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Quantum Monte Carlo study of electrostatic potential in graphene
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In this paper the interaction potential between static charges in suspended graphene is studied within the
quantum Monte Carlo approach. We calculated the dielectric permittivity of suspended graphene for a set of
temperatures and extrapolated our results to zero temperature. The dielectric permittivity at zero temperature is
found to have the following properties. At zero distance ε = 2.24 ± 0.02. Then it rises and at a large distance the
dielectric permittivity reaches the plateau ε � 4.20 ± 0.66. The results obtained in this paper allow us to draw
a conclusion that full account of many-body effects in the dielectric permittivity of suspended graphene gives
ε very close to the one-loop results. Contrary to the one-loop result, the two-loop prediction for the dielectric
permittivity deviates from our result. So one can expect large higher order corrections to the two-loop prediction
for the dielectric permittivity of suspended graphene.
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I. INTRODUCTION

Graphene, a two-dimensional crystal composed of carbon
atoms packed in a honeycomb lattice [1,2], attracts consid-
erable interest because of its electronic properties. There are
two Fermi points in the electronic spectrum of graphene.
In the vicinity of each point the fermion excitations are similar
to the massless Dirac fermions living in two dimensions [3–6].
The relativistic nature of fermion excitations in graphene leads
to numerous quantum relativistic phenomena such as Klein
tunneling, minimal conductivity through evanescent waves,
relativistic collapse at a supercritical charge, etc. [7–9].

The Fermi velocity in graphene is much smaller than the
speed of light (vF ∼ c/300), resulting in negligible retardation
effects and magnetic interactions between quasiparticles. Thus
the interaction in graphene can be approximated by the instan-
taneous Coulomb potential with the large effective coupling
constant αeff = α · c/vF ∼ 300/137 ∼ 2.2.

It is reasonable to assume that the observables in graphene
theory are considerably renormalized due to strong interac-
tion as compared to noninteracting theory. For instance, the
leading perturbative renormalization of the Fermi velocity
with the logarithmic accuracy [10–14] leads to increase of
vF as large as ∼100% for the suspended graphene. One
can expect that higher order renormalization leads to further
considerable change of the bare value of the Fermi velocity.
However, existing experimental measurements of the Fermi
velocity [15,16] are in a good agreement with the first-order
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perturbation theory improved by the one-loop expression for
the dielectric permittivity of graphene. Recently it was shown
that the next-to-leading-order corrections in the random phase
approximation (RPA) are small relative to the leading-order
RPA results [17]. Nevertheless, it is not clear what happens to
the perturbative corrections after the next-to-leading order.

Another important observable in graphene is the interaction
potential between static charges. The renormalization of the
static potential can be parametrized by the dielectric permittiv-
ity which depends on the distance between static charges ε(r).
One-loop expression for ε(r) was calculated in [18]. At small
distances ε(r) ∼ 2. Then the dielectric permittivity grows with
the distance and at large distances r � a1 it reaches the well
known one-loop expression [8,9]

ε = 1 + π

2
αeff. (1)

For αeff = 2.2 this formula gives ε = 4.4. So one sees that the
one-loop correction is very large. The two-loop correction to
ε was calculated in [19] and can be written as

ε = 1 + π

2
αeff + 0.778α2

eff. (2)

If one takes αeff = 2.2 the dielectric permittivity is ε = 8.2. If
one accounts for one-loop renormalization of αeff (see below),
ε � 2.5. So it is clear that the next-to-leading-order corrections
considerably modify the one-loop result. One can also expect
that higher order corrections are also important.

In this paper we are going to study the interaction potential
between static charges in suspended graphene within quantum

1The a is the distance between carbon atoms in graphene.
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Monte Carlo simulations. There are a lot of papers where a
quantum Monte Carlo approach was used to study graphene
properties [20–26]. The first Monte Carlo study of the static
interaction potential based on the low energy effective theory
of graphene was done in Ref. [27]. In this paper we are going
to use the approach which is based on the tight-binding Hamil-
tonian without the expansion near the Fermi points [26]. This
approach allows us to avoid ambiguity due to regularization
procedure. In addition, the interactions between quasiparticles
are parametrized by the realistic phenomenological potential
obtained in Ref. [28], which significantly deviates from the
Coulomb potential at small distances. However, the main ad-
vantage of the Monte Carlo approach is that it fully accounts for
interactions between quasiparticles based on first principles.

This paper is organized as follows. In the next section we
briefly describe the method of lattice Monte Carlo simulation
of graphene. Section III is devoted to the discussion of how
the potential of static charges can be calculated within Monte
Carlo simulations. The results of the calculation are presented
in Sec. IV. In the last section we summarize our results.

II. BRIEF DESCRIPTION OF THE MODEL

In the calculation we use the tight-binding model of
graphene. The Hamiltonian consists of the tight-binding term
and the interaction part describing the full electrostatic inter-
action between quasiparticles:

Ĥ = −κ
∑
〈x,y〉

(â†
y,↑âx,↑ + â

†
y,↓âx,↓ + H.c.)

+
∑

x={1,ξ}
m(â†

x,↑âx,↑ − â
†
x,↓âx,↓)

−
∑

x={2,ξ}
m(â†

x,↑âx,↑ − â
†
x,↓âx,↓)

+ 1

2

∑
x,y

Vxyq̂x q̂y, (3)

where κ = 2.7 eV is the hopping between nearest neighbors,
and â

†
x,↑, âx,↑ and â

†
x,↓, âx,↓ are creation/annihilation operators

for spin-up and spin-down electrons at π orbitals. Spatial index
x = {s,ξ} consists of sublattice index s = 1,2 and the two-
dimensional coordinate ξ = {ξ1,ξ2} of the unit cell in rhombic
lattice. Periodical boundary conditions are imposed in both
spatial directions in the same manner as in [26]. The mass
term has a different sign at different sublattices. According to
our algorithm, we should introduce mass in order to eliminate
zero modes from the fermionic determinant. The calculation is
carried out at few various masses and final results are obtained
through the chiral extrapolation m → 0.

The matrix Vxy is the bare electrostatic interaction potential
between sites with coordinates x and y and q̂x = â

†
x,↑âx,↑ +

â
†
x,↓âx,↓ − 1 is the electric charge operator at lattice site x.

The potential Vxy represents screened Coulomb interaction.
At small distances r/a � 2 we employ phenomenological po-
tentials V00, V01, V02, V03 calculated in [28], while at distances
r/a � 2 we use the Coulomb-like potential

V (r) = A

r/a + C
, (4)

where A = α · h̄c/a = 10.14 eV, C = 0.82. The parameter C

is chosen so that V (2a) = V03. This choice ensures smooth in-
terpolation between regions of the phenomenological potential
and the Coulomb-like potential.

All calculations were performed using the hybrid Monte
Carlo algorithm. Details of the algorithm are described in [26].
The method is based on the Suzuki-Trotter decomposition.
Partition function exp(−βĤ ) is represented in the form of
a functional integral in Euclidean time. Inverse temperature
is equal to the number of time slices multiplied by the step
in Euclidean time: δτLt = β = 1/T . Since the algorithm
requires fermionic fields to be integrated out, we eliminate
all four fermionic terms in the full Hamiltonian using the
Hubbard-Stratonovich transformation. The final form of the
partition function can be written as

Tr e−βĤ ∼=
∫

Dϕx,ne
−S[ϕx,n]| det M[ϕx,n]|2. (5)

ϕx,n is the Hubbard-Stratonovich field for time slice n and
spatial coordinate x. A particular form of the fermionic oper-
ator M is described in [26]. The absence of the sign problem
(appearance of the squared modulus of the determinant) is
guaranteed by the particle-hole symmetry in graphene at the
neutrality point. Action for the Hubbard field S[ϕx,n] is also a
positively defined quadratic form for all variants of electron-
electron interaction used in our paper. Thus we can generate
configurations of ϕx,n by the Monte Carlo method using the
weight (5) and calculate physical quantities as averages over
generated configurations.

III. DETAILS OF THE CALCULATION

To calculate the potential of the static charges in graphene
one introduces the Polyakov loop of the Hubbard-Stratonovich
field. The Polyakov loop is defined as a product of the
factors2exp (iQδτϕ
x,t ) over all slices in Euclidean time t and
with fixed spatial coordinate 
x,

LQ(
x) =
Lt−1∏
t=0

exp(−iQ�τϕ
x,t ). (6)

Physically the introduction of the operator LQ(
x) implies the
calculation of the partition function of graphene with the static
charge Q,

〈LQ〉 = exp(−FQ/T ), (7)

where FQ is the free energy of the static charge Q in graphene.
Similarly the correlation function of the Polyakov loops

〈LQ(0)L∗
Q(
r)〉 is determined by the free energy of static charges

Q and −Q separated by the distance 
r . The free energy of this
system is determined by the potential of the static charges in
graphene VQQ(
r). Thus we have

〈LQ(0)L∗
Q(
r)〉 ∼ exp[−VQQ(
r)/T ]. (8)

In order to obtain an interaction potential we use the following
relation:

VQQ(
r) = − T

Q2
[ln〈LQ(0)L∗

Q(
r)〉 − 2ln〈LQ〉]. (9)

2Notice that the charge Q is measured in units of electron charge e.
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FIG. 1. The dielectric permittivity of graphene ε(r,T ) as a
function of distance r/a for the T = 0.167, 0.333, 0.417, and
0.50 eV.

In the simulations one can take an arbitrary (but not too large)
value of the static charge Q. In [27] it was shown that within
the uncertainty of calculations the results do not depend on Q.
However, it turns out that the signal-to-noise ratio significantly
depends on the value of Q. This dependence was studied in [27]
and it was shown that the value Q = 0.1 is appropriate for the
calculation of the potential with a good signal-to-noise ratio.
For this reason the calculations in this paper are carried out at
Q = 0.1.

Monte Carlo simulation of graphene was carried out on the
lattices with spatial extension Lx = Ly = 30. The lattice spac-
ing in temporal direction is δτ = 0.1 eV. The temporal sizes
of the lattices under study are Lt = 60, 50, 36, 34, 30, 26,

24, 22, 20 which correspond to the temperatures T =
0.167, 0.2, 0.278, 0.294, 0.333, 0.385, 0.417, 0.455, 0.5 eV.
For the lattices 302 × 36 · · · 20 we conducted the calcula-
tions at the following values of the fermion mass m =
0.03, 0.05, 0.07, 0.1 eV. For the two lowest temperatures on
the lattices 302 × 60 and 302 × 50 the fermion masses are
0.01, 0.02, 0.03, 0.04 eV. For these values of the fermion
masses we simulate relativistic fermions. To obtain the results
for the massless fermions we fit our data for all temperatures
and distances under study by the function VQQ(r) = V0(r) +
V1(r)m2. For all temperatures and distances the data are well
described by this fit (χ2 � 1). The function V0(r) gives the
potential in the massless limit. Below we present the results
obtained in the limit of massless fermions m → 0.

IV. RESULTS OF THE CALCULATION

In Fig. 1 we present the results of the calculation of the
dielectric permittivity of graphene ε(r) which is the ratio of
bare potential (4) to the one measured on the lattice (9). The
dielectric permittivity is presented as a function of distance
r/a for the temperatures T = 0.167, 0.333, 0.417, 0.5 eV.
Similar plots can be shown for the other temperatures under
consideration.

It is seen from Fig. 1 that the ε(r) rises with the distance.
Moreover, the larger the temperature the sharper the rise of
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FIG. 2. The dielectric permittivity of suspended graphene ε(r) as
a function of distance r/a at zero temperature. The results obtained in
this paper are represented by black star points. The blue line and green
dashed line correspond to the one-loop result (1) and the two-loops
result (2), correspondingly. The red diamond points correspond to
the one-loop calculation of the ε(r) based on tight-binding model (3)
carried out in [18].

the dielectric permittivity. We believe that this behavior can
be attributed to the Debye screening in graphene at nonzero
temperature. In order to get rid of the Debye screening effect
and find the dielectric permittivity at zero temperature we are
going to fit dielectric permittivity at every fixed distance with
the anzatz

ε(r,T ) = A(r) + B(r)T + C(r)T 2. (10)

In conducting the fitting procedure we impose a constrain
B(r) > 0. Physically this constrain is motivated by the re-
quirement that at T → 0 and T �= 0 Debye screening effect
diminishes the potential, i.e., enhances the value of the di-
electric permittivity. The coefficient A(r) in the last equation
gives the dielectric permittivity of suspended graphene at zero
temperature ε(r,T = 0). In Fig. 2 and Table I we present the
ε(r,T = 0) as a function of distance r/a.

TABLE I. The dielectric permittivity of suspended graphene ε(r)
as a function of distance r/a at zero temperature. The first column is
the distance in graphene lattice units. The second column is the ε(r)
calculated in this paper. The third column contains the ε(r) calculated
at one-loop level of the tight-binding model (3).

r/a ε(r) ε1 loop(r)

0.00 2.24 ± 0.02 2.19
1.00 2.83 ± 0.08 2.92
1.73 3.45 ± 0.21 3.49
2.00 3.33 ± 0.23 3.63
2.65 3.86 ± 0.49 4.05
3.00 3.89 ± 0.66 4.11
3.46 3.97 ± 0.88 4.22
3.61 3.84 ± 0.80 4.26
4.00 4.01 ± 1.15 4.35
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From Fig. 2 and Table I it is seen that the dielectric
permittivity at the r = 0 is ε = 2.24 ± 0.02. Then it rises
and after r/a � 3 the dielectric permittivity comes out to
the plateau ε(r) � 4. It is seen that the uncertainties of the
calculation rise with the distance from rather small values to
large ones. The uncertainties at distances r/a � 6 become very
large for this reason and we do not show these points in Fig. 2.

The main reason for large uncertainties of the calculation at
large distance is the Debye screening at nonzero temperature in
graphene. In order to find the value of the dielectric permittivity
at large distance with better accuracy we have to account for
the Debye screening effect.

We are going to do this as follows. The Debye screening of
the Coulomb potential in graphene was calculated in [18,27]
and it is given by the formula

V (r) = Q

ε̃r

∫ ∞

0
dξ

e−(mDr)ξ

(1 + ξ 2)3/2
, (11)

where ε̃ is the dielectric permittivity and the mD is the Debye
mass. We fit our data for each temperature under consideration
with the parameters ε̃ and mD . Thus we get rid of the
Debye screening effect which enhances the uncertainty at large
distance. Notice that our bare potential deviates from Coulomb
(4) and tends to it only at large distance.

In the fitting procedure we study the potential V (r) in the
region r/a ∈ [4,8]. We chose this reason for the following
reasons. First, if one extends the region where our data are
fitted to larger distance we will get larger uncertainties of the
calculation. Second, within this region the deviation from the
Coulomb potential is already sufficiently small ∼10%–20%.
Formula (11) describes our data quite well (χ2/dof ∼ 1) for
all temperatures and allows one to determine ε̃(T ) as a function
of temperature.

To proceed we fit the results for the ε̃ by the function ε̃(T ) =
Ã + B̃T + C̃T 2. The value of the Ã gives the dielectric
permittivity at zero temperature and large distance. Thus we
obtain

ε = 4.20 ± 0.66. (12)

In the formula (12) we accounted for statistical uncertainty and
the uncertainty due to the deviation of the potential (4) from
Coulomb. More detailed description of the fitting procedure
can be found in the Appendix.

Furthermore, let us proceed to the comparison of the results
obtained in this paper with the perturbative expressions for
the dielectric permittivity of suspended graphene. In Fig. 2 we
present the results of one-loop calculations of the dielectric
permittivity. The red diamond points correspond to the one-
loop dielectric permittivity calculated within the tight-binding
model (3) in [18]. The blue line corresponds to the one-loop
result (1) which is obtained within the effective theory of
graphene. It is seen that the full account of many-body effects in
the dielectric permittivity of suspended graphene within Monte
Carlo study gives ε(r) which is very close to the one-loop
results. The value of ε(r) at large distance (12) also agrees
with the one-loop result (1).

Here one comment is in order. In Ref. [18] the results for the
dielectric permittivity calculated within different approaches
are presented. In particular, in Fig. 10 of [18] the dielectric
permittivity calculated within the tight-binding model, the

leading-order RPA, and the quantum Monte Carlo approach
(preliminary results) were presented. Notice that the interac-
tion potential used in all these calculations differs from the po-
tential (4) used in our paper on the Coulomb tail. In particular,
at large distance the potential (4) behaves like V (r) = αh̄c/r

which differs from the behavior V (r) = αh̄c/(1.4r) used in
[18]. For this reason our results deviate mildly from the ones
obtained in [18].

In Fig. 2 we also plot the results of [19] which is given by
a two-loop formula (2). Since the calculation of the ε in [19]
was carried at two loops, one has to renormalize the effective
coupling constant αeff at one loop in order to get the value of the
dielectric permittivity. It is known that the renormalization of
αeff is reduced to the renormalization of the Fermi velocity vR .
It is rather difficult to find an unambiguous expression for vR ,
since the renormalized Fermi velocity depends on the infrared
scale and in the problem under consideration a lot of scales can
play a role of the infrared scale.

To estimate ε at two loops we use the one-loop formula for
vR obtained in [18] and use temperature as the infrared scale:

vR
F = vF

[
1 + 1

4

α

(vF /c)
log

(
vF �

cT

)]
, (13)

where vF is the bare Fermi velocity, c is the speed of light, � is
the ultraviolet cutoff, and T is the temperature which plays the
role of the infrared scale in our estimation. In the calculation
we take vF /c ∼ 1/300,� ∼ h̄c/a, and T = 0.1 eV which is a
typical scale at which the calculations of this paper are carried
out. With these numerical parameters we get ε = 2.5. If we
carry out the calculation at the room temperature T = 293 K,
the two-loop dielectric permittivity is ε = 2.2.

One can estimate the two-loop result for ε as it was proposed
in Ref. [19]. The authors of this paper used the momentum
q ∼ h̄/r as an infrared scale in the renormalization of the Fermi
velocity. It is clear that in the limit r → ∞, αeff → 0 and ε →
1. Notice that this limit is reached very slowly and one needs
really huge graphene lattice to see that ε � 1. For this reason
one can ask what is the typical two-loop dielectric permittivity
on the lattice which is used in our calculation. To estimate it
we use a typical distance on the lattices under consideration
L ∼ 30a ∼ h̄/q. In this case we get ε = 2.7.

From this consideration one can state that all our estimations
of the two-loop dielectric permittivity disagree with results
obtained within the Monte Carlo method. So one can expect
large higher order corrections to the two-loop result of [19].

V. CONCLUSION

In this paper the interaction potential between static charges
in suspended graphene was studied within the quantum Monte
Carlo simulations. This approach is based on the tight-binding
Hamiltonian without the expansion near the Fermi points
which allows us to avoid ambiguity due to the regularization
procedure. In addition, the interactions between quasiparticles
are parametrized by the realistic phenomenological potential,
which deviates from the Coulomb potential at small distances.
The main advantage of the Monte Carlo approach is that it fully
accounts for interactions between quasiparticles based on first
principles.
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Within Monte Carlo simulations we calculated the dielectric
permittivity of suspended graphene for a set of temperatures.
For each distance between charges we carried out extrapo-
lation to zero temperature. Thus we calculated the dielectric
permittivity of suspended graphene at zero temperature.

We found that the behavior of the dielectric permittivity
is the following. At zero distance ε = 2.24 ± 0.02. Then it
rises and after r/a � 3 the dielectric permittivity comes out
to the plateau ε(r) � 4.20 ± 0.66. The results obtained in this
paper allow one to draw a conclusion that the full account of
many-body effects in the dielectric permittivity of suspended
graphene gives the ε(r) that is very close to the one-loop
results obtained analytically within the tight-binding model of
graphene. The value of ε(r) at large distances also agrees with
the one-loop calculation done within the low-energy effective
theory of graphene.

We also found that the two-loop prediction for the dielectric
permittivity deviates from the results of this paper. For this
reason one can expect large higher order corrections to the
two-loop prediction for the dielectric permittivity of suspended
graphene.

Finally, we would like to stress the fact that the full account
of many-body effects in the dielectric permittivity of suspended
graphene, which gives the ε(r) close to the one-loop result, is
highly nontrivial. The point is that the interaction in graphene
is strong and it cannot be accounted for by perturbation theory.
For instance, if we substitute the interaction potential (4) by
Coulomb with the same A for all distance, graphene will turn
from the semimetal phase to the insulator phase [22]. So it is
not quite clear why two-loop and higher order corrections do
not modify the dielectric permittivity considerably. From this
perspective the dielectric permittivity of graphene is similar
to the optical conductivity in graphene, where higher order
many-body corrections are also not important [29].
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APPENDIX

In this Appendix we give a detailed description of the fitting
procedure giving the dielectric permittivity (12). To obtain
the dielectric permittivity we fit our data by (11) for each
temperature under consideration. In principle it is preferable
to fit our data by (11) at large distances, because formula (11)
describes Debye screening of the Coulomb potential and bare
potential (4) approaches Coulomb only at sufficiently large
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r/a

101

ε(
r)

T = 0.17 eV

T = 0.33 eV

T = 0.42 eV

T = 0.50 eV

FIG. 3. The dielectric permittivity as a function of distance in the
region r/a ∈ [4,8] for the T = 0.167, 0.333, 0.417, and 0.50 eV. The
curves represent the result of the fitting by (11).

distance. However, in practice it is difficult to calculate the
static potential at very large distance since the uncertainty
of the simulations grows with distance. So one should find
a compromise between these constraints.

In this paper we fit our data in the region r/a ∈ [4,8]. In this
region the uncertainties are moderate and the deviation from
the bare potential (4) is already sufficiently small. In Fig. 3 we
plot the dielectric permittivity in the region r/a ∈ [4,8] and the
result of the fitting by (11) for a few temperatures.

The fitting by (11) gives ε̃ and mD . The values of these
parameters for the temperatures under consideration are shown
in Table II.

Having determined the values of the ε̃(T ) we fit them with
the function ε̃(T ) = Ã + B̃T + C̃T 2. The parameters of the
fit are Ã = 4.2 ± 0.2, B̃ = (−2.2 ± 1.5) eV−1, C̃ = (−5.0 ±
2.3) eV−2. The Ã is the zero-temperature extrapolation of the
dielectric permittivity.

The uncertainty of Ã can be attributed to the statisti-
cal uncertainty of the numerical simulation. There is also
a systematic uncertainty in Ã, appearing for the following
reason. We fit our data by (11) which describes the Debye
screening of the Coulomb potential. At the same time in
the region r/a ∈ [4,8] where we fit our data by (11) the
deviation of the bare potential (4) from the Coulomb is

TABLE II. The parameters ε̃ and mD obtained from the fit of the
potential by (11) for the temperatures under consideration.

T (eV) mD/T ε̃

0.17 318 ± 208 3.71 ± 0.86
0.20 393 ± 128 3.59 ± 0.55
0.28 475 ± 73 3.17 ± 0.32
0.33 575 ± 139 2.98 ± 0.57
0.38 734 ± 176 2.59 ± 0.60
0.42 784 ± 234 2.48 ± 0.75
0.45 919 ± 262 2.21 ± 0.72
0.50 1165 ± 462 1.77 ± 0.91
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small but not negligible (∼10%–20%). In this paper we
estimate this source of uncertainty as ∼15% of the dielectric
permittivity.

Notice that the dielectric permittivity is the ratio of bare
potential to the one measured on the lattice. Evidently the
uncertainty due to the deviation from the Coulomb potential
contributes both to the numerator and the denominator. Thus,

there is a partial cancellation of these uncertainties and we
believe it is overestimated in our paper. However, it is not
clear how to estimate this uncertainty more accurately. Tak-
ing both statistical and systematic uncertainties into account
we obtain the value of the dielectric permittivity at zero
temperature:

ε = 4.20 ± 0.66. (A1)
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