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Landau levels from neutral Bogoliubov particles in two-dimensional nodal superconductors
under strain and doping gradients
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Motivated by recent work on strain-induced pseudomagnetic fields in Dirac and Weyl semimetals, we analyze
the possibility of analogous fields in two-dimensional nodal superconductors. We consider the prototypical case
of a d-wave superconductor, a representative of the cuprate family, and find that the presence of weak, spatially
varying strain leads to pseudomagnetic fields and Landau quantization of Bogoliubov quasiparticles in the low-
energy sector. A similar effect is induced by the presence of generic, weak doping gradients. In contrast to genuine
magnetic fields in superconductors, the strain- and doping-gradient-induced pseudomagnetic fields couple in a
way that preserves time-reversal symmetry and is not subject to the screening associated with the Meissner effect.
These effects can be probed by tuning weak applied supercurrents which lead to shifts in the energies of the
Landau levels and hence to quantum oscillations in thermodynamic and transport quantities.
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I. INTRODUCTION

Elementary excitations in superconductors are composed of
coherent superpositions of electron and hole degrees of free-
dom [1–3]. These Bogoliubov quasiparticles are electrically
neutral on average and therefore do not couple simply to the
externally applied magnetic field. In addition, superconductors
are known either to expel magnetic field from their bulk
completely [4] or to form a flux lattice [5], in which the
quasiparticle dynamics is effectively zero field [6]. For these
reasons superconductors normally avoid formation of Landau
levels which represent the canonical response of most other
electron systems to magnetic field [7].

In this work, we show that weak, spatially varying in-
plane strains and doping gradients generically lead to Landau
quantization of Bogoliubov quasiparticles for a broad class of
two-dimensional (2D) nodal superconductors (SCs). In these
cases, the Dirac-like quasiparticles in the vicinity of point
nodes are subject to emergent vector potentials which enter in
a time-reversal-invariant way. In contrast to genuine magnetic
fields in a SC, there are no induced currents and no screening
associated with the Meissner effect. Our work is motivated
by interesting developments in graphene [8], in which strain-
induced pseudomagnetic fields lead to Landau quantization
and quantum oscillations, which were already observed in
experiment [9], and more recent proposals in the context of
Dirac and Weyl semimetals [10–15]. In contrast to Ref. [16],
which considered superconducting instabilities of a Landau-
quantized normal state in graphene, our proposal involves the
emergence of Landau levels directly in the superconducting
state and is not dependent on the pairing mechanism.

A possible experimental setup is shown in Fig. 1. Since
the most immediate realization of gapless, effectively two-
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dimensional superconductivity is provided by the broad class
of Cu-based materials, we study the case of a prototypical
d-wave SC. Strain can be induced, in principle, by allowing for
the controlled deformation of an underlying substrate [17–19].
Controlled doping gradients [20,21] provide an alternate way
of introducing unconventional vector potentials. As discussed
in greater detail in the following, an additional application
of a weak supercurrent provides a simple way to detect the
underlying quantum oscillations.

In Sec. II we discuss our prototypical model Hamiltonian
and show that effective vector potentials emerge in the low-
energy limit under weak applied strain or doping gradients. In
Sec. III, we present the results of our numerical calculations,
which confirm the presence Landau levels in a lattice model.
A summary and outlook are provided in Sec. IV. Technical
details are relegated to the Appendixes.

II. VECTOR POTENTIALS FROM LATTICE
DEFORMATIONS AND DOPING GRADIENTS

Consider a prototypical Hamiltonian [22] on the square
lattice Ĥ = ĤT B + Ĥ� corresponding to a nearest-neighbor
(NN) tight-binding (TB) part, together with a pairing potential
at mean-field level for next-nearest neighbors (NNN). The
latter is chosen to belong to the dxy representation of the D4h

point group. In momentum space, the Nambu form of the
lattice Hamiltonian is written as Ĥ = ∑

k �
†
kH(k)�k, with

�k = (ck,↑,ck,↓,c
†
−k,↑,c

†
−k,↓)T being the Nambu spinor and

H(k) = hkσ0τz + �k(iσy)(iτy). (1)

Here σ and τ are Pauli matrices in spin and Nambu space,
respectively, hk = 2t[cos(kxa) + cos(kya)] − μ, and �k =
4� sin(kxa) sin(kya). In addition, t and � are the unperturbed
hopping coefficients and pairing amplitudes, respectively, and
a is the pristine NN lattice spacing. This choice of Hamiltonian
is convenient for carrying out numerical calculations. Other
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FIG. 1. (a) Sketch of a possible experimental setup. The red
arrow indicates the direction of variation of either the strain or
doping gradient. The green arrow indicates an applied supercurrent.
(b) Schematic deformation of the 2D square lattice for the case of
uniaxial strain as a function of x alone. (c) The corresponding Fermi
surface deforms, and the nodal points, labeled (1,1′) and (2,2′), move,
mimicking the action of a pseudovector potential.

models involving possible dx2−y2 pairing and different Fermi
surfaces lead to similar results, provided nodal quasiparticles
are present.

In the absence of any perturbation and below half filling,
the low-energy spectrum of Ĥ is Dirac-like,

E(α)
q = ±

√
v2

F q2
x/y + v2

�q2
y/x, (2)

about four nodes located at Kα ∈ {(±KF ,0),(0, ± KF )},
where KF is the Fermi wave vector. We label the pairs of
opposite momenta as α ∈ {1,1′} for the nodes along the ky axis
and α ∈ {2,2′} for the nodes along the kx axis in the Brillouin
zone, as shown in Fig. 1(c). We also define the effective Fermi
velocities vF = 2ta sin(KF a),v� = 4�a sin(KF a).

We model an arbitrary lattice deformation via the transfor-
mation

Ri → R
′
i = Ri + u(Ri), (3)

where Ri are Bravais lattice vectors and u(Ri) are position-
dependent displacements of the orbitals. We assume that both
NN hopping coefficients and NNN pairing amplitudes are
continuous functions of the deformation. While in practice
they can be quite sensitive to the details of the material at hand,
we assume that the effect of a deformation can be generically
modeled by considering the leading contributions in a gradient
expansion of a deformation field u(r). In addition, we also
assume that the leading effect can be captured by a net change in
NN bond length, by analogy with the case of graphene [23,24].
We also ignore the contributions from the change in pairing,
which are expected to be subleading. While we expect that none
of these approximations are crucial for the study of the effect
at hand, they provide for a much more transparent discussion.

The pairing potential connects states in the vicinity of pairs
of opposite Fermi wave vectors. Consequently, we can focus
on the (1,1′) pair of nodes.

In the low-energy continuum limit, the Hamiltonian reduces
to H (1,1′) = ∫

d2r�
†
rH�r , with

H = vF

(
σzτ0i∂y + σ0τz

eAy

vF

)
− v�σxτxi∂x, (4)

where h̄ has been set to 1 for simplicity. A detailed derivation
of this Hamiltonian is provided in Appendix A, but the
origin of the vector potential can be understood intuitively
by inspecting Figs. 1(b) and 1(c). Note that σ are now
Pauli matrices in combined valley and spin space, and �r =
(�(1)

↑ ,�
(1′)
↓ ,�

(1),†
↑ ,�

(1′),†
↓ ) is the corresponding Nambu spinor.

The Fermi fields are defined for the pristine system in the
vicinity of the nodes in standard fashion. Notice that both
kinetic and pairing parts are effectively one-dimensional in
this limit. Consequently, the deformation-induced potentials,
which couple in a gauge-invariant way, are of the form A =
(0,Ay). The effective one-dimensional form also precludes the
emergence of scalar potentials for a generic deformation, in
contrast to the case of graphene [8,25,26], where this holds
only for pure shear deformations. The effective Hamiltonian
about the other two Fermi wave vectors can be obtained by
transforming x ↔ y.

Under our assumptions, the generic form of the vector
potentials is (see Appendix A)

Ay =
(

2tβ

e

)
[uxx + cos(KF a)uyy], (5)

where uij = (1/2)(∂jui + ∂iuj ) is a symmetric strain tensor
and β = d ln t/d ln a is a standard parameter [24]. Quite
generally, the elements of the strain tensor can be continuous
functions of (x,y). We list three limiting cases which are more
conveniently achieved in numerical calculations and possible
experimental setups: (i) uniaxial strain, uxx �= 0,uyy = 0; (ii)
hydrostatic compression/dilation, uxx = uyy ; and (iii) pure
shear strain, uxx = −uyy . In the following, we shall focus on
case (iii), although this does not essentially modify the results.

A very similar form is obtained for the case of a doping gra-
dient in the low-energy limit. This possibility can be modeled
by introducing a slow variation of the chemical potential on the
scale of the intersite separation. In the low-energy, continuum
limit we approximate μ → μ[1 + g(r)]. As for the case of
lattice deformations, the additional term leads to the emergence
of vector potentials of the form

Ay =
(μ

e

)
g(r). (6)

This again can be understood intuitively by noting that the
doping gradient changes the Fermi surface volume and thus
moves the nodal points in the momentum space.

The vector potentials in Eqs. (5) and (6) can lead to
pseudomagnetic fields, provided that B = ∇ × A �= 0. For
clarity, we analyze the case of strains with monotonic linear
variation with distance along x and perform an analogous
analysis for the chemical potential case. This corresponds
to uniform pseudomagnetic fields. The presence of weak
modulations in the strain- or doping-gradient-induced fields
does not qualitatively change our conclusions. To ensure that
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the continuum limit is a good approximation of the perturbed
finite-size system, we require that the components of the vector
potentials remain small over the entire sample.

The vector potential terms are invariant under the time-
reversal operation, which effectively interchanges the val-
ley and spin indices of the paired fields. Consequently, the
Hamiltonian in Eq. (4) is also invariant under time reversal.
This ensures that the current density associated with either
the deformation or doping gradient vanishes. An important
consequence of this is the absence of screening currents and
hence of the Meissner effect, which would otherwise prevent
the emergence of Landau levels (LLs). We also note that, from
a generic Landau-Ginzburg perspective, there is no analog for
the standard London equations as the effective strain-induced
vector potentials are not determined from the standard gauge-
invariant action. Instead, they are derived from a linear-elastic
theory, as noted in the case of graphene [24]. Similar arguments
hold for doping gradient-induced vector potentials.

The solutions to Eq. (4) can be obtained via a canonical
Bogoliubov–de Gennes (BdG) transformation [2]. For node 1
the BdG equations are

−
[
v�i∂xσx + vF

(
i∂y + eAy

vF

)
σy

]
ψ = Eψ, (7)

where σ are Pauli matrices and ψ = (u(1)
E (r),v(1)

E (r))T is
a spinor associated with the BdG factors. For Ay linearly
increasing along x the eigenstates are discrete Landau levels
of energy En = ±ωc

√
n, where ωc = √

2ev�∂xAy(x). The
eigenstates at 1′ are obtained via complex conjugation.

For bona fide magnetic fields it is well known [7] that
Landau quantization generically leads to oscillations in ther-
modynamic and transport observables with applied field, most
notably the de Haas–van Alphen and Shubnikov–de Haas
effects. Similar effects have been predicted for strain-induced
pseudomagnetic fields in Dirac [8] and Weyl materials [15].
These oscillations can be traced [7] to the dramatic enhance-
ments in the total density of states (DOS) per unit volume
whenever a LL crosses the Fermi energy. We argue that similar
singularities arise in the present case and that the associated
oscillations can be observed, in principle, in a suitable experi-
mental setup. In the case of a clean superconductor under strain
or doping gradient, a convenient way to probe the discrete
nature of the LLs is to apply a small supercurrent to the sam-
ple, as indicated in Fig. 1(a). In the low-energy limit, the
supercurrents induce an effective Doppler shift in quasiparticle
energy [3] given by Ek → Ek + vs · k, where vs = qs/m

defines the superfluid velocity [2]. This perturbation breaks
time-reversal symmetry and, importantly, leads to opposite
energy shifts around opposite momenta. We argue that this
effect also occurs in the presence of strains or doping gradients.
For fixed effective vector potentials, the DOS at the Fermi level
will therefore exhibit sharp enhancements as a function of a
weak, applied supercurrent. Similar effects are expected in the
presence of fixed supercurrents and varying strain or doping
gradients. In the following, we present numerical calculations
which fully support our predictions.

III. NUMERICAL RESULTS

We model the lattice under strain via a slow variation of
the hopping coefficients on the scale of the intersite spacing.
For convenience, we consider pure shear strain as a function
of x alone. The hopping coefficients are modulated as t →
t(1 ± lδsp) along the x and y directions, respectively, where l

denotes the position along x and δsp is a small parameter. In
the case of doping gradients we allow the chemical potential
to vary as μ → μ(1 + lδdp) as a function of the x coordinate
alone. Consequently, we impose periodic and open boundary
conditions along the y and x axes, respectively. In the low-
energy limit the modified coefficients lead to vector potentials
[Eqs. (5) and (6)], corresponding to uniform pseudomagnetic
fields only around the (1,1′) pair of nodes (Appendix B).

We find the energy spectra of the modified lattice Hamiltoni-
ans numerically. All results are reported in units where ta = 1.
The largest change in either hopping or chemical potential
over the entire extent of the lattice is on the order of 10%.
In Fig. 2(a) we show the low-energy spectrum as a function of
ky for the unperturbed dxy superconductor around node 1. Note
that the presence of the flat zero-energy dispersion is associated
with topologically protected Majorana edge states [27] and
is unrelated to the effect under discussion. In the presence
of strain, the low-energy spectrum around the (1,1′) pair of
nodes is reorganized into discrete, flat bands, as illustrated in
Fig. 2(b). The interlevel energy differences are those predicted
by the Dirac-Landau spectrum. Similar effects are observed
upon the inclusion of a weakly varying chemical potential, as
shown in Fig. 2(c). The associated total DOS per unit area in
the low-energy sectors, Figs. 2(d)–2(f), reflects the emergence
of LLs.

In the presence of both strain and weak applied supercur-
rents the spectrum around the opposite (1,1′) points is shifted to
higher and lower energies, respectively, as shown in Figs. 3(a)
and 3(b). An analogous behavior is obtained in the case of a
doping gradient, as shown in Figs. 3(d) and 3(e). The total DOS
per unit area in the presence of an applied supercurrent reflects
the shifts in energies of the LLs. Most notably, it exhibits sharp
enhancements whenever pairs of LLs around opposite nodes
cross the Fermi energy. This is shown in Figs. 3(c) and 3(f) for
a range of supercurrents for strain and doping gradient cases,
respectively. Note that the applied supercurrent also lifts the
degeneracy of the LLs and leads to a broadening of the sharp
peaks in the DOS.

IV. SUMMARY AND OUTLOOK

We proposed that weak, slowly varying strains and doping
gradients generically give rise to pseudomagnetic fields in the
low-energy limit of two-dimensional nodal superconductors.
For simplicity, our discussion was focused on a prototypical
2D dxy SC. This is not essential, and similar effects are
expected to occur in other types of SC which exhibit Dirac-like
spectra around points in the Brillouin zone. Examples include
dx2−y2 cuprates and odd-parity p-wave cases. In view of simi-
lar proposals for pseudomagnetic fields in Weyl semimetals
[10–15,28], such effects are also likely to occur in more
complicated three-dimensional systems.
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FIG. 2. Results of the numerical calculations for the 2D dxy SC with and without the presence of strain and doping gradients. Computations
were performed on a lattice with Lx = 2000 sites and Ly = 8000 crystal momentum points. We use � = 0.1 and μ = −1.6 and μ = −1.0
for the strain and doping cases, respectively. (a) Low-energy spectrum around node 1 in the absence of both strain and doping gradients.
(b) Same as in (a) with a finite pure-shear strain with δsp = 5 × 10−5 which varies along the x direction. (c) Same as in (b) with a doping
gradient δdp = 1 × 10−4 instead of strain. (d)–(f) The total DOS per unit area for the cases in (a)–(c), respectively.

The most likely candidates for the experimental observation
of such effects are the high-Tc cuprates. Specifically, in
YBa2Cu3Ox thin films and La2−xSrxCuO4−La2CuO4 bilayer
samples, controlled doping gradients have recently been
achieved [20,21]. According to our theory, such samples
should already exhibit Landau level quantization which is, in

principle, observable as a series of sharp peaks in DOS through
standard quasiparticle spectroscopies such as angle-resolved
photoemission spectroscopy (ARPES) and scanning tunneling
spectroscopy (STS). In the above samples a ∼10% doping
variation is imposed over a millimeter scale, which allows us
to estimate (Appendix C) the effective pseudomagnetic field

FIG. 3. Results of the numerical calculations for the 2D dxy SC in the presence of strain and doping gradient and of an applied supercurrent.
(a) The low-energy spectrum around node 1 in the presence of strain and of an applied supercurrent in the y direction. (b) Same as (a) for the
opposite node, 1′. Note that the LLs have an opposite shift in energy with respect to node 1. (c) The DOS at the Fermi level EF as a function of
the applied supercurrent parameterized by the effective momentum qs,y [2]. The sharp spikes occur whenever a pair of LLs crosses the Fermi
energy. (d)–(f) Same as (a)–(c) in the presence of a doping gradient alone.
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as B � 0.32 mT and the Landau level spacing h̄ωc � 82 μeV.
While this is probably too small to resolve by STS or ARPES,
we see no fundamental reason why similar doping variations
could not be imposed on a micrometer scale which would
produce an effective field of the order of 1 T and clearly
observable Landau levels. Under the applied supercurrent
such samples would, in addition, show quantum oscillations
in transport properties, such as the longitudinal thermal
conductivity κxx . Large local strain gradients have recently
been observed in nanocomposite YBa2Cu3O7−δ films [19],
which may afford an opportunity to study the effects discussed
in this paper on a nanoscale, similar to the seminal work on
“nanobubbles” in graphene [9].

The emergence of Landau levels in superconductors under
strain and doping gradients naturally raises the question of
quantized responses, by analogy with the integer quantum Hall
effect. At this point, we can speculate that under appropriate
conditions, these systems might exhibit exactly quantized
thermal Hall conductance κxy . When the zero of the energy
is tuned to lie between the bulk Landau levels by supercurrent
as in Fig. 3, the electronic contribution to κxx vanishes. In this
case, each bulk band is expected to carry a nonzero Chern
number and produce a protected chiral edge mode, already
visible in Fig. 3 as a dispersing feature terminating the flat
Landau levels. More detailed considerations regarding ther-
mal transport and other aspects related to possible nontrivial
topology are relegated to future work.

Note added. Recently, we became aware of similar results
reported in Ref. [29].
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APPENDIX A: LOW-ENERGY CONTINUUM LIMIT
IN THE PRESENCE OF ARBITRARY DEFORMATIONS

AND DOPING GRADIENTS

The Hamiltonian on the two-dimensional square lattice is
given by

Ĥ = ĤT B + Ĥ�, (A1)

where ĤT B is a nearest-neighbor (NN) tight-binding part
and Ĥ� is a pairing part corresponding to a dxy irreducible
representation of the D4h point group.

1. Tight-binding part in the presence of
an arbitrary deformation

In the absence of strain, the TB part is given by

ĤT B =
∑

i

⎡
⎣ ∑

j∈〈ij 〉

∑
σ

t(δj )c†σ (Ri)cσ (Ri + δj ) + H.c.

⎤
⎦

−
∑

i

μc†σ (Ri)cσ (Ri), (A2)

where σ is a spin index which is ignored for the rest of
this section. Ri are the Bravais lattice vectors, while δj ∈
{(a,0),(0,a)} are the vectors which connect NNs, a is the NN
distance, and μ is the chemical potential. The latter is chosen

such that the system is below half filing. ĤT B is diagonalized
by applying a Fourier transform,

c(Ri) = 1√
N

∑
k∈BZ

eik·Ri ck, (A3)

where N is the number of unit cells.
In the presence of a lattice deformation, the lattice TB

Hamiltonian undergoes the transformation

Ri → R
′
i = Ri + u(Ri), (A4)

where u(Ri) is a position-dependent displacement. In general,
the hopping coefficients are modified accordingly:

t(δj ) → t ′(δj ) = t[Ri + δj + u(Ri + δj ) − Ri − u(Ri)]

= t[δj + u(Ri + δj ) − u(Ri)]. (A5)

We assume that the hopping coefficients can be approximated
by continuous functions of the displacement. The transformed
Hamiltonian is

ĤT B → Ĥ
′
T B =

∑
i

{ ∑
j∈〈ij 〉

t[δj + u(Ri + δj ) − u(Ri)]c
†

× [Ri + u(Ri)]c[Ri + u(Ri + δj )

+ δj ] + H.c.

}
−

∑
i

μc†[Ri + u(Ri)]

× c[Ri + u(Ri)]. (A6)

We consider the low-energy continuum limit of Ĥ
′
T B .

Consequently, we approximate the lattice operators as products
of parts which vary rapidly and slowly on the scale of the lattice
as

c(Ri) ≈
∑

α

ei Kα ·Ri �(α)(Ri), (A7)

where �(α)(Ri) is a slowly varying Fermi field and α ∈
{1,1′,2,2′} represents the positions of the four nodes at Fermi
wave vectors Kα ∈ {(0, ± KF ),(±,KF ,0)}. We assume that
the lattice displacements can be approximated by a continuous
displacement field:

Ri + u(Ri) → r + u(r). (A8)

On the scale of the lattice, variations in the displacements can
be approximated by

u(r + δj ) ≈ u(r) + (δj · ∇)u(r). (A9)

In the following, we expand the continuum limit of the
Hamiltonian in terms of leading gradient terms.

It should be noted that such an expansion is valid provided
that the gradient term in Eq. (A9) remains small throughout.
As discussed in the following, in order to obtain finite pseu-
domagnetic fields we consider deformation gradients which
vary monotonically. This implicitly introduces a spatial scale
at which these gradients are no longer small. Therefore, the
effective continuum approximation only holds provided that
the deformation at any point of a sample of finite extent remains
small.
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Applying the above to Ĥ
′
T B , we obtain

Ĥ
′
T B =

∫
d2r

∑
α

�†,(α)(r + u)

{∑
j

2t[δj + (δj · ∇)u][cos{Kα · [δj + (δj · ∇)u]}

+ i sin{Kα · [δj + (δj · ∇)u]}(δj · ∇)]

}
�(α)(r + u) − μ

∑
α

∫
d2r�†,(α)(r + u)�(α)(r + u), (A10)

where we neglected internode terms. The explicit dependence of the fields on u can be formally eliminated via a coordinate
transformation,

r
′ = r + u(r), (A11)

with a Jacobian 1 + uii , where uij = ∂jui and implicit summation is assumed. We also approximate δj · ∇u(r) ≈ δj · ∇u(r
′
)

and expand the following terms:

t[δj + (δj · ∇)u] ≈ t(δj ) + (δj · ∇)u · ∇t(δj ), (A12)

cos{Kα · [δj + (δj · ∇)u]} ≈ cos(Kα · δj ) − Kα · (δj · ∇)u sin(Kα · δj ), (A13)

sin{Kα · [δj + (δj · ∇)u]} ≈ sin(Kα · δj ) + Kα · (δj · ∇)u cos(Kα · δj ). (A14)

To zeroth order in the gradient expansion we obtain

H
(0)
T B =

∫
d2r

∑
α

∑
j

2t(δj )�†,(α)(r){cos (Kα · δj ) + i sin(Kα · δj )(δj · ∇)}�(α)(r)μ
∑

α

∫
d2r�†,(α)(r)�(α)(r). (A15)

The first and last terms cancel since Kα is on the Fermi surface. The second term gives the leading linear dispersion and also
defines the Fermi velocity vF = 2ta sin(KF a).

To first order, we obtain

H
(1)
T B =

∑
α

∑
j

{∫
d2r(uxx + uyy)2t(δj ) cos(Kα · δj ) +

∫
d2r2(δj · ∇)u · ∇t cos(Kα · δj )

+
∫

d2r2t(δj )[−Kα · (δj · ∇)u sin(Kα · δj )]

}
�†,(α)(r)�(α)(r) − μ

∑
α

∫
d2r(uxx + uyy)�†,(α)(r)�(α)(r). (A16)

The first two terms cancel independently of the details of the deformation. They represent local dilation/contraction with all other
parameters fixed. The expression can be simplified further by carrying out the summations over NNs. The result is summarized
by

H
(1)
T B =

∑
α

∫
d2reAα(r)�†,(α)(r)�(α)(r), (A17)

where the electron charge e was introduced for dimensional consistency. The effective vector potentials around either the 1 node
or the 1′ node are defined as

A(1,1′) =
(

0(
2a
e

){t ′‖uxx + t ′⊥uyx + t ′⊥ cos (KF a)uxy + [t ′‖ cos (KF a) − tKF sin (KF a)]uyy}
)

. (A18)

The Ax component is formally set to zero since there is no linear-derivative term along the x direction to leading order for the
TB part. We also defined the coefficients ∂xtx = ∂yty = t ′‖,∂xty = ∂ytx = t ′⊥, which are restricted by the symmetry of the square
lattice, while, in general, t ′⊥ �= t ′‖. The analogous nontrivial vector potentials Ax around the other pair of Fermi momenta can be
obtained by replacing x ↔ y.

2. Pairing part in the presence of an arbitrary deformation

In the absence of any deformation, the paring part of the Hamiltonian for a 2D dxy SC is given by

Ĥ� =
∑

i

∑
j∈〈〈ij 〉〉

∑
σ

∑
σ ′

�σσ ′(δj )[cσ (Ri)cσ ′(Ri + δj ) + cσ (Ri)cσ ′(Ri − δj )] + H.c., (A19)

where the pairing occurs for next-nearest-neighbor (NNN) sites, �σσ ′(δj ) = �(δj )iσy , corresponding to even-parity, spin-singlet
pairing. In addition, �(δ1/2) = ±�, with δ1/2 = (±a,a) determining the vectors which connect NNNs.
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We allow for the deformation given by Eq. (A8) and assume that its effect on the pairing potential can be generically captured
to lowest order in the strains. The derivation of the low-energy continuum limit is analogous to that of the TB part. We list the
final results for the (1,1′) pair of nodes:

H
(0)
� =

∫
d2r

∑
(α,β)

4a�σσ ′ sin
(
KFy,αa

)
�α

σ (r)(−i∂x)�β

σ ′(r) + H.c., (A20)

H
(1)
� =

∫
d2r

∑
(α,β)

∑
σ,σ ′

(−iσy)σ,σ ′4a[(uxx∂x� + uyx∂y�) cos (KF a) − �KF uyx sin (KF a)]�α
σ (r)�β

σ ′(r), (A21)

where α �= β. The zeroth-order term defines a velocity v� = 4a� sin(KF a). For the (2,2′) pair, we replace x ↔ y. We can also
set ∂x� = ∂y� = �

′
.

3. Effective gauge potentials in the presence of strain

The first-order corrections to the pairing part can be elimi-
nated via the gauge transformation

�
β

σ ′ → �
β

σ ′e
−isgn(KFy,α ) φ(r)

v� , (A22)

where

φ = 4a�
′
(ux + uy) cos(KF,αa) − �KF uy sin(KF a).

(A23)

The transformation modifies Ay in Eq. (A18) to

A
′
y = Ay − vF

v�e
∂yφ. (A24)

The terms proportional to sin(KF a) cancel. The expression for
the most general gauge-strain-induced vector potentials for the
(1,1′) fields reduces to

Ay =
(

2a

e

){
t ′‖uxx +

[
t ′‖ −

(
t

�

)
�

′
]

cos (KF a)uyy

+ t ′⊥uyx +
[
t ′⊥ −

(
t

�

)
�

′
]

cos (KF a)uxy

}
. (A25)

The corresponding Ax for the (2,2′) pair is obtained by
replacing x ↔ y. Note that t ′‖ corresponds to a change in bond

length, and t ′⊥ corresponds to a change in bond angle, while �
′

includes both. In the most general case, the coefficients depend
on the details of the model, in particular on the symmetry of
the orbitals.

Note that arbitrary strain uij (x,y) always enters the low-
energy theory through a minimally coupled Ay component
of the vector potential as in Eq. (A25). This surprising result
can be understood when one considers the gauge transfor-
mation of Eq. (A22), which introduces the nontrivial phases
sgn(KFy,α)φ(r)

v�
. These incorporate the effects of strain on the

pairing amplitude in the low-energy limit and account for the
“missing”Ax component. To see this more clearly, we can con-
sider the case of linear-in-position strains. The phases defined
by Eqs. (A22) and (A23) provide an additional modulation
of the low-energy wave functions and thus represent effective
shifts in the position of nodes 1 and 1′ in the Brillouin zone.

We focus on cases where the dominant contribution comes
from the change in bond length, i.e., t ′‖ �= 0,t ′⊥ ≈ 0. Such an
approximation can be justified, in principle, using a Slater-
Koster scheme [30] and is consistent with the similar case of
graphene [31]. Additionally, we assume that the leading change
in the pairing potential under strain � is also negligible. Under

these assumptions and writing

at ′‖ = t
d ln t

d ln a
= tβ, (A26)

we obtain the form of the vector potentials discussed in the
main text.

4. Effective gauge potentials from doping gradients

We consider the effect of a doping gradient μ → μ(Ri) on
the Hamiltonian of Eq. (A1). The low-energy continuum limit
in this case is

H = H
(0)
T B + H

(0)
� + Hdg, (A27)

where the first two terms correspond to the unperturbed
Hamiltonians for the TB and pairing parts, given by Eqs. (A15)
and (A20), respectively. The last term is the contribution of a
spatially varying chemical potential,

Hdg = −e
∑

α

∫
d2r

(
μ̃(r)

e

)
�†,(α)(r)�(α)(r), (A28)

where

μ̃(r) = μg(r). (A29)

The corresponding vector potential around the (1,1′) pair of
nodes is

A(1,1′) =
(

0(
μ

e

)
g(r)

)
, (A30)

with an analogous Ax around (2,2′). These vector potentials
must remain small throughout the finite area of the sample and
are subject to the constraints imposed in the case of strain.
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5. Low-energy Nambu form of the Hamiltonian in the presence of nontrivial vector potentials

In either strain or doping cases, we can write the Hamiltonian in the low-energy sector as

H =
∫

d2r

⎛
⎜⎜⎜⎜⎜⎝

�
†,(1)
↑

�
†,(1′)
↓

�
(1)
↑

�
(1′)
↓

⎞
⎟⎟⎟⎟⎟⎠

T ⎛
⎜⎜⎜⎜⎜⎝

vF

(
i∂y + e

Ay

vF

)
0 0 v�(−i∂x)

0 vF

(−i∂y + e
Ay

vF

)
v�(−i∂x) 0

0 v�(−i∂x) vF

(
i∂y − e

Ay

vF

)
0

v�(−i∂x) 0 0 vF

(−i∂y − e
Ay

vF

)

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

�
(1)
↑

�
(1′)
↓

�
†,(1)
↑

�
†,(1′)
↓

⎞
⎟⎟⎟⎟⎟⎠,

(A31)

which is identical to Eq. (4) of the main text. With vanishing vector potentials, one can easily check that this is the low-energy
continuum limit of the Hamiltonian of Eq. (1) of the main text:

H =
∑

k

(
c
†
k↑

c−k↓

)T (
hk �k

�k −hk

)(
ck↑
c
†
−k↓

)
+

(
c
†
k↓

c−k↑

)T (
hk −�k

−�k −hk

)(
ck↓
c
†
−k↑

)
. (A32)

The BdG equations can be obtained in the standard fashion by considering the block Hamiltonian

H
′ =

∫
d2r

(
�

†,(1′)
↓

�
(1)
↑

)T (
vF

(−i∂y + e
Ay

vF

)
v�(−i∂x)

v�(i∂x) vF

(
i∂y − e

Ay

vF

)
)(

�
(1′)
↓

�
†,(1)
↑

)
, (A33)

together with the fact that �
(1′)
↓ ,�

(1)
↑ are related through time

reversal. The remaining sector can also be obtained via the
same operation.

APPENDIX B: NUMERICAL CALCULATIONS

For the purpose of numerical computation, we introduce
position-dependent tight-binding coefficients or chemical po-
tentials at the level of the Hamiltonian in Eq. (A1). Moreover,
these vary slowly on the scale of the lattice. Depending on
the spatial dependence of these parameters, we recover the
different cases discussed in the main text.

In practice, we allow a nontrivial spatial variation along the
x direction but keep periodic boundary conditions along y.

1. Deformation-induced vector potentials

In this case, we choose

t(δj ) → t(δj )[1 + f (Ri ,δ j )]. (B1)

In the low-energy continuum approximation, the corrections
to the hopping coefficients are analogous to the second term
in Eq. (A16), which is the contribution of the transformed TB
coefficients:

H
(1)
T B =

∑
α

∑
j

∫
d2r2tf (r,δj ) cos(Kα · δj )

× �†,(α)(r)�(α)(r). (B2)

We consider the three limiting cases discussed in the main
text:

(i) Uniaxial strain along the x axis. This corresponds to
f (x,δx) �= 0, with the component in the y direction equal to
zero. The vector potential is Ay = tf (x,δx) for the (1,1′) pair
of nodes, and Ay = 0 for the other pair. On the lattice this
amounts to f (xl,δx) = lδsp, where δsp � 1.

(ii) Hydrostatic compression/dilatation. In this case, the
finite vector potentials about each pair of nodes are equal. We

take f (x,δx) = f (x,δy) = f (x). The dependence on x alone
is purely for computational convenience. The resulting vector
potentials are Ax/y = 2tf (x)[1 + cos(KF a)]. On the lattice,
we have f (xl,δx) = lδsp.

(iii) Pure shear deformation. We choose f (x,δx) =
−f (x,δy). The vector potentials are Ay/x = ±2tf (x)[1 −
cos(KF a)]. On the lattice, we have f (xl,δx) = lδsp, with a
corresponding negative sign for hopping along the y direction.

2. Doping-gradient-induced vector potentials

This case is qualitatively similar to that of a deformation
since μ̃(r) = μg(r). In practice, we take g(r) = g(x). On the
lattice, this amounts to g(xl) = lδdp, with δdp � 1.

APPENDIX C: ESTIMATE OF
DOPING-GRADIENT-INDUCED LANDAU

LEVEL SPACING AND PSEUDOMAGNETIC FIELDS

We estimate that the candidate cuprate films are generically
characterized by the parameters (1) � ≈ 30 meV [32], (244)
a ≈ 3.9 Å, (3) KF a ≈ π/2, (4) t ≈ 0.38 eV [33], and (5) μ ≈
1.52 eV as determined from μ ≈ 2t[1 + cos(KF a)] ≈ 4t . In
addition, we estimate ∂xg(x) ≈ 0.047 mm−1 from the relative
variation in the hole concentration ∂xg(x) ≈ (�p)/(p0�x)
over the sample length in Ref. [20]. The rate in Ref. [21]
is roughly half of this. Upon including factors of h̄ for
dimensional consistency we obtain

Ec,Doping =
√

8�μa[sin(KF a)]∂xg(x), (C1)

BDoping =�0

2π

μ∂xg

2ta sin(KF a)
(C2)

for the inter-LL spacing and pseudomagnetic field, respec-

tively. Note that �0 = hc/e = 4.12 × 105 T Å
2

is the quantum
of flux.
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