to extrapolate the critical
exponent γ . Finally, Sec. IV is devoted to the conclusions.

II. LINKED-CLUSTER METHOD

We start with a presentation of the NLCE formalism [64],
unveiling its natural applicability to the study of driven-
dissipative quantum systems whose dynamics is governed
by a Lindblad master equation. We follow an approach
that is routinely employed in series expansions for lattice
models, such as high-temperature classical expansions [62].
Since we are interested in the steady-state properties of the
system, our target objects will be the expectation values of
generic extensive observables Ô onto the asymptotic long-time
limit solution ρSS of the master equation: O = Tr[ÔρSS].
In practice, for each cluster appearing in the expansion, the
steady-state density matrix ρSS is reached by time-evolving
a random initial state according to the master equation (1)
by means of a fourth-order Runge-Kutta method. We stress
that there are no restrictions in the limits of applicability of
this approach to different scenarios for homogeneous systems,
which can be straightforwardly extended to the case of generic
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non-Markovian master equations and/or nonequilibrium states
ρ(t). Therefore, boundary-driven systems [16,18–20,70] and
disordered lattices [71] do not fit within this framework.

Let us first write the Liouvillian operatorL as a sum of local
terms Lk , each of them supposedly acting on few neighboring
sites. For the sake of simplicity and without loss of generality,
each term Lk only couples two neighboring sites:

L =
∑

k

αkLk =
∑
〈i,j〉

αijLij , (3)

where αij denotes the local coupling strength, and the index
k = (i,j ) is a shorthand notation for the couple of i-j sites. The
terms of L acting exclusively on the ith site can be arbitrary
absorbed in the terms of the sum such that i ∈ k. The observable
O can always be arranged in a multivariable expansion in
powers of αk:

O({αk}) =
∑
{nk}

O{nk}
∏
k

α
nk

k , (4)

where nk runs over all non-negative integers for each k, such
that any possible polynomial in the αk couplings is included.
The expansion (4) can then be reorganized in clusters:

O =
∑

c

W[O](c), (5)

where each c represents a nonempty set of k-spatial indexes,
which identify the links belonging to the given cluster. Specifi-
cally, the so called cluster weight W[O](c) contains all terms of
the expansion (4), which have at least one power of αk, ∀k ∈ c,
and no powers of αk if k /∈ c. On the contrary, all terms in
Eq. (4) can be included in one of these clusters. Using the
inclusion-exclusion principle, one can take W[O](c) out of the
sum (5) obtaining the recurrence relation

W[O](c) = O(c) −
∑
s⊂c

W[O](s), (6)

where O(c) = Tr[ÔρSS(c)] is the steady-state expectation
value of the observable calculated for the finite cluster c, the
sum runs over all the subclusters s contained in c, and ρSS(c)
is the steady state of the Liouvillian L(c) over the cluster c.
An important property of Eq. (6) is that if c is formed out
of two disconnected clusters c1 and c2, its weight W[O](c) is
zero. This follows from the fact that O is an extensive property
[O(c) = O(c1) + O(c2)] and c = c1 + c2.

The symmetries of the Liouvillian L may drastically sim-
plify the summation (5), since it is typically not needed
to compute all the contributions coming from each cluster.
This can be immediately seen, e.g., for situations in which
the interaction term αk between different couples of sites
is homogeneous throughout the lattice. In such cases, it is
possible to identify the topologically distinct clusters, so that
a representative cn for each class can be chosen and counted
according to its multiplicity 	(cn) per lattice site (the lattice
constant of the graph cn). Here the subscript n denotes the
number of k-spatial indexes that are grouped in the cluster,
that is, its size. The property O per lattice site can thus be

written directly in the thermodynamic limit L → ∞ as

O

L
=

+∞∑
n=1

⎡
⎣∑

{cn}
	(cn) W[O](cn)

⎤
⎦. (7)

The outer sum runs over all possible cluster sizes, while the
inner one accounts for all topologically distinct clusters {cn} of
a given size n. Let us emphasize that, if the series expansion (7)
is truncated up to order n = R, only clusters c at most of size
R have to be considered. Indeed, each of them should include
at least one power of αk, ∀k ∈ c. Therefore, a cluster of size
R + 1 or larger does not contribute to the expansion, up to order
αR . As a matter of fact, dealing with open many-body systems
significantly reduces our ability to compute large orders in
the expansion, with respect to the closed-system scenario. The
size of the Liouvillian superoperator governing the dynamics
scales as dim(L) = d2n, where d is the dimension of the local
Hilbert space and n is the number of sites of a given cluster. In
isolated systems, one would need to evaluate the ground state
of the cluster Hamiltonian, of size dim(Ĥ ) = dn. Therefore,
for the case of spin-1/2 systems (which have a local dimension
d = 2), we are able to compute the steady state for clusters up to
n = 8, such that dim(L) = 22×8 = 65 536. The complexity of
the problem is thus comparable to what has been done for spin
systems at equilibrium, where the NLCE has been computed
up to n = 15 (see, for example, Refs. [66,72]).

In graph theory, there are established algorithms to compute
all topologically distinct clusters for a given size and lattice
geometry. This could drastically increase the efficiency of
the NLCE algorithm, since for highly symmetric systems
the number of topologically distinct clusters is exponentially
smaller than the total number of connected clusters. Explaining
how to optimize the cluster generation lies beyond the scope
of the present work. The basic cluster generation scheme we
used is explained in full detail in Ref. [72]. Notice that once all
the topologically distinct n-site clusters and their multiplicities
have been generated for a given lattice geometry, one can
employ NLCE for any observable and Liouvillian within the
same spatial symmetry class of the considered lattice.

A remarkable advantage of NLCE over other numerical
methods is that it enables us to directly approach the thermody-
namic limit by only evaluating the contributions of a finite num-
ber of clusters (i.e., using a limited amount of resources). We
should stress that, contrary to standard perturbative expansions,
there is no perturbative parameter in the system upon which
the NLCE is based and can be controlled. Strictly speaking, the
actual control parameter is given by the typical length scale of
correlations that are present in the system: the convergence of
the series (7) with n would be ensured from an order R
 that
is larger than the typical length scale of correlations [64,72].

In the next sections, we give two illustrative examples of
how NLCE performs for two-dimensional (2D) dissipative
quantum lattice models of interacting spin-1/2 particles.

III. MODEL

Our model of interest is a spin-1/2 lattice system in two
dimensions, whose coherent internal dynamics is governed by
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the anisotropic XYZ-Heisenberg Hamiltonian:

Ĥ =
∑
〈i,j〉

(
Jxσ̂

x
i σ̂ x

j + Jyσ̂
y

i σ̂
y

j + Jzσ̂
z
i σ̂ z

j

)
, (8)

where σ̂
β

j (β = x,y,z) denote the Pauli matrices for the j th
spin of the system, and 〈i,j 〉 restricts the summation over all
couples of nearest-neighboring spins. Each spin is subject to
an incoherent dissipative process that tends to flip it down
along the z direction in an independent way with respect to
all the other spins. In the Markovian approximation, such
a mechanism is faithfully described by the Lindblad jump
operator L̂j = √

� σ̂−
j acting on each spin:

D[ρ] = �
∑

j

[
σ̂−

j ρ σ̂+
j − 1

2
{σ̂+

j σ̂−
j ,ρ}

]
, (9)

where σ̂±
j = 1

2 (σ̂ x
j ± i σ̂ y

j ) stands for the corresponding raising
and lowering operator along the z axis, while � is the rate of the
dissipative processes. In the following, we will always work in
units of �.

The outlined model is particularly relevant as it is consid-
ered a prototypical dissipative quantum many-body system:
its phase diagram is very rich and has been subject to a
number of studies at the mean-field level [32] and even beyond
such a regime by means of the cluster mean-field [53], the
corner-space renormalization group [39], and the dissipative
PEPS [58]. Remarkably, the Lindblad master equation with the
Hamiltonian in Eq. (8) and the dissipator in Eq. (9) presents
a Z2 symmetry that is associated with a π rotation along
the z axis: σ̂ x → −σ̂ x , σ̂ y → −σ̂ y . For certain values of the
couplings Jα , it is possible to break up this symmetry, thus
leading to a dissipative phase transition from a paramagnetic
(PM) to a ferromagnetic (FM) phase, the order parameter
being the in-plane xy magnetization. We stress that an XY
anisotropy (Jx �= Jy) is necessary to counteract the incoherent
spin flips, otherwise the steady-state solution of Eq. (8) would
be perfectly polarized, with all the spins pointing down along
the z direction.

The existing literature allows us to benchmark our approach,
both far from criticality (Sec. III A) where correlations grow
in a controllable way, and in proximity to a Z2-symmetry-
breaking phase transition (Sec. III B), where correlations di-
verge in the thermodynamic limit. In the latter, we show how
it is possible to exploit the NLCE method in combination with
a Padé approximants analysis in order to calculate the location
of the critical point as well as the critical exponent γ of the
transition, which is associated with a power-law divergence of
the magnetic susceptibility to an external field. Contrary to all
the other known methods, either being mean-field or dealing
with finite-length systems, the NLCE directly addresses the
thermodynamic limit, and thus, to the best of our knowledge,
at present it represents the only unbiased numerical method to
calculate such an exponent.

A. Isotropic case

Let us start our analysis by considering a cut in the parameter
space that does not cross any critical line. Specifically, we set

α = Jx = −Jy = Jz. (10)

10
1

10
2

 1/α

-1

-0.9

-0.8

-0.7

〈σ
z 〉

4
th

 order

5
th

 order

6
th

 order

7
th

 order

8
th

 order

FIG. 1. Steady-state average magnetization along the z direction
for the isotropic Heisenberg model, evaluated by means of the NLCE
(bare sum) at different orders R in the cluster size, as a function of
1/α. The arrows indicate the values of α
 at which each curve at
the Rth order (R < 8) starts deviating significantly from the highest
accuracy curve (R = 8; thick black line) that we have.

For α = 0, the coherent dynamics is switched off, the coupling
in the x-y plane is thus isotropic, and the dissipative processes
cannot be counteracted regardless of the value of the local
relaxation rates [32]. As a consequence, regardless of the initial
conditions, the steady state is the pure state having all spins
pointing down along the z-axis:

ρSS|α=0 =
⊗

i

|↓〉〈↓|. (11)

Thus we expect the NLCE would give the exact thermody-
namic limit already at first order in the cluster size. As the
parameter α is increased, correlations progressively build up
on top of the fully factorizable density matrix (11), therefore
higher orders in the expansion of Eq. (7) are needed.

This is exactly what we observe in Fig. 1, where we show
the steady-state value of the average magnetization along the
z direction, O/L = 〈σ̂ z

j 〉, evaluated by means of the NLCE in
Eq. (7) up to a given order R as function of α. Note that, as
long as R is increased, the convergence of the NLCE to the
most accurate data (highest order that we have) progressively
improves. This shows that, in the region where different curves
overlap, correlations among the different sites are well captured
by the clusters that we are considering in the expansion, up to
a given order. When α is increased, the range of correlations
grows as well, and one needs to perform the expansion to larger
orders. For α � 0.075, orders higher than R = 8 are needed to
obtain a good convergence in the bare data.

It is possible, however, to improve the convergence of the
expansion without increasing the size of the considered clusters
by simply exploiting two resummation algorithms that have
already been shown to be very useful in the context of NLCEs
of given thermodynamic properties [64,72]. Specifically we
employ Wynn’s algorithm [73] and the Euler transformation
[74,75]. A detailed explanation of how such resummation
schemes can be exploited in the context of NLCE can be found
in Ref. [72].

The results for 〈σ̂ z〉 as a function of α are shown in
Fig. 2 for various orders in the two resummation schemes

035103-4



LINKED CLUSTER EXPANSIONS FOR OPEN QUANTUM … PHYSICAL REVIEW B 97, 035103 (2018)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
 α

-1

-0.8

-0.6

-0.4

-0.2

0

〈σ
z 〉 8

th
 bare

ε6
(2)

ε4
(4)

ε2
(6)

QT 4×3
QT 4×4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
 α

-1

-0.8

-0.6

-0.4

-0.2

0

〈σ
z 〉 Eu

2

Eu
3

Eu
4

Eu
5

Eu
6

Eu
7

Eu
8

FIG. 2. Steady-state average z-magnetization as a function of α,
after implementing two resummation techniques on the bare data
at order R = 8 (black curve, same as in Fig. 1): Wynn’s algorithm
(colored curves in the upper panel) and Euler transformation (colored
curves in the lower panel). The symbols denote the results of QT
simulations for a finite system using periodic boundary conditions,
with a 4 × 4 square plaquette (red circles) and a 4 × 3 plaquette (black
circles) constructed from the previous one after removing the four
sites at the corners. Note that quite counterintuitively, in the case of
Wynn’s algorithm, ε

(4)
4 seems to converge for larger values of α, with

respect to ε
(6)
2 .

(see the legends for details). It can be seen immediately
that the convergence of the expansion is drastically improved
of about one order of magnitude. A comparison of NLCEs
data with the outcome of simulations obtained by means
of quantum trajectories (QTs) [76] for finite-size plaquettes
shows that the resummed data give qualitatively analogous
results up to α ≈ 0.7 for Wynn’s algorithm and α ≈ 0.4 for
the Euler transformation, despite a slight discrepancy between
them. Such a difference is due to the fact that, even if for
small α correlations are very small, finite-system effects are
non-negligible: while NLCE data are directly obtained in the
thermodynamic limit, QTs are inevitably affected by such
effects. As long as α is decreased, the discrepancy between
the two approaches decreases, both leading to 〈σ̂ z〉 → −1 in
the limit α → 0 of Eq. (11).

B. Anisotropic case and the paramagnetic-to-ferromagnetic
phase transition

We now discuss the more interesting scenario of an
anisotropic Heisenberg model (Jx �= Jy �= Jz), where the sys-

tem can cross a critical line and exhibit a dissipative phase
transition [32]. Toward that end, we set

Jx = 0.9, Jy = 0.9 + α, Jz = 1, (12)

with α ∈ [0,0.25]. For α = 0 (i.e., Jx = Jy), we come back
to the trivial situation in which the Hamiltonian conserves the
magnetization along the z direction, and the steady state is
the pure state in Eq. (11), with all the spins pointing down in
the z direction. Away from this singular point, for a certain
αc > 0 the system undergoes a second-order phase transition
associated with the spontaneous breaking of the Z2 symmetry
possessed by the master equation (1), from a paramagnetic
(PM) for α < αc to a ferromagnetic (FM) phase for α > αc. In
the FM phase, a finite magnetization in the x-y plane develops:
〈σ̂ x〉,〈σ̂ y〉 �= 0, which also defines the order parameter of the
transition.

The phenomenology of this phase transition has recently
received a lot of attention, and it has been investigated at a
Gutzwiller mean-field level [32] and by means of more so-
phisticated methods, including the cluster mean-field approach
[53], the corner-space renormalization technique [39], and the
projected entangled pair operators [58]. The phase-transition
point for the same choice of parameters of Eq. (12) has
been estimated to be αc = 0.1 [32], 0.14 ± 0.01 [53], and
0.17 ± 0.02 [39].

Here we follow the approach of Rota et al. [39] and discuss
the magnetic linear response to an applied magnetic field in the
x-y plane, which modifies the Hamiltonian in Eq. (8) according
to

Ĥ → Ĥ +
∑

j

h
(
σ̂ x

j cos θ + σ̂
y

j sin θ
)
, (13)

where θ denotes the field direction, [�h(θ )] = (hx, hy)T , and
hx = h cos θ, hy = h sin θ . Such a response is well captured
by the susceptibility tensor χ , with matrix elements χαβ =
limhβ→0〈σ̂ α〉/hβ . In particular, we concentrate on the angu-
larly averaged magnetic susceptibility

χav = lim
h→0

1

2π

∫ 2π

0
dθ

| �M(θ )|
h

, (14)

where �M(θ ) = χ · �h(θ ) is the induced magnetization along an
arbitrary direction of the field.

We start by computing the NLCE for the magnetic suscepti-
bility χav in the parameter range 0 � α � 0.25, and improving
the convergence of the series up to a given order, by exploiting
the Euler algorithm. Along this specific cut in the parameter
space, the latter has been proven to perform better (contrary
to what we observed far from criticality; see Fig. 2). The
relevant numerical data are shown in Fig. 3, and they are put
in direct comparison with those obtained with an alternative
method (the corner-space renormalization group) in Ref. [39].
We observe fairly good agreement with the two approaches, in
the small-α parameter range (0 � α � 0.02), and we point out
that in both cases a sudden increase of χav for α � 0.1 supports
the presence of a phase transition in that region. It is important
to remark that the result of the expansion at different orders
beyond the shaded region α � 0.02 has no physical meaning.
However, as we will show in the next section, by analyzing
how the expansion behaves when approaching criticality, it is
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FIG. 3. Angularly averaged magnetic susceptibility to an external
field in the x-y plane, as a function of α = Jy − 0.9. The continuous
curves denote Euler resummed data, to the best achievable expansion,
of the bare NLCE results up to the order R = 8. The dashed lines
are the results of the bare expansions. Symbols are the results from
the corner-space renormalization method, taken from Ref. [39]. The
dotted area highlights the region of alpha 0 � α � 0.02, for which
the NLCE converges.

possible to provide an estimate of the critical point αc, as well
as of the critical exponent γ . We also note that, contrary to the
isotropic case, here we do not observe an exact data collapse
of the NLCEs for χav, even for α = 0. The reason resides in
the fact that the presence of an external field (13) makes the
structure of the steady state nontrivial as soon as h �= 0, thus
allowing correlations to set in.

1. Critical behavior

We now show how to exploit the above NLCE data (in
combination with a Padé analysis [62]) in order to locate
the critical point αc for the PM-FM transition, and extract
the critical exponent γ of the magnetic susceptibility [77]
χav ∼ |α − αc|−γ . The possibility to extrapolate the critical
exponents for a dissipative quantum phase transition is very
intriguing, since, to the best of our knowledge, the only
numerical work in this context that is present in the literature
is Ref. [39]. However, since finite-size systems are considered
there, it was only possible to estimate the finite-size ratio
γ /ν, where ν denotes the critical exponent associated with
the divergent behavior of the correlation length. The present
work offers a complementary point of view since here we are
able to provide an independent estimate of the critical exponent
γ by directly accessing the thermodynamic limit.

To achieve this goal, we study the logarithmic derivative
of the averaged magnetic susceptibility, which converts an
algebraic singularity into a simple pole [62]:

Dlog χav(α) ≡ χ ′
av(α)

χav(α)
. (15)
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FIG. 4. Logarithmic derivative of χav as a function of α. The black
line is obtained from Euler resummed data to the order R = 8 (blue
line of Fig. 3). The red and blue lines are the results of the Padé
analysis with different [3|3] and [3|4] approximants, respectively.

If χav ∼ |α − αc|−γ for |α − αc| � 1, the logarithmic deriva-
tive behaves as

Dlog χav(α) ∼ γ

|α − αc| . (16)

Studying the divergent behavior of Eq. (16) simplifies the
problem, since the function Dlog χav(α) has a simple pole at
the critical point α = αc with a residue corresponding to the
critical exponent γ .

In Fig. 4 we show the behavior of the logarithmic derivative
calculated from the Euler resummed data to the order R = 8
(blue line in Fig. 3), which represents our best approximation
for χav at small α. The behavior at large α of the function
Dlog χav(α) is extrapolated exploiting the Padé approximants.
A Padé approximant is a representation of a finite power series
as a ratio of two polynomials,

Dlog χav(α) =
R∑

n=0

anα
n = PL(α)

QM (α)
, (17)

where PL(α) and QM (α) are polynomials of degree L and M

(with L + M � R), respectively. This is denoted as the [L|M]
approximant, and it can represent functions with simple poles
exactly. Next, we fit Dlog χav(α) (black line in Fig. 4) with
an eighth-degree polynomial between αin = 0.05 and 0.06 �
αfin � 0.1 in order to obtain the coefficients {an}n=1,...,R (with
R = 8). Once the coefficients {an} are known, it is straight-
forward to evaluate the coefficients of the polynomials PL and
QM through Eq. (17). Further details about this procedure can
be found in Appendix. As is clear from Eq. (17), the position
of the critical point αc can be deduced by studying the zeros of
QM (α). Typically, only one of the M zeros is real and located in
the region of interest. Finally, the critical exponent is evaluated
by computing the residue of QM (α) at α = αc:

γ = − lim
α→αc

QM (α)(α − αc). (18)

Of course, the values of αc and γ will depend on the specific
choice of the approximates [L,M] and on the region over which
the fit is performed. The dependence of the results on αfin is
shown in Appendix. We found that the Padé analysis gives
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stable results for 0.06 � αfin � 0.08 and 0.06 � αfin � 0.095
for the approximants [3|3] and [3|4], respectively.

The results of the Padé analysis hint at a divergence at
αc = 0.179 ± 0.001 with γ = 1.85 ± 0.05 for [3|3], and αc =
0.1665 ± 0.0005 with γ = 1.5 ± 0.05 for [3|4]. The other
approximants [L|M] such that L + M � R = 8 do not give
physical results in this range of parameters. The error bar is
underestimated, since it accounts only for the error introduced
in the fitting procedure and neglects the propagation of the
numerical error made on the steady-state evaluation. Further-
more, the Padé analysis has been performed over a range of α

for which the resummed NLCE is not exactly converged (see
Fig. 3). Indeed, by performing the same kind of analysis on the
Euler resummed data for R = 7 in the expansion, we estimate
that the error due to the lack of convergence of the series affects
the second significant digit of αc. In the region considered for
the fit, we do not get stable results for the exponent γ , making
it difficult to estimate the impact of this source of error on
this quantity. To overcome this issue, one should be able to
compute higher orders in the expansion and to perform a more
accurate analysis of the criticality. However, the value of the
critical point we found is in agreement with the results reported
in Refs. [53] and [39] as of now.

IV. CONCLUSIONS

In this work, we have proposed a numerical algorithm based
on the generalization of the linked-cluster expansion to open
quantum systems on a lattice, allowing us to access directly the
thermodynamic limit and to evaluate the extensive properties
of the system. Specifically, we extended the formalism to the
Liouvillian case, and we showed how the basic properties of
the expansion are translated to the open-system realm. Given
its generality, this method can be applied to open fermionic,
bosonic, and spin systems in an arbitrary lattice geometry.

We tested our approach with a study of the steady-state
properties of the paradigmatic dissipative spin-1/2 XYZ model
on a two-dimensional square lattice. Far away from the critical
boundaries of the model, we accurately computed the spin
magnetization. Upon increasing the order of the expansion, we
were able to progressively access regions of the phase diagram
that are characterized by a larger amount of correlations among
distant sites. The convergence properties of the expansion can
be dramatically improved by employing more sophisticated
resummation schemes. We then used the numerical linked-
cluster expansion across a phase transition in order to study its
critical properties. By means of a Padé analysis of the series, we
located the critical point and provided an estimate of the critical
exponent γ , which determines the divergent behavior of the
(average) magnetic susceptibility close to the phase transition.

This method, together with that of Ref. [58], is a (non-
mean-field) numerical approach that allows us to compute the
steady-state properties of an open lattice model in two spatial
dimensions in the thermodynamic limit. Here the intrinsic
limitation is that, in order to compute high-order terms in
the expansion (and thus to access strongly correlated regions
of phase space), an evaluation of the steady state on a large
number of connected sites is required. Furthermore, in the
case of bosonic systems, a further complication arises from
the local Hilbert space dimension. We believe that a very

interesting perspective left for the future is the combination
of the linked-cluster expansion with the corner-space renor-
malization method [39], and also possibly with Monte Carlo
approaches [78]. Additionally, a careful identification of the
internal symmetries of the model may help in decreasing the
effective dimension of the Liouvillian space.
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APPENDIX: PADÉ APPROXIMANTS

Here we discuss the details related to the Padé analysis of
the divergent behavior of the magnetic susceptibility, which

0.06 0.07 0.08 0.09 0.1
 α

fin

0.16

0.17

0.18

0.19

0.2

0.21

0.22

α c

 Padé [3|3]
 Padé [3|4]

0.06 0.07 0.08 0.09 0.1
 α

fin

1

1.5

2

2.5

3

3.5

γ

FIG. 5. Position of the critical point αc (top panel) and value of the
critical exponent γ (bottom panel) as a function of the upper boundary
of the fitting region αfin.
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has been performed in Sec. III B 1. As already introduced in
the main text, the Padé approximant is a representation of the
first R terms of a power series as a ratio of two polynomials.

Let us consider Eq. (17), where Dlogχav(α) is the function
for which we know the Taylor expansion up to the order R,

Dlogχav(α) =
R∑

n=0

anα
n = PL(α)

QM (α)
, (A1)

and the Padé polynomials are parametrized as follows:

PL(α) =
L∑

n=0

pnα
n, QM (α) = 1 +

M∑
n=1

qnα
n, (A2)

with L + M � R. This is denoted as the [L|M] approximant.
Let us start by showing that if the function χav(α) has an

algebraic singularity at α = αc, then its logarithmic derivative
[see Eq. (15)] has a simple pole at the same value of α. To show
this, let us note that for |α − αc| � 1,

χav(α) = g(α)

|α − αc|γ , (A3)

where g(α) is an analytic function in the range of α in which
we are interested. Therefore, Eq. (A3) becomes

Dlog χav(α) = g′(α)

g(α)
− γ

|α − αc| . (A4)

Given the coefficients {an} (calculated by fitting the function
Dlogχav(α) with an eighth-degree polynomial from αin � α �
αfin), it is easy to obtain the coefficients {pn} and {qn} in
Eq. (A2) exploiting Eq. (A1). This gives the following set of
L + M + 1 linear equations:

a0 = p0,

a1 + a0q1 = p1,

a2 + a1q1 + a0q2 = p2,
...

aL + aL−1q1 + · · · + a0qL = pL,

aL+1 + aLq1 + · · · + aL−M+1qM = 0,
...

aL+M + aL+M−1q1 + · · · + aLqM = 0. (A5)

Once the coefficients {pn} and {qn} have been determined,
one can calculate αc by studying the zeros of QM (α) and
compute the critical exponent γ by evaluating the residue at
α = αc (see Sec. III B 1). In Fig. 5, we show the position of
the critical point αc (top panel) and the value of the critical
exponent γ (bottom panel) as a function of the upper fit
boundary αfin for αin = 0.05.
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