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Bistability in a mesoscopic Josephson junction array resonator
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We present an experimental investigation of stochastic switching of a bistable Josephson junction array resonator
with a resonance frequency in the GHz range. As the device is in the regime where the anharmonicity is on the
order of the linewidth, the bistability appears for a pump strength of only a few photons. We measure the dynamics
of the bistability by continuously observing the jumps between the two metastable states, which occur with a rate
ranging from a few Hz down to a few mHz. The switching rate strongly depends on the pump strength, readout
strength and the temperature, following Kramers’ theory. The interplay between nonlinearity and coupling, in this
little explored regime, could provide a new resource for nondemolition measurements, single photon switches,
or even elements for autonomous quantum error correction.
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I. INTRODUCTION

The nonlinearity provided by atoms and Josephson junc-
tions is a necessary ingredient to observe quantum mechanical
effects in cavity quantum electrodynamics (QED) and circuit
QED (cQED) systems. Strong nonlinearities, much larger than
the linewidth of the transition, are required to build qubits [1],
implement quantum information protocols [2,3], and realize
textbook quantum optics experiments [4,5]. Nonlinearities
much smaller than the linewidth of the transition are typically
exploited for parametric processes [6–8] like amplification or
frequency conversion at the quantum level.

Besides quantum information applications, there has been
growing interest to exploit cavity QED for ultralow-power
classical logic elements [9–11]. This interest has been sparked
by the ever growing all optical communication networks.
Remarkably, a single photon transistor [12], reminiscent of
an electronic transistor, has been implemented for the optical
domain. In this device a single photon can switch a large optical
field. Realizing such devices has been a challenging endeavor
as the required nonlinearity is hard to realize, due to the weak
interaction of optical light with atoms.

Much stronger light matter interactions can be achieved in
the microwave regime using the cQED platform. In this context
Josephson junction arrays (JJAs) have proven to be an ideal
circuit element to build superconducting qubits with excellent
coherence properties and unique tuning capabilities [13–15].
Similarly, JJAs have also been used to build quantum limited
parametric amplifiers [8,16–18]. Recently, the coherence prop-
erties of the self resonances of JJAs [19,20], as well as their
self-Kerr and cross-Kerr coefficients have been measured [21].
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The measured Kerr coefficient showed good agreement with
a model based on a second order expansion of the Josephson
potential [22].

A regime of particular interest arises when the self-Kerr
Ki and cross-Kerr Kij nonlinear coefficients are on the order
of the linewidth κ of the system. In this regime the system
will show a pronounced bistability [23,24] at the single to few
photon level. Bistability is a phenomenon which is relevant in
many fields, ranging from chemistry [25] and biology [26,27]
to Josephson junction physics [28,29] and cQED [30]. Very
recently, an optically levitated nanoparticle has been shown to
exhibit a stochastic bistability [31] and Kramers turnover [32].

In this paper, we report on the realization of a JJA resonator
with multiple modes and strong self-Kerr and cross-Kerr coeffi-
cients in the regime Ki,Kij ≈ κ . We investigate the bistability
of one mode of the JJA and characterize the dependence of
the switching rate on the pump strength, readout strength,
and temperature. In addition, our numerical model, based on
Kramers’ theory, is in good agreement with the experimental
observations.

The paper is structured as follows: In Sec. II we provide
the description of the device, followed by the results of a
two-tone spectroscopy measurement providing evidence of
bistable response in our system in Sec. III. Following this,
the central results of our paper studying the continuous time
measurements of the bistable response as a function of different
parameters are presented in Sec. IV. We conclude in Sec. V
and present details of the experimental setup and theoretical
modeling in the Appendix.

II. DEVICE DESCRIPTION

The JJA consists of 103 cascaded Josephson junctions, with
a small capacitance to ground C0, coupled to a 6-mm-long
microwave antenna and a shunt capacitance Cs , as shown in
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FIG. 1. (a) Photograph of one half of a rectangular copper waveg-
uide with a 6 GHz cutoff. A JJA with a microwave antenna is fabricated
on a piece of sapphire and placed in the center of the waveguide.
(b) Schematic representation of an array of Josephson junctions inside
a waveguide. C0 is the capacitance of the islands to ground, CS is the
shunt capacitance for the array, CJ is the junction capacitance, and Cg

denotes the coupling capacitance of the antenna to the waveguide. LJ

is the Josephson junction inductance. The input and output couplers to
the waveguide are shown on the top left and top right of the schematic.
(c) Optical image of the JJA coupled to a 6-mm-long antenna and a
shunt capacitance. The inset shows a zoom-in on the junction array.
(d) Electron beam image (blue box in the inset) of ten of the 103

Josephson junctions.

Fig. 1. The junctions are fabricated on a sapphire substrate
using electron beam lithography and bridge-free double-angle
evaporation [33]. An electron beam image of the junctions
can be found in Fig. 1(d). The junctions were designed
to have a large ratio EJ /EC ≈ 200, in order to suppress
coherent quantum phase slips (CQPS) [34,35]. Here EJ is the
Josephson junction energy and EC is the charging energy. The
parameters of the JJA were designed such that the fundamental
resonance of the JJA combined with the shunt capacitance is
around 1 GHz. The mode spacing for the first 10 modes is
about 1.2 GHz and progressively becomes smaller for higher
resonances [20,21].

The JJA is placed inside a copper waveguide [36] with a
6 GHz cutoff, as shown in Fig. 1(a). Due to the capacitive
coupling of the JJA to the waveguide, we can characterize the
sample by performing microwave transmission measurements
using a vector network analyzer (VNA). Due to the relative
symmetry of the electric field of the waveguide and the
antenna, the even modes of the JJA will couple poorly to the
waveguide and not be visible in transmission measurements.
The waveguide with the sample is mounted on the mixing
chamber stage (10 mK) of a cryogen free dilution refrigerator.
The sample is enclosed in a double layer cryoperm shield
inside a completely closed copper can. The stainless steel
input lines are attenuated with 20 dB at 4 K and 30 dB at
base temperature. They are filtered with a combination of a
12 GHz low pass and an Eccosorb filter. The output stage
consists of a 12 GHz low pass filter, two 4–12 GHz isolators,

and a 4–8 GHz high electron mobility transistor amplifier.
The effective measurement bandwidth for direct transmission
measurements using a VNA is limited to about 4–9 GHz due
to the cutoff of the waveguide and the combined bandwidth of
other microwave components.

Within the accessible measurement bandwidth we can char-
acterize three resonances by fitting their transmission data to a
notch type response function [37]. From these measurements
we can extract the resonance frequencies (ωi/2π ), the internal,
and the coupling quality factors shown (see Fig. 6 and Table I
in Appendix B).

To observe the resonances of the modes outside the mea-
surement bandwidth, we exploit the cross-Kerr interaction,
which is induced by the junction nonlinearity. The Hamiltonian
for the JJA, up to second order in the mode occupation number,
is given by

H/h̄ =
N∑

i=1

(
ωia

†
i ai + Ki

2
a
†
i aia

†
i ai

)
+

N∑
i,j = 1
i �= j

Kij a
†
i aia

†
j aj .

(1)

The Hamiltonian consists of a self-Kerr term Ki which leads to
a photon number ni = a

†
i ai dependent frequency shift of mode

i and a cross-Kerr interaction Kij , which leads to a frequency
shift of mode i depending on the photon number in all other
modes j .

III. TWO-TONE SPECTROSCOPY

Since the other resonance frequencies are out of our
measurement bandwidth we utilize a two-tone measurement
technique to indirectly measure them [20,21]. In Fig. 2 we show
the results of such a two-tone spectroscopy where we sweep
the frequency of a pump tone around mode five while weakly
probing mode seven with the VNA. When the pump tone is res-
onant with mode five, we see a shift of the resonance frequency
of mode seven. The measured frequency of mode five, using
two-tone spectroscopy, matches the direct VNA measurement.
We repeat this procedure, using mode seven as a readout, for
frequencies between 900 MHz and 16 GHz. By comparing
the measured frequencies of the entire JJA with the renor-
malized mode frequencies calculated by diagonalizing the
capacitance matrix [see Fig. 7(d) in Appendix A], we extract
the JJA parameters C0 = 0.152 fF, CJ = 34 fF, LJ = 1.25 nH,
CS = 18 fF with a confidence range of about 20%. These
parameters match well to the expected design values and room
temperature resistance measurements of the junctions.

With these parameters we can calculate Ki and Kij using
a procedure similar to Ref. [21]. The results are summarized
in Table I of Appendix A for modes five, seven, and nine.
Using these coefficients we can calibrate the photon number
by measuring the resonance frequency shift as a function of
the applied power as shown in Fig. 8 of Appendix A. The
attenuation extracted from these Kerr measurements matches
within 4% to the attenuation in the cryostat, determined by
independent transmission measurements. Upon closer inspec-
tion of the two-tone scan in Fig. 2(a) one can observe a bistable
region [see Fig. 2(b)] for a detuning of �P = −2.58 MHz
from the bare resonance frequency of mode five. Around this
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FIG. 2. Two-tone measurement. (a) Shift �R of the resonance
frequency of the readout mode ωR/2π = 7.105 GHz upon application
of a pump tone. The pump tone is detuned from the resonance
ωP /2π = 4.8156 GHz of the fifth mode of the JJA by a detuning �P

and has a pump strength of n̄P = 115 photons. Due to the nonlinearity
of the JJA, the resonance frequency of the readout mode is shifted
when the pump tone matches mode five. (b) Zoom in on the bistable
region of mode five. For a detuning of about �P = −2.58(4) MHz
two different resonance frequencies of the readout mode can be
observed. The shifted and unshifted resonances correspond to 115
and 1 circulating photons in mode five, respectively.

frequency, two different cross-Kerr shifts of mode seven can
be observed: a shift of �R = −7.32 MHz corresponding to a
photon number of about 115 photons in mode five and a shift of
133 kHz corresponding to about one photon. In the two-tone
scan we observed residence times exceeding ten seconds in
either the high or low photon number states.

IV. CONTINUOUS TIME MEASUREMENTS

To precisely characterize the residence time, we imple-
mented a readout scheme similar to the dispersive state detec-
tion of a superconducting qubit in a circuit QED architecture
[38]. We monitor mode seven continuously on resonance with
a readout power n̄R of about half a photon such that we can
not see an apparent shift or broadening of mode seven. When
we pump mode five with n̄P photons, we observe a change in

the transmitted readout signal corresponding to jumps between
the high and the low amplitude states. For each data point we
average 500 measurements each lasting 19.9 μs to get a good
signal to noise ratio. In addition, the analog to digital converter
needs another 5 ms to transfer the data. Thus, it takes about
15 ms to acquire one data point.

In Fig. 3(a) we show a typical time trace for a measure-
ment time of 15 s and n̄P = 9 photons in mode five. One
can clearly observe two distinct amplitudes in transmission
corresponding to two distinct photon numbers in mode five.
We define the switching rate � as the inverse of the average
time between two transitions from the low to the high power
state. The transient time between these two states is much
faster than the data acquisition rate. Similar bistable behavior
was also observed in co-planar waveguides but in a different
parameter regime, where the nonlinearity was much smaller
than the mode linewidth [39]. In what follows we show that
by reaching larger nonlinearities, fewer photons are required
for the bifurcation offering promising opportunities for the
development of microwave components at the single photon
level. In addition, the dynamics of the system is accurately
modeled using Kramers’ theory.

A histogram of the data shows a well separated bimodal
distribution for the two amplitude states. Furthermore, we
extract the residence times in the high amplitude state, the
resulting histogram shows an exponential behavior typical for
a Poissonian statistics (see Fig. 13 in appendix B). When we
sweep the detuning of the pump frequency �P across the
bistable point we see a change of the relative height of the
peaks in the amplitude distribution ρ(A), Figs. 3(b) and 3(e).
There is a �Max

P for a given pump strength where the heights
of the peaks are equal, as shown for example in Fig. 3(b), and
the switching rate is maximal.

We repeat the switching rate measurements for a total of
ten different pump powers ranging from 2.6 to 115 photons
in mode five. In Fig. 4(b) we plot the maximally achieved
switching rate �Max and the corresponding pump detuning
�Max

P versus photon number. The lowest power we can observe
switching for is n̄P = 2.6 photons at a detuning of −169 kHz
from the low power resonance. This detuning matches well

FIG. 3. (a) Transitions from the low amplitude state to the high amplitude state for n̄P = 9 photons at a detuning of �P ≈ �Max
P =

−0.54(1) MHz from mode five. The readout mode seven was driven with n̄R = 0.5 photons on resonance. The trace displayed here is a 15 s
segment out of a total recorded time of 20 000 s. (b) Histogram of the amplitude distribution ρ(A) for the data displayed in (a). (c) Histogram
of ρ(A) for a detuning of �P = −0.59(1) MHz. (d) Histogram of the amplitude distribution ρ(A) for a detuning of �P = −0.49(1) MHz. (e).
Dependence of the normalized state population in the high and low photon state on �P relative to the bistable point. The solid line is a fit to a
sigmoid function.
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FIG. 4. (a) Dependence of switching rate � on �P for three
different pump strengths: n̄P = 2.6 photons, n̄P = 4 photons,

n̄P = 6 photons. The solid lines are Lorentzian fits to the data.
(b) Extracted �Max and corresponding �Max

P as a function of n̄P . The
black and red lines are from a fit to our theoretical model (see text). (c)
� measured for constant n̄P = 6 photons while varying the readout
strength: n̄R = 0.5 photons, n̄R = 1.5 photons, n̄R = 2.5
photons. (d) � measured for different cryostat base temperatures with
n̄P = 6. In (a), (b), and (d) n̄R = 0.5.

to the prediction [40] of �P = (
√

3/2) κ5 = 160 kHz with
κ5 = 181 kHz.

Typically, stochastic switching in a bistable system is
described by Kramers theory [41]. There, the switching rate is
determined by the potential landscape and the fluctuations. For
a symmetric potential it is given by �Max = �0 exp(−Eb/kbT ),
where Eb is the barrier height between the two stable solutions
and the prefactor �0 which depends on the relative strength of
the dissipation and the potential [41]. Here, the activation of
the switching between the two stable solutions likely originates
from the dispersive shift of the resonator frequency due to
photon number fluctuations in the readout mode and thermal
fluctuations of the photon number in all modes.

In our case, the potential landscape is created by the
interplay between the pump, the self-Kerr effect, and the
damping of the mode. An intuitive choice for this potential
[23,24] is provided by integrating the equation for the photon
number in the steady state of a damped Kerr oscillator [42].
From this model we extract the scaling of Eb [43] and �0 for
the maximum switching rate as a function of the pump photon
number n̄P . We use this scaling in a fit function [see Fig. 4(b)]
with two free parameters to match our data (see Appendix B).
We also add a �res to take into account the finite switching
rate for high pump powers. This finite rate could be limited by
phase slips on the junctions of the JJA, which we estimated to
be in the range of a few mHz.

Additionally, we observe a change of the switching rate
with respect to �P following a Lorentzian curve. The point of

maximum switching rate�Max
P also corresponds to a symmetric

amplitude distribution. In Fig. 4(a) one can see the change of
the switching rate with respect to �P for three different pump
powers. The width of this Lorentzian is about 72 kHz and the
center shifts with increasing photon number in the pump. From
our model we can also extract the shift of �Max

P with n̄P which
agrees well with the experiment as shown in Fig. 4(b). The devi-
ation at high photon numbers can be explained by higher order
Kerr effects which are not taken into account in the model.

To better identify the origin of the switching we also varied
the power in the readout tone. The measured results are plotted
in Fig. 4(c) for constant n̄P = 6 photons. We can observe two
effects for an increased photon number in the readout mode:
(I) due to the cross-Kerr effect the bistable point moves to
lower frequencies. (II) in contrast to lowering the switching
rate with the pump photon number, the readout photon number
increases the switching rate. For n̄R = 2.5 photons we see
an increase in the switching rate by about a factor of three.
This can be understood as a form of measurement induced
dephasing. As the photon number in the readout resonator
fluctuates, the position of the bistable point moves in frequency
due to the cross-Kerr effect. This moves the pump in and out
of the bistable region into the regime where either the low
or the high power state are more likely, as the cross-Kerr
frequency is on the order of the linewidth. This photon number
fluctuation happens at a rate κ7 = 7.5 MHz and is thus much
faster than our acquisition time. For n̄P > 2.5 photons, the
switching becomes much faster and we cannot observe it any
more due to the limited measurement bandwidth and signal
to noise. Remarkably, changing n̄R by only one photon for a
constant �P we can switch the state of mode five from the low
to the high photon number occupation.

To study the influence of thermal noise on the switching rate,
we increased the cryostat base plate temperature from 10 mK
to 50 mK (n̄P = 6 photons, n̄R = 0.5 photons). Increasing the
temperature increases the average thermal population as well
as the fluctuations of the photon number in all of the modes
of the JJA, most notably for the lower frequency modes. As a
consequence, depicted in Fig. 4(d), we observe a shift in the
magnitude and location of the maximum switching rate, similar
to Fig. 4(c). This is again due to the cross-Kerr interactions of
mode five with all other modes. The observed shift can be
explained by an increase in the JJA temperature up to about
100–130 mK depending on the initial temperature. We can get
an upper bound for the JJA temperature at the base temperature
of the fridge, if we assume that the linewidth broadening
we observe for mode five [see Fig. 10(a), Appendix A] is
due to the thermal population in the other modes of the JJA.
This broadening can be explained by a minimal temperature
of the JJA of ≈50 mK. This is consistent with other cQED
experiments [44,45], where the devices are well above the
fridge base temperature.

V. CONCLUSION

In conclusion, we have measured a stochastic bistability
in a 103 Josephson junction array which appears at a pump
strength of only a few photons. This switching at low power is
achieved by engineering the Kerr interaction strength to be
comparable to the linewidth. We have seen an exponential
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decrease of the maximal switching rate for increasing pump
strength as expected from Kramers theory. For an increase in
readout strength or temperature, the switching rate increases,
likely due to photon induced dephasing through cross-Kerr
interactions.

This proof of principle device demonstrates that it is possi-
ble for a few microwave photons in the readout mode to switch
the photon occupation number by two orders of magnitude
in the pump mode. As such it is a promising system to
implement novel types of nondemolition measurements [46],
single photon microwave transistors [47,48], single photon
microwave switches [49], flip-flop memories [50], or even
elements for autonomous quantum error correction [10].
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APPENDIX A: DEVICE CHARACTERIZATION

1. Experimental setup

Figure 5 shows the experimental apparatus used in the
experiments. The waveguide with the sample is mounted on
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FIG. 5. Experimental setup for performing two tone spectro-
scopies. For the switching rate measurements the VNA is replaced
with a signal generator and mixers to down convert the transmitted
signal in order to digitize it with a 1 GS analog-to-digital converter.
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FIG. 6. Transmission measurements, measured with a power
corresponding to about one photon circulating in the resonator. The
solid line in (a), (c), and (d) is a fit using Eq. (A1) to extract
Qtot and ωR . (a) Resonator response measurement for mode five.
(b) Relaxation time T1 on mode five with a pump strength of n̄P = 115
photons. The solid line is an exponential fit to the data with T1 = 3μs.
(c) Resonator response measurement for mode seven. (d) Resonator
response measurement for mode nine.

the mixing chamber stage (10 mK) of a cryogen free dilution
refrigerator. The sample is enclosed in a double layer cryoperm
shield inside a completely closed copper can. The stainless
steel input lines are attenuated with 20 dB at 4 K and 30 dB
at base temperature. They are filtered with a combination
of a 12 GHz low pass and Eccosorb filters. The output
stage consists of a 12 GHz low pass filter, two 4–12 GHz
isolators, and a 4–8 GHz high electron mobility transistor
(HEMT) amplifier. We additionally use DC blocks at room
temperature.

Using a vector network analyzer (VNA), we measure the
transmission S21 of the waveguide. Since the sample is strongly
capacitively coupled to the waveguide, we are able to directly
detect some of the resonances on the network analyzer. Three
resonant modes out of the 1000 resonances of the array are
shown in Figs. 6(a), 6(c) and 6(d). We fit the measured S21

parameter using a notch type response function to determine
the total quality factor Qi,tot, the coupling quality factor Qi,ext,
and the resonance frequencies ωi :

S21 = 1 −
1

Qi,ext
− 2ı

δf

ωi/(2π)
1

Qi,tot
+ 2ı ω−ωi

ωi

. (A1)

The parameter δf takes into account an impedance mismatch.
The extracted parameters are summarized in Table I.

Figure 6(b) shows a measurement of the decay time T1 of
mode five for a pump strength of about n̄P = 115 photons.
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TABLE I. Parameters for the three array modes that can be directly
measured with the VNA. fr and Qtot were extracted from data.
The Kerr and cross-Kerr coefficients are calculated from a fit to the
dispersion relation Fig. 7(d).

Mode ωi/2π Qtot κi Ki Ki7

(GHz) (kHz) (kHz) (kHz)

5 4.816(1) 26000 181 66 187
7 7.1058(2) 950 7500 133
9 9.278(1) 3375 2750 218 343

To excite the resonator the pump was detuned by about
−2.54 MHz from the bare frequency ωP /2π = 4.8156 GHz
of mode five. Similar to a two-tone measurement we use mode
seven as a readout, with a readout strength of n̄R = 0.5 photons.
To perform the decay time measurement we excite mode five
for a few μs with a pulse before performing a readout on the
pump mode again using a pulse of a few μs. By varying the
delay between the two pulses we measure how the excitation
decays over time. From the measurements we find T1 ≈ 3μs.
Comparing this to the direct VNA measurements we see that we
have an additional dephasing mechanism which broadens the
resonances. As explained in the main text we attribute this to a
fluctuating cross-Kerr shift induced by the thermal population
in the other modes.

2. Two-tone measurements and dispersion relation

Since the other resonance frequencies of the JJA’s are out
of the HEMT amplification bandwidth or below the cutoff fre-
quency of the waveguide, we utilize a two-tone measurement
technique to indirectly measure them. We use mode seven
as read-out and apply a second pump tone. We sweep the
frequency of this pump tone from 960 MHz to 20 GHz. Such a
two-tone spectroscopy measurement can be seen as a pump
probe experiment. The VNA is used to monitor one mode
while a signal generator is used to excite a second one. We
then observe the shift in the read-out mode due to populating
other resonances through the pump tone. From this we can
observe, e.g., the fundamental mode of the array at 963 MHz
and other higher resonant modes up to 20 GHz which is the
limit of our signal generator. Two tone measurements for our
array are shown in Fig. 7.

In Fig. 7(d), we show the dispersion relation of the ar-
ray. The frequencies outside the HEMT bandwidth are ex-
tracted by two-tone spectroscopy measurements as shown in
Figs. 7(a), 7(b), and 7(c). The mode spacing for the first
10 modes is about 1.2 GHz. For higher resonant modes the
spacing between modes becomes smaller. The in Fig. 7(d)
are obtained by diagonalizing the capacitance matrix which
includes the shunt capacitance (Cs), junction capacitance (CJ ),
the ground capacitance (C0), and the Josephson inductance
(LJ ) for the entire array structure. Most of the even modes
cannot be observed from two tone measurements as the
electric field distribution of these modes has a symmetry
that does not couple to the waveguide. For higher mode
numbers this symmetry is somewhat broken due to inho-
mogeneities of the junctions and we can again excite these
modes.
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FIG. 7. Two-tone measurements and dispersion curve. (a), (b),
and (c) show the transmitted amplitude of the readout mode with
frequency ωR/2π = 7.105 GHz as a function of the pump tone fre-
quency ωD

P and detuning �R . The black arrows mark the frequencies
when the pump tone matches a mode of the resonator, ωD

P , leading
to frequency shift in the read out tone. (d) Measured resonant mode
frequencies of the JJA from the two-tone spectroscopy. represents the
calculated dispersion relation without including corrections due to
the cross coupling between segments of the array, and represents the
measured resonant mode frequencies up to 20 GHz.

We also note a discrepancy between the model and the
measurements for modes 9 and 10. This is most likely due
to the capacitive cross coupling between the parallel seg-
ments of the chain of Josephson junctions (see Fig. 1 in
main paper). This effect can be accounted for by introducing
additional capacitances with a minimal impact on the values
of the self-Kerr and cross-Kerr coefficients for the lower
modes.

3. Kerr coefficients and photon number calibration

The Kerr nonlinearity manifests itself as a frequency shift
that depends on the circulating power in each of the resonant
modes [21,22]. By varying the input power on a low signal
level, we are able to measure this frequency shift. The self-Kerr
and cross-Kerr shift can be used to calibrate the photon number
in a resonant mode by measuring the frequency response as a
function of drive power.

4. Self-Kerr measurements

For the self-Kerr measurements only one mode i of the
chain is excited. We record the frequency shift �P with respect
to the input power using direct transmission measurements.
We fit each data set with a notch type response function to
extract the frequency ωi and Qi,tot. From the shift relative
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FIG. 8. Self-Kerr and cross-Kerr measurements. The error on
each data point is about point size. (a) Dependence of the self-Kerr
frequency shift on the input power of mode five. The red line is a
third order polynomial fit—see text. (b) Dependence of the self-Kerr
frequency shift on the input power of mode seven. The red line is
a linear fit—see text. (c) Cross-Kerr frequency shift of mode seven
when applying input power to mode five. The red line is calculated
using the theoretical prediction for the linear self-Kerr term—see text.
The read-out mode seven is driven with about n̄R ≈ 0.5 photons.
(d) Cross-Kerr frequency shift of mode five when applying input
power to mode seven. The red line is a polynomial fit to the data.
The read-out mode five is driven with about n̄R ≈ 1 photons.

to the bare resonance frequency we can extract the self-Kerr
coefficient Ki .

Figure 8(a) shows the self-Kerr measurements on mode five.
For low input power P we observe that �5 changes linearly
with power. For high input power, higher order Kerr terms
(K ′

i ,K
′′
i ) start to play a role. To take this into account we fit the

following dependence

�i(P ) = KiP + K ′
i

2
P 2 + K ′′

i

3
P 3 (A2)

to the data. With this we can extract the Kerr coefficients in
units of Hz/W.

Figure 8(b) shows the self-Kerr measurements on mode
seven. Here we observe that�7 changes linearly with the power
due to the higher linewidth (κ7) of this mode.

5. Cross-Kerr measurements K75 utilizing
two-tone spectroscopy

For determining the cross-Kerr coefficients Kij we utilize
two-tone spectroscopy measurements. One mode i of the array
is used as the readout with a power of about one photon and
the other mode j is excited with varying power. From the shift
�R of the resonance frequency of the readout mode ωR/2π
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FIG. 9. Cross-Kerr measurements K75. (a), (b), (c), (d) Two-tone
spectroscopy measurements for different pump strength. Shift �R of
the resonance frequency of the readout mode ωR/2π = 7.105 GHz
with nR = 0.5 photons upon application of a pump tone to mode five.
The pump frequency is detuned by �P from the resonance of mode
five ωp = 4.1856 GHz. (a),(b), (c), and (d) corresponds to a pump
power of ≈ 0.01 nW, ≈ 0.7 nW, ≈ 1 nW, and ≈ 2 nW, respectively;
the solid black line corresponds to a fit where we extract the resonance
frequency of the readout mode for each pump frequency. From the
fits we then extract the maximal frequency shift of the readout mode
for a given pump power in mode five.

upon application of a pump tone, we can extract the cross-Kerr
shift Kij .

Figure 9(a) shows a typical two-tone spectroscopy mea-
surement to extract the cross-Kerr coefficient K75 by pumping
mode five and observing the frequency shift on mode seven.
We drive mode seven with a constant readout strength of
n̄R = 0.5 photons. To extract the maximal frequency shift
�R , we fit each pump frequency to a notch type response
function and extract the resonance frequency(solid black line).
The maximal shift of the readout resonator for a given pump
power results in one data point in Fig. 8(c). We then repeat
this procedure for different pump powers, e.g., Figs. 9(b) and
9(c). From the measurement in Fig. 9 one can also clearly
observe that the mode becomes bistable as the power is
increased.

Figure 8(c) shows the result of all two tone measurement
to determine the cross-Kerr shift K75 when driving mode
five and using mode seven as the readout. For low input
power we observe that �7 changes linearly with the power
but then rapidly higher order terms come into play. In this
case, even a third order polynomial fit does not agree with
the measured K75. We choose instead to characterize the
cross-Kerr coefficient by the slope at low powers in Fig. 8(c).
By using the dispersion relation fit in Fig. 7(d) and the resulting
diagonalized capacitance matrix, we extract the ratio between
K5 and K75. This ratio, together with K5 determined from the

024518-7



P. R. MUPPALLA et al. PHYSICAL REVIEW B 97, 024518 (2018)

0 1 2 3
Power (nW)

(a)

6

10

0 1 2
 (M

H
z)

 (M
H

z)

Power (nW)

(b)

12

8

0.1

1

FIG. 10. (a) Linewidth κ5 vs input power on mode five. For the
lowest drive power we still have a good enough signal to noise ratio
to fit the data. We find κ5(n̄P → 0) = 181 kHz. The black solid line
corresponds to a fit of a

√
Power dependency. (b) Linewidth κ7 vs

input power on mode seven. On the lowest drive power we still have a
good enough signal to noise ratio to fit the data with a κ7(n̄P → 0) =
7.5 MHz.

linear part of the fit function Fig. 8(a) allows us to compute
K75. A linear fit with the computed slope K75, shown by
the solid red line in Fig. 8(c), shows good agreement with
the measurements at low powers.

Figure 8(d) shows the cross-Kerr measurements K57 on
mode five using mode seven as the readout. Here the third order
polynomial fit agrees well with the data. When we take the ratio
of the first order self and cross-Kerr coefficients extracted from
fitting the data in Figs. 8(b) and 8(d) and compare it to the
Kerr coefficients extracted from fitting the dispersion relation
we find excellent agreement. Furthermore, if we convert the
Kerr coefficients extracted from Figs. 8(a)–8(d) from Hz/W to
Hz/photon we find that the required conversion factor matches
within 4% to the attenuation in the cryostat, determined by
independent transmission measurements.

For 0.1 nW input power we get about 10 photons in mode
five. We can apply this same conversion factor to the whole
polynomial Eq. (A2) and then use the observed frequency shift
for a given input power to calculate the circulating photon
number.

6. Power dependence of the linewidth

Figure 10 shows the linewidth of mode five and seven
with respect to the input power. The linewidths are extracted
from direct transmission measurements. Each measurement
is fit with a notch type response function to extract the
resonance frequency ωi and Qi,tot for a given drive power and
subsequently used to evaluate κi . The increase of the linewidth
κi as a function of the circulating power is expected from the
self-Kerr effect. For a circulating power of less than one photon
in mode five we find κ5(n̄P → 0) = 181 kHz and for mode
seven κ7(n̄P → 0) = 7.5 MHz.

APPENDIX B: THEORETICAL MODEL FOR
CALCULATING THE SWITCHING RATES (�)

In this section we provide details regarding the theoretical
model, based on Kramers theory of switching [41], used to
obtain the fits in Fig. 4(b) of the main paper. To this end, we

restrict to a simplified version of the full Hamiltonian (1) of
the main paper focusing only on the pump mode 5 (indexed by
P in what follows) and include in addition a constant shift due
to the cross-Kerr interaction KPRn̄R with the readout mode 7
(indexed by R):

H/h̄ = (�̃P + KPRn̄R)â†
P âP + KPP

2
(â†

P âP )2

+iηP (â†
P − âP ). (B1)

Here, we have written the Hamiltonian in a rotating frame
with respect to the driving of strength ηP and with frequency
ωd and the detuning parameter �̃P = ωP − ωd with respect to
the bare frequency of the pump mode ωP . Taking the classical
limit of the Heisenberg-Langevin equation for the mode âP , we
can obtain the following equation for the complex amplitude
αP = 〈âP 〉 mode (ignoring noise terms):

dαP

dt
=

[
−i(�̃P + KPP /2 + KPRn̄R)

− iKPP |αP |2 − κP

2

]
αP + ηP . (B2)

The steady state solution for this equation, defining δ =
�̃P + KPP /2 + KPRn̄R written in terms of the average photon
number n̄P = |αP |2 is:

n̄P = η2
P

[δ + KPP n̄P ]2 + κ2
P /4

. (B3)

This equation can have either one or three real roots. When it
has three real roots, we have bistability. For a given value of
δ and KPP , it has three real solutions when |δ| >

√
3κP /2

[40,42], and the driving strength falls in the range η− �
ηP � η+, whereη2

± = nc,±([δ + KPP nc,±]2 + κ2
P /4), with the

extremal photon numbers given by

nc,± = −2δ

3KPP

⎡
⎣1 ∓

√
1 − 3

4

(
1 + κ2

P

4δ2

)⎤
⎦. (B4)

As we commented in the main paper, one key ingredient to
analyze switching rates in a bistable system within the Kramers
framework is a potential landscape in which the two stable
solutions occur as local minima. A simple choice for such a
potential is obtained by integrating Eq. (B3) [42] with respect
to n̄P (and dividing by η2

P to make it dimensionless) giving

U (n̄P ) = K2
PP bn4

4η2
P

− 2KPP δbn3

3η2
P

+ 1

2η2
P

(
δ2 + κ2

P

4

)
n̄2

P − n̄P . (B5)

Note that this is not a real potential in the Hamiltonian sense,
but a fictitious one for the average photon number n̄P treated
as an independent degree of freedom. The critical points of
U (n̄P ), namely points where dU/dn̄P ≡ 0, precisely satisfy
Eq. (B3) and the solutions to the equations identify the extrema
of the potential landscape. From the quartic form of the poten-
tial, as shown in Fig. 11, we can anticipate that in the bistable
region the potential has a double well shape with the two local
minima at n̄P = n̄L,n̄H and the local maxima (top of the barrier
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FIG. 11. Schematic of the potential landscape for bistable
switching.

between the two wells) at n̄P = n̄0 (with n̄L < n̄0 < n̄H ). Let
us denote the oscillation frequencies at the bottom of the wells
(top of the barrier) as ωL,ωH (ω0). The barrier height between
n̄L (n̄H ) and n̄H (n̄L) is given by Eb,L = U (n̄0) − U (n̄L)
[Eb,H = U (n̄0) − U (n̄H )]. Given these parameters, the
Kramers formula [41] predicts that the rate of transition out
of the wells are of the form �L→H = �0,L→H exp(−βeffEb,L)
[�H→L = �0,H→L exp(−βeffEb,H )] with the functional form
of the prefactor decided by the relative strengths of the damping
rate and the well frequencies ωL,H ,ω0. In our treatment note
that βeff is an effective dimensionless temperature. In addition
in the limit of a two state model with localized states at n̄L

and n̄H , the average state population will be given by

PL = exp(−βeffU (n̄L))

[exp(−βeffU (n̄L)) + exp(−βeffU (n̄R))]
(B6)

and PH = 1 − PL. The total switching rate, �H→L + �L→H ,
is maximized when the energy barriers are the smallest and
we find that this happens for a symmetric configuration with
the same barrier height for both directions which we denote
as Eb.

In order to compare the experimental results with the
theoretical approach above, we first note that the parameter ηP

is not directly known but has to be inferred from the circulating
photon number n̄P . Let us consider the situation in Fig. 4(b)
of the main paper, where the maximum switching rate and
the associated detuning are plotted as a function of n̄P at the
point of the maximum switch. In order to compare to the
above model, by varying ηP in the bistable region [η+,η−]
(with KPP and κi chosen as the values in the experiment) we
first numerically locate the detuning �̃Max

P for a given value
of n̄P satisfying the symmetric potential condition namely
U (n̄+) = U (n̄−) = U (n̄P ). After adding a constant shift of
KPP /2 + KPRn̄R to our numerically determined �̃Max

P , as
shown by the solid red line in Fig. 4(b) of the main paper,
we find good agreement with the experimental result. From
Eq. (B5), we can extract the barrier height Eb, and frequencies
ωL and ω0 for this symmetric point as a function of n̄P . In
order to fit the switching rate to Kramers equation, we need to
choose a form for the prefactor �0. We found that in general
the form �0 ∝ ωLω0 valid for the over-damped regime fits best
to the experimental data. Fitting the measured rates �max to
the functional form AωLω0 exp(−βfitEb) + �res on a log-log
scale using least squares procedure, we find the fit parameters
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FIG. 12. Width W� of the bistable region for different pump
strengths n̄p .

�res = (0.006 ± 0.002) Hz, A = (54.0 ± 15.0) Hz, and the
effective temperature βfit = (2.4 ± 0.2). The errors we have
quoted here are the standard deviation on the estimated best fit
parameters. The fitted curve was depicted by the black line in
Fig. 4(b) in the main paper. We reiterate that in the fitting
procedure the parameters Eb, ωL, and ω0 were calculated
numerically from the potential Eq. (B5). In addition for the
cases of n̄P = 4,6,9, we also fitted Eq. (B6) [with U (n̄L,R)
calculated numerically] for the average state population as a
function of �P and found the effective temperatures βfit =
{3.2 ± 0.3,1.4 ± 0.3}, respectively, from the fits depicted in
Fig. 13. We can see that this temperature range is similar to the
value we obtained from the fitting to Fig. 4(b). From Fig. 13 we
can see that while the numerical model helps to locate �Max

P

accurately, there are some discrepancies in terms of the width
of the bistable region, especially regarding the �P for the onset
of bistability once we fix ηP .

1. Width of bistable region for varying photon number

Figure 12 shows the width of the bistable region obtained
from the switching rate measurements (see main paper) for the
ten different pump strengths shown in Fig. 4(b) in the main
text. For very low pump strengths up to 10 photons the width
of the bistable region is approximately constant ≈72 kHz. For
photon numbers greater than 10 photons the bistable region
becomes wider.

2. Residence time and state population inversion

Figures 13(a) and 13(b) show the exponential dependence
of the residence time for a pump strength of n̄P = 9 photons
and n̄P = 6 photons at a detuning of �P = �Max

P MHz from
mode five. This indicates that the transitions are random
and follow a Poissonian statistics. From the exponential fit
to the data we extract a mean residence time in the high
state 〈TUP 〉.

The inset plots in Figs. 13(a) and 13(b) show the probability
for being either in the low or high photon state as we scan �P

across the bistable region for the different pump strengths n̄P =
9 photons and n̄P = 6 photons. It shows the state population
inversion between the low photon and the high photon state,
following a sigmoid behavior f (x) = 1/(1 + e−x).
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FIG. 13. (a),(b) Probability of being either in the low-photon state or in the high-photon state in a bistable region. , represents the measured
data, — , — are from fits using Eq. (B6), and —· , —· are fits to a sigmoid function. The pump strength is n̄P = 9 for (a) and n̄P = 6 for (b).
The inset in (a), (b) shows the histogram of the residence time TUP with pump strength of n̄P = 9, n̄P = 6 and for a detuning of �P = �Max

P MHz
from mode five. The red line is an exponential fit to the data giving 〈TUP〉 = 14.4 s, 〈TUP〉 = 6.5 s.

We note that the statistics of our results for different n̄P , for
both the residence time and the probability distributions, are

consistent with bistable systems well described by the Kramers
model [41].
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