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Excitation of terahertz modes localized on a layered superconductor:
Anomalous dispersion and resonant transmission
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We study theoretically the optic transmission through a slab of layered superconductor separated from two
dielectric leads by spatial gaps. Based on the transfer matrix formalism along with the Josephson plasma
electrodynamic approach, we derive analytic expressions for the transmittance and identify the conditions for the
perfect transmission. The special interest of the study is focused on the resonant transmission, which occurs when
the wave does not propagate in the spatial gaps. Far from the resonance, the transmittance is exponentially small
due to the total internal reflection from the lead-gap interface. However, the excitation of electromagnetic modes
localized on the layered superconductor gives rise to a remarkable resonant enhancement of the transmission.
Moreover, this phenomenon is significantly modified for the layered superconductors in comparison with usual
dielectrics or conductors. The dispersion curves for the modes localized on the layered superconductor are proved
to be nonmonotonic, thus resulting in the specific dependence of the transmittance T on the incidence angle θ .
In particular, we predict the onset of two resonant peaks in the T (θ ) dependence and their subsequent merge
into the broadened single peak with increasing of the wave frequency. Our analytical results are demonstrated by
numerical data.
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I. INTRODUCTION

Metamaterials attract considerable attention because of
their unusual interaction with electromagnetic waves (see,
e.g., Refs. [1–3]). In particular, metamaterials supporting the
negative refractive index have the potential for subwavelength
resolution [4] and aberration-free imaging. In this relation,
the paper [1] of Veselago is often considered as an initial
point in the study of the negative refraction. However, the
understanding of the essence of this phenomenon was earlier
achieved by Mandelstam [5] in the 1940s.

The first proposed metamaterials with negative refractive
index used subwavelength electric and magnetic structures to
achieve simultaneously negative permittivity ε and permeabil-
ity μ (see, e.g., Refs. [6,7]). Another promising way to create
metamaterials is to construct strongly anisotropic media; in
particular, uniaxial anisotropic materials with different signs of
the components of permittivity tensor (the so-called hyperbolic
metamaterials [8–11]). In Refs. [12–15], it was shown that the
high-temperature superconductors can be used as such materi-
als. Indeed, the crystals Bi2Sr2CaCu2O8+δ and YBa2Cu3O7−δ

are characterized by the strong current-carrying anisotropy,
i.e., the longitudinal εab and transverse εc components of the
effective permittivity tensor in such media have different signs
in a wide frequency range, giving rise to a negative refraction
and an anomalous dispersion of the electromagnetic waves.
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Experimental studies [16,17] of the conductivity in the
layered superconductor structures have elucidated that the su-
perconducting layers are electrodynamically coupled there due
to the internal Josephson effect. In such a strongly anisotropic
plasma, electromagnetic excitations, called the Josephson
plasma waves, arise at the frequencies in the THz range,
which is important for the various applications in physics,
chemistry, astronomy, security systems, medical diagnostics,
and environmental control (see, for example, reviews [18,19]
and links inside).

The layered superconductors, such as Bi2Sr2CaCu2O8+δ ,
have been extensively studied in relation to absorption
[20–23] and emission [24–27] of the electromagnetic radiation,
especially in the presence of the applied magnetic field. In
particular, they are emerging as compact sources of electro-
magnetic radiation in the sub-THz and THz frequency ranges.
The THz emission from the layered superconductors occurs at
frequencies above the Josephson plasma frequency ωJ , and
recently there has been a breakthrough in that field, when
the upper limit of the emission frequency has been raised to
2.4 THz [28], and then to nearly 11 THz [29]. It should be noted
that, in the present study, we examine neither absorption nor
emission of the radiation, but the wave transport phenomena
induced by the internal excitation of the localized Josephson
plasma waves.

The interface between a layered superconductor and the
vacuum supports the propagation of the surface Josephson
plasma waves [13–15], similarly to what happens in the case
of usual plasma. However, in contrast to the latter, the surface
Josephson plasma waves propagate with the frequencies which
can be both lower and higher than the characteristic for
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the layered superconductor frequency, which is called the
Josephson plasma frequency [13].

A slab of layered superconductor can also provide the
propagation of the THz waves localized on it. We call them
waveguide or surface modes depending on whether the elec-
tromagnetic field of these waves oscillates or decays across
the slab. Recently, the spectrum of such waves has been theo-
retically studied in two geometries, when the superconducting
layers are parallel [30] or perpendicular [31] to the interfaces
of the slab. Remarkably, in the second geometry, the dispersion
curves of the localized modes appear to be nonmonotonic for
some values of the parameters.

In the present paper, we study theoretically the wave prop-
agation through a slab of layered superconductor surrounded
by two dielectrics for the geometry when the superconducting
layers are perpendicular to the slab boundaries. The main
attention is focused on the resonant transmission accompa-
nied by the excitation of the localized modes. It should be
emphasized that the particular interest for studying this phe-
nomenon in structures including the layered superconductors is
caused by two reasons. First, the characteristic frequencies for
observation of the resonant transmission through the layered
superconductor belong to the THz range, very important
for possible applications. In particular, one could employ
the studying resonant phenomenon as a method to tune the
emission or receiver frequency from THz sources. Second, this
phenomenon is significantly modified for the layered super-
conductors in comparison with usual dielectrics or conductors.
The dispersion curves for the modes localized on the layered
superconductor are proved to be nonmonotonic. This results in
the specific dependence of the transmittance T on the incidence
angle θ . In particular, we predict a merge of two resonant peaks
in the T (θ ) dependence with the formation of the broadened
single peak, when increasing the wave frequency ω.

The paper is organized as follows. In the second section,
we formulate the problem, present the system geometry, and
introduce the basic definitions and notations. In the third
section, we use the transfer matrix method to describe the
electromagnetic waves transfer through the system. The fourth
section is devoted to the derivation of the dispersion relation
for the localized modes and its analysis. The fifth, sixth,
and seventh sections are devoted to the detailed analysis
of the transmittance. The fifth section presents the general
expressions for the transmittance. In the sixth section, we
analyze the resonant transmission and its features due to
the nonmonotonic dispersion law for the localized modes.
The seventh section contains the numerical simulation of the
transmittance with account for the dissipation of the waves in
layered superconductors.

II. MODEL FORMULATION

We examine the propagation of an electromagnetic wave
through a slab of layered superconductor consisting of alter-
nating dielectric and superconductor layers which are arranged
orthogonally to the slab surfaces. The propagation should
be provided by the excitation of waveguide/surface modes
localized on the slab. To accomplish this purpose we consider
the following setup, see Fig. 1.
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FIG. 1. A sketch of the setup.

The slab c of layered superconductor of thickness dc is
sandwiched between two dielectrics, the left aL and the right
aR leads (semi-infinite media characterized by the perfect wave
transmission) with permittivity εa . Two spatial b gaps, bL and
bR , between c slab and a leads of the same thicknesses db

are filled with the dielectric of permittivity εb. Both the a leads
and the spatial b gaps are assumed to be made from the lossless
materials, i.e., the values of εa and εb are real and positive. Note
that in the experiment the vacuum with εb = 1 can properly
serve as a filling material for the spatial b gaps. However, we
shall keep the notation εb in our theoretical results to extend
their applicability. The a leads are assumed to be optically
denser than the b gaps, i.e.,

εb < εa. (1)

This assumption provides the possibility to generate the lo-
calized modes by the incident wave (see Sec. IV) which
propagates in the a leads and evanesces in the spatial b gaps.

The coordinate system is chosen in such a way that the x axis
is orthogonal to all the interfaces of the setup that are parallel to
the (y,z) plane; the z axis is orthogonal to the superconductor
layers.

The resonant transmission phenomenon analyzed here can
be observed only for the electromagnetic waves of TM polar-
ization (or, the same, of p polarization). In view of the chosen
coordinate system, this fact implies the following presentation
for the components of electric �E(x,z,t) and magnetic �H (x,z,t)
fields:

�E(x,z,t) = {Ex(x),0,Ez(x)} exp(−iωt + ikzz), (2a)

�H (x,z,t) = {0,Hy(x),0} exp(−iωt + ikzz). (2b)

Here ω is the wave frequency and kz is the z projection
of the wave vector. These two physical quantities are free
external parameters of the problem. However, the perfect wave
propagation in the a leads means that

kz < k0
√

εa, k0 = ω/c. (3)
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FIG. 2. A schematic diagram for the wave reflection at the
interface between semi-infinite dielectric media a and b.

Then, in the case of oblique wave incidence onto the structure
interfaces, due to restriction (3), it is reasonable to represent
the wave number kz via the angle θ of incidence of the wave
from the aL lead onto the (aL|bL) interface,

kz = k0
√

εa sin θ, 0 < θ < π/2. (4)

In addition, in view of the obligatory condition (1), it is proper
to introduce the characteristic incidence angle θb,

sin θb =
√

εb/εa, 0 < θb < π/2. (5)

This angle is commonly regarded as the limit angle for total
internal reflection from the interface between semi-infinite a

and b dielectrics. Figure 2 demonstrates schematically the
reflection of the waves at this interface. The wave incident at the
angle θ < θb from dielectric a partially reflects into dielectric
a and partially refracts into dielectric b. The wave incident at
the angle θ > θb from dielectric a totally reflects into dielectric
a and produces the evanescent wave in dielectric b.

In what follows, we consider only the grazing incidence of
the wave when

k0
√

εb < kz < k0
√

εa → θb < θ < π/2. (6)

Due to this constitutive condition, the electromagnetic ra-
diation evanesces in the spatial b gaps, and, therefore, the
total internal reflection should be observed at the (aL|bL)
and (aR|bR) interfaces between lead and gap. However, as
shown in Sec. V, even in such a case, the excitation of the
modes localized on the c slab of the layered superconductor
causes perfect transmission for certain values of the problem
parameters.

Within the indispensable range (6), the x projection ka of
the wave vector in the a leads is evidently real valued,

ka =
√

k2
0εa − k2

z = k0
√

εa cos θ. (7)

In contrast to the wave number ka , the x projection kb of the
wave vector in the spatial b gaps turns out to be imaginary due

to the left inequality in assumption (6),

kb = iκb, κb =
√

k2
z − k2

0εb

= k0
√

εa

√
sin2 θ − sin2 θb . (8)

The electromagnetic field inside the layered superconductor
c is governed by the gauge-invariant phase difference of
the order parameter in neighboring superconducting layers.
This phase difference obeys the set of coupled sine-Gordon
equations (see, e.g., review [18], and references therein).
Nevertheless, for the linear waves within the continual approx-
imation, where kzd � 1, this phase difference can be excluded
from the electrodynamic equations. As a consequence, the
problem is reformulated in terms of an anisotropic frequency-
dispersive permittivity tensor with in-plane and out-of-plane
components [12],

εxx(ω) = εyy(ω) = εc

(
1 − γ 2 ω2

J

ω2
+ iνx

ωJ

ω

)
, (9a)

εzz(ω) = εc

(
1 − ω2

J

ω2
+ iνz

ωJ

ω

)
, (9b)

respectively. Here ωJ = (8πejcd/h̄εc)1/2 is the Josephson
plasma frequency, jc is the maximal Josephson current density,
εc and d are the positive permittivity and the thickness of
the insulator layers, and e is the elementary charge. The
dimensionless relaxation frequencies νx,z = 4πσx,z/εcωJ are
proportional to the averaged quasiparticle conductivities along,
σx , and across, σz, the superconducting layers. The London
penetration depth along the layers, λc = c/ωJ ε

1/2
c , appears to

be much greater than that across the layers, λab, resulting in
the great current-anisotropy parameter γ = λc/λab � 1.

The effective wave number kc which is responsible for
the propagation of the TM-polarized electromagnetic field
(2) along the x axis through the c slab with the anisotropic
permittivity tensor (9), reads

kc =
√

εzz

εxx

√
k2

0εxx − k2
z

= k0

√
εzz

εxx

εa

√
εxx

εa

− sin2 θ. (10)

Note that, in general, the permittivities, εa of the dielectric a

leads and εxx of the c slab of layered superconductor, can be in
arbitrary relation depending on the problem parameters. This
fact, together with the specific anisotropic frequency depen-
dence in Eqs. (9), results in a quite sophisticated dependence
of kc on ω and θ (wave number kz). Now we assume the absence
of dissipation, νx = νz = 0, and provide a brief analysis of kc

within different frequency ranges.
Inside the low frequency range, ω < ωJ � γωJ , all the

components of the permittivity tensor (9) are negative, εxx =
εyy < 0 and εzz < 0. Therefore, kc is imaginary and its abso-
lute value increases with the wave number kz, i.e., with the
incidence angle θ .

In the intermediate frequency range, ωJ < ω < γωJ , the
components of the permittivity tensor (9) have different signs,
εxx = εyy < 0 and εzz > 0. Inside this range, the iso-frequency
surface in the k space for the Josephson plasma waves has
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a hyperboloidal shape, i.e., the layered superconductor repre-
sents the so-called hyperbolic medium. Hence, kc is real valued
and increases with the wave number kz (with the incidence
angle θ ). It should be emphasized that this nontrivial kc(kz),
or kc(θ ), dependence provides the interesting and uncommon
wave properties of the layered superconductor, in particular,
the anomalous dispersion of the localized modes (see Sec. IV).

Within the high frequency range, ωJ � γωJ < ω, all the
components of the permittivity tensor (9) are positive, εxx =
εyy > 0 and εzz > 0. The value of kc can be either real or
imaginary depending on k2

z . However, in the experiment, the
high frequency range is hardly attained because of Cooper pairs
destroying. Moreover, there is no emission of the electromag-
netic wave for the sufficiently high frequencies ω > 2�/h̄,
where � is the superconducting energy gap, which are recently
[29] restricted as approximately 11 THz for Bi2Sr2CaCu2O8+δ .
Therefore, we do not consider the high frequency range in the
rest of the paper.

III. TRANSFER MATRIX RELATIONS

Within every a lead, every spatial b gap, as well as inside
the c slab of layered superconductor, the magnetic field Hy(x)
of the propagating electromagnetic TM wave (2) obeys the
1D Helmholtz equation with corresponding squared wave
number, k2

a, k
2
b , or k2

c . Its general solution inside the setup
constituents can be presented as a superposition of two plane
waves traveling in opposite directions (see, e.g., Ref. [32]).
By combining these solutions with boundary conditions at the
corresponding interfaces, one can obtain the matrix relation
that describes the wave transfer through the whole structure,(

A+
R

A−
R

)
= M̂ (T )

(
A+

L

A−
L

)
, (11a)

M̂ (T ) = M̂ (ab)−1
M̂ (b)D̂M̂ (b)M̂ (ab). (11b)

This relation transforms the amplitudes of incident A+
L and

reflected A−
L waves at the left side of the (aL|bL) interface into

the amplitudes of incident A−
R and reflected A+

R waves at the
right side of the (bR|aR) interface, see Fig. 1.

Matrix M̂ (ab) describes the wave transfer through the
(aL|bL) interface from the left aL lead into the left spatial bL

gap. It is defined by

M̂ (ab) = 1

2

⎛⎜⎝1 + kaεb

kbεa

1 − kaεb

kbεa

1 − kaεb

kbεa

1 + kaεb

kbεa

⎞⎟⎠. (12)

The inverse matrix M̂ (ab)−1
correspondingly reads

M̂ (ab)−1 = 1

2

⎛⎜⎝1 + kbεa

kaεb

1 − kbεa

kaεb

1 − kbεa

kaεb

1 + kbεa

kaεb

⎞⎟⎠. (13)

Note that deriving the inverse matrix (13) is equivalent to
mutual (reciprocal) replacement of the indices in the initial
matrix (12), i.e., M̂ (ab)−1 = M̂ (ba). It describes the wave transfer
through the (bR|aR) interface from the right spatial bR gap into

the right aR lead. The determinants of the matrices are

det M̂ (ab) = kaεb

kbεa

, det M̂ (ab)−1 = kbεa

kaεb

. (14)

The diagonal unimodular matrix M̂ (b) is responsible for the
free wave transfer within the spatial b gaps, specifically, from
the right side of the (aL|bL) interface up to the left side of
the (bL|c) interface and/or from the right side of the (c|bR)
interface up to the left side of the (bR|aR) interface,

M̂ (b) =
(

exp(iϕb) 0

0 exp(−iϕb)

)
, det M̂ (b) = 1. (15)

Therefore, its diagonal elements are just the exponents contain-
ing the phase shift ϕb = kbdb gained by the wave when passing
each of the spatialb gaps of the thicknessdb. In accordance with
Eqs. (8) for the wave number kb, the value of ϕb is imaginary,

ϕb = iφb, φb = db

√
k2
z − k2

0εb

= k0db

√
εa

√
sin2 θ − sin2 θb . (16)

It should be emphasized that Eq. (11b) contains two mu-
tually inverse matrices M̂ (ab) and M̂ (ba) = M̂ (ab)−1

and two
equal matrices M̂ (b). The difference in usage is related to the
nature of these matrices. The first two matrices, M̂ (ab) and
M̂ (ba), describe the wave transfer through interfaces (aL|bL)
and (bR|aR), respectively. Since the interfaces are symmetrical,
these matrices are mutually inverse. On the contrary, the other
two matrices M̂ (b) describe the free wave transfer through the
identical spatial b gaps. Passing each b gap, the wave gains the
same phase shift ϕb and, therefore, two matrices M̂ (b) are equal,
but not inverse. Nevertheless, these two matrices M̂ (b) do not
break the symmetry because their determinants are equal to 1,
see Eq. (15).

The transfer matrix D̂ for the c slab of layered supercon-
ductor is a product of three matrices,

D̂ = M̂ (bc)−1
M̂ (c)M̂ (bc). (17)

The matrices M̂ (bc) and M̂ (bc)−1
determine the wave transfer via

the interface (bL|c) from the spatial bL gap into the c slab and
via the interface (c|bR) from the c slab into the adjacent spatial
bR gap, respectively. They have a structure similar to that of
the interface-transfer matrices M̂ (ab) and M̂ (ab)−1

, and can be
readily obtained from Eqs. (12) and (13) by the replacement
kaεb → kbεzz and kbεa → kcεb. Evidently, M̂ (bc)−1 = M̂ (cb).
The diagonal matrix M̂ (c) corresponds to free wave flight
from the left-hand to the right-hand boundary inside the c

slab. Therefore, it differs from the matrix M̂ (b) only in the
wave phase shift. Specifically, Eq. (15) is transformed into the
expression for M̂ (c) by writing ϕc instead of ϕb,

ϕc = kcdc. (18)

By direct multiplication of the matrices, it can be shown that
the c slab transfer matrix D̂ has the following elements:

D11 = cos ϕc − α+ sin ϕc, (19a)

D12 = α− sin ϕc, (19b)

D21 = −α− sin ϕc, (19c)

D22 = cos ϕc + α+ sin ϕc. (19d)
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Here the mismatching factors α± measuring the coupling
of the c slab to the spatial b gaps, are defined by

α± = 1

2

(
κbεzz

kcεb

∓ kcεb

κbεzz

)
, α2

− − α2
+ = 1 . (20)

Note that the determinant of the matrix D̂, as well as the
determinant of the total transfer matrix M̂ (T ), are equal to one
due to the general condition inherent for transfer matrices of
the systems with symmetric leads,

det D̂ = D11D22 − D12D21 = 1, (21a)

det M̂ (T ) = M
(T )
11 M

(T )
22 − M

(T )
12 M

(T )
21 = 1. (21b)

Combining Eqs. (11b), (12), (13), and (15), one gets the
explicit expressions for the elements of the total transfer matrix
M (T ),

2M
(T )
11 = (

D11e−2φb + D22e2φb
)

−iβ+
(
D11e−2φb − D22e2φb

) + 2iβ−D12, (22a)

2M
(T )
12 = −2iβ+D12 + iβ−

(
D11e−2φb − D22e2φb

)
, (22b)

2M
(T )
21 = 2iβ+D12 − iβ−

(
D11e−2φb − D22e2φb

)
, (22c)

2M
(T )
22 = (

D11e−2φb + D22e2φb
)

+ iβ+
(
D11e−2φb − D22e2φb

) − 2iβ−D12. (22d)

The other mismatching factors, β±, are real valued due to
the basic condition (6) and specify the coupling of the spatial
b gaps to the a leads,

β± = 1

2

(
kaεb

κbεa

∓ κbεa

kaεb

)
. (23a)

It is important to note that within the representation of the
independent external parameters ω and θ , the mismatching
factors β± do not depend on the wave frequency ω, being
governed by the incidence angle θ and characteristic angle
θb,

β± = 1

2

(
sin2 θb cos θ√
sin2 θ − sin2 θb

∓
√

sin2 θ − sin2 θb

sin2 θb cos θ

)
,

β2
− − β2

+ = 1 . (23b)

IV. LOCALIZED EIGENMODES

A basic concept of our study is the generation of specific,
localized on the slab of layered superconductor, electromag-
netic modes due to which a significant enhancement of the
transmission can be achieved. In general (see, e.g., book [33]),
such excitations belong to the family of the eigenmodes in the
systems consisting of a dielectric (or conductor) slab embedded
in the infinite medium of softer optical density.

In order to elucidate the features of the localized modes
in our setup, consider the truncated system including the c

slab imposed between only the left and right spatial b gaps
with infinite thicknesses, db → ∞ (the a leads are absent).
The wave transfer through such a system can be described by
the relation that connects the amplitudes of incoming B+

L and
outgoing B−

L waves at the left side of the (bL|c) interface with

the amplitudes of outgoing B+
R and incoming B−

R waves at the
right side of the (c|bR) interface, see Fig. 1. As follows from
Eq. (11b), the desired transfer relation reads(

B+
R

B−
R

)
= D̂

(
B+

L

B−
L

)
. (24)

The localization of electromagnetic mode on the c slab of
layered superconductor implies a satisfaction of two condi-
tions. First, the mode outside the c slab, i.e., inside both of the
spatial b gaps, must contain solely the component outgoing
from the slab. Second, the mode must be evanescent outside the
slab. The former requires the amplitudes of incoming waves
to vanish, i.e., B+

L = 0 and B−
R = 0 in Eq. (24). The latter

can happen for sufficiently great wave number kz > k0
√

εb in
agreement with constitutive Eq. (6), where the x projection kb

of the wave vector and, consequently, the phase shift ϕb become
imaginary, see Eqs. (8) and (16). Therefore, the transfer relation
(24) gets the form(

B+
R

0

)
=

(D11 D12

D21 D22

)(
0

B−
L

)
. (25)

One can readily recognize that the nontrivial solution B+
R =

D12B
−
L to this matrix equation exists if and only if the

indispensable condition holds true. Specifically,

D22 = 0. (26a)

With the use of Eq. (8) and Eqs. (18)–(20), the requirement
(26a) can be explicitly rewritten as

cot(kcdc) = 1

2

[
kcεb

κbεzz

− κbεzz

kcεb

]
. (26b)

Thus, the electromagnetic eigenmodes localized on the c slab
of layered superconductor exist only when the wave frequency
ω and the wave number kz turn out to be connected by the
dispersion relation (26). This dispersion relation was analyzed
in detail in Ref. [31]. Here we present the outline of this
analysis in order to highlight the features affecting the resonant
transmission phenomenon.

Figure 3 shows the family of the dispersion (spectral) curves
� = �n(kz) of the localized electromagnetic modes obeying
Eq. (26b) and enumerated by the integer n = 0,1,2,3, . . .. The
dimensionless parameter � = ω/ωJ is the wave frequency
normalized to the Josephson plasma frequency ωJ . As one
can see, all the spectral curves are found to the right from
the light line � = ckz/ωJ

√
εb so that the obligatory condi-

tion kz > k0
√

εb contained in constitutive Eq. (6) is fulfilled
automatically.

The lowest dashed red curve describing the zero-mode
spectrum � = �0(kz), starts at the coordinate origin (kz =
0,� = 0) and monotonically increases approaching � = 1
as kz → ∞. Since this curve is wholly located at � < 1,
the propagation wave number kc is imaginary according to
definition (10) and its subsequent analysis. Thus, the localized
mode supported by the lowest dispersion curve � = �0(kz)
represents a surface wave decaying into the c slab of the layered
superconductor.

The behavior of the next dispersion curve � = �1(kz) is
determined by the thickness dc of the c slab. In the case dc �
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FIG. 3. The normalized wave frequency � vs the dimensionless
wave number kzλc for the localized modes, Eq. (26b). The dashed red
curves correspond to the surface modes at � < 1 with indices n =
0,1, and the solid green curves correspond to the waveguide modes
with n = 1,2,3, . . . at � = ω/ωJ > 1. The thin blue straight line is
the light line, � = ckz/ωJ

√
εb. The inset shows the dispersion curves

for surface waves and the waveguide modes with n = 0 and n = 1 in
the narrow range near � = 1. Parameters: εb = 1, εc = 15, dc/λc =
1, γ = λc/λab = 15.

λcγ εc/εb, the curve � = �1(kz), similarly to � = �0(kz), is
confined to the interval 0 � � < 1 in spite of its monotonic
increase and, consequently, describes the spectrum of the
surface wave. Figure 3 demonstrates the opposite case of
relatively thin c slab with dc � λcγ εc/εb. Here the dispersion
curve � = �1(kz) consists of two parts. The first one with
imaginary kc (the dashed red part) starts at the point (kz =
0,� = 0) and grows up holding � < 1. This part corresponds
to the surface wave. At � = 1 the wave number kc = 0, and the
surface wave transforms into the waveguide mode. Indeed, the
second, solid green, part of the curve � = �1(kz) is located at
� > 1. As a result, kc becomes real that implies oscillating
character of the electromagnetic field inside the c slab. It
is important to note that in this case the dispersion curve
� = �1(kz) is nonmonotonic because the normalized wave
frequency � → 1 from above as kz → ∞.

All the other solid green dispersion curves � = �n(kz) with
n = 2,3, . . . belong to the waveguide modes being completely
contained within the frequency interval � > 1 and, conse-
quently, providing for the propagation wave number kc to be
real. They start from the threshold,

kz = �̃n

c
ωJ

√
εb, � = �̃n ≡

√
1 + [π (n − 1)λc/dc]2,

(27a)

located on the light line � = ckz/ωJ

√
εb. After the threshold,

the nth dispersion curve � = �n(kz) increases with increasing
kz, achieves its maximum � = �(max)

n and then begins to
decrease. Sufficiently far from the threshold, the nth curve

decreases as

�n(kz) ≈
√

1 + (πnλc/dc)2

1 + (kzλab)2
(27b)

and tends from above to the limit � = 1 when kz → ∞.
In summary, the dispersion curves � = �n(kz) with n =

1,2,3, . . . are nonmonotonic consisting of two parts. The
first, growing up, part corresponds to the nth localized mode
with normal dispersion, i.e., both velocities, the phase one,
�n/kz, and the group one, d�n/dkz, have the positive sign.
The second, falling down, part describes the same nth mode,
however, with anomalous dispersion where the phase and the
group velocities are of opposite signs. This peculiar property of
the spectrum � = �n(kz) governed by the dispersion relation
(26) gives rise to a nontrivial dependence of the transmittance
T on the incidence angle θ analyzed in Sec. VI. Indeed, for
a certain value of the dimensionless wave frequency � > 1,
there can be found two values of the wave number kz which
provide the excitation of the nth waveguide mode localized
inside the c slab. As a consequence, two resonant peaks should
appear in the T (θ ) dependence. Moreover, when approaching
the maximum of � = �n(kz) for the nth mode, these peaks
should merge turning into the substantially broadened single
peak.

It should be emphasized that the existence of the nonmono-
tonic spectral curves � = �n(kz) for the localized modes is
an inherent property of hyperbolic media since it directly
originates from the different signs of the components of the
effective permittivity tensor; see the discussion in the end of
Sec. II. The layered superconductors, belonging to such media,
can serve as promising objects for the observation and study
of the considered phenomena in a wide THz frequency range.

V. UNILATERAL EXCITATION

The knowledge of the explicit expressions (22) for the
elements of the total transfer matrix M̂ (T ) allows one to obtain
the transmittance T of the setup under consideration, see Fig. 1.
By definition [33],

T = ∣∣M (T )
22

∣∣−2

= [
1 + M

(T )
12 M

(T )
21 + M

(T )
22

(
M

(T )∗
22 − M

(T )
11

)]−1
. (28)

The second line of Eq. (28) directly follows from the uni-
modularity condition (21b), with the asterisk “∗” standing for
complex conjugation.

To proceed further analytically, we suppose the absence of
dissipation in the layered superconductor, i.e., the dimension-
less relaxation frequencies are regarded to vanish in Eqs. (9),
νx = 0 and νz = 0. Later on, we shall present the effect
of dissipation with corresponding numerical simulations, see
Sec. VII.

Without dissipation, the frequency-dispersive permittivity
tensor (9) of the c slab is real valued. As a consequence, the
total transfer matrix M̂ (T ) meets the time-reversal symmetry,

M
(T )
22 = M

(T )∗
11 , M

(T )
21 = M

(T )∗
12 . (29)

Indeed, the parameters κb, φb, and β± in Eqs. (22) take real
values, see, respectively, Eqs. (8), (16), and (23b). At the same
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FIG. 4. The principal distribution of the magnetic field in the wave
transferred through the system. The thick solid line in the bL-c-bR

subsystem represents the exited localized mode causing the resonant
transmission.

time, kc along with ϕc and α± can be either real or imaginary.
However, the product α± sin ϕc and cos ϕc are always real. The
transfer matrix D̂ for the c slab is real valued and does not
obey the time-reversal symmetry (29). In spite of this fact, the
total transfer matrix M̂ (T ) is symmetrical with respect to the
time-reversal operation, Eq. (29).

Due to symmetry (29), the general expression (28) for the
transmittance T is simplified to the form appropriate for the
subsequent analysis,

T = 1

1 + M
(T )
12 M

(T )
21

= {1 + [β− sinh 2φb cos ϕc

+ (β−α+ cosh 2φb + β+α−) sin ϕc]2}−1. (30)

Thus, the optic transmission of the system obeying the time-
reversal symmetry is completely specified by off-diagonal
elements of its total transfer matrix. One should also emphasize
that, in line with the time-reversal symmetry (29), the expres-
sion in the square brackets of Eq. (30) is always real valued.
Consequently, the transmittance T should be smaller than or
equal to one, T � 1. The equality T = 1 is achieved only for
such values of parameters, when the expression placed inside
the square brackets vanishes.

VI. RESONANT TRANSMISSION DUE TO EXCITATION
OF LOCALIZED MODES: ANOMALOUS DISPERSION

The main interest in the analysis of transmittance (30)
under conditions (6) is due to the resonant character of the
T (θ ) dependence caused by the excitation of localized modes.
Figure 4 presents the principal distribution of the magnetic field
in the wave transferred through the system. The dashed line is
plotted for the regular transmission, when the electromagnetic
field is decreasing while the wave passes the spatial b gaps.
This causes the transmittance to be exponentially small. On the
contrary, the solid line shows the resonant transmission, when
the electromagnetic field in the spatial b gaps can increase
and the localized mode (see the thick solid line in the bL-c-bR

subsystem) can be exited. In the last case, the transmittance
can be significantly enhanced up to 1.

This phenomenon is clearly pronounced if the spatial b gaps
are sufficiently thick, i.e., when the modulus φb of the phase
shift ϕb is large, see Eq. (16),

exp(−2φb) � | exp(iϕc)|. (31a)

In this case the right-hand side of the inequality (31a) equals
one when the phase shift ϕc is real and is smaller than one in
the opposite case of imaginary ϕc. Thus, exp(−2φb) should be
much smaller than one in both cases. This fact allows us to
replace sinh(2φb) and cosh(2φb) in Eq. (30) with exp(2φb)/2
and, as a result, to arrive at the following asymptotics for the
transmittance

T = [
1 + 1

4 (β−D22 exp(2φb) + 2β+α− sin ϕc)2
]−1

. (31b)

Far from the resonance, where

|D22| ≡ | cos ϕc + α+ sin ϕc| � exp(−2φb), (32a)

the transmission is exponentially suppressed because of strong
wave attenuation within the spatial b gaps,

T = 4 exp(−4φb)

β2−D2
22

. (32b)

However, for certain values of the problem parameters,
the transmission can be significantly enhanced. Indeed, if
the frequency ω and the incidence angle θ nearly satisfy the
dispersion relation (26) for the localized modes,

|D22| ≡ | cos ϕc + α+ sin ϕc| � exp(−2φb) � 1, (33)

then the term D22 exp(2φb) is not exponentially great, and the
transmittance is not exponentially small. Moreover, when

D22 = −2β−1
− β+α− sin ϕc exp(−2φb), (34)

the round-bracketed expression in Eq. (31b) vanishes, and the
perfect transmission with T = 1 occurs.

Figure 5 presents the transmittance T as a function of the
incidence angle θ and the normalized frequency � = ω/ωJ .
Here, the darker color corresponds to the greater value of T .
The dispersion curves � = �n(θ ) for the localized modes,
governed by Eqs. (26), are also plotted in the solid green. Since
our setup includes the connecting a leads, the spectral curves
are properly regarded as functions of the incidence angle θ

instead of the wave number kz in agreement with definition (4).
Therefore, the light line � = ckz/ωJ

√
εb in Fig. 3 restricting

from the left the definitional domain of the mode spectrum
turns into the vertical straight line θ = θb in Fig. 5. In addition,
there appears the upper limit for θ equal to π/2. In other
words, the left condition in Eq. (6) confining the wave number
kz is reformulated into the right one for the incidence angle
θ . It is noteworthy, within the constitutive range (6), each of
the spectral curves � = �n(θ ) with indices n � 2 in Fig. 5
occupies its own frequency domain (spectral band) on the
(θ,�) phase plane, separated from the frequency bands of two
adjacent (neighboring) dispersion curves with indices n − 1
and n + 1 by the corresponding spectral (frequency) gaps with
exponentially small transmission.
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FIG. 5. Transmittance T vs the incidence angle θ and the nor-
malized frequency � = ω/ωJ . The solid green lines represent the
dispersion curves for the localized modes in the system with infinite
thicknesses of the spatial b gaps, see Eqs. (26) and Fig. 3. Panel (b)
shows the region around the maximum in the dispersion curve with
n = 3. Four horizontal straight lines in panel (b) correspond to the
values of � used in Fig. 6. The solid red circle marks the top point
θmax = 1.0057 and �max = 2.5576 on the dispersion curve for setup
with finite db, Eq. (34). Parameters: εa = 20, db/λc = 1/7. The other
parameters are the same as in Fig. 3.

One can see that the green dispersion curves resemble
the corresponding black areas where T = 1, however, deviate
from them. The reason for such a deviation consists of a
finite value of thickness db of the spatial b gaps. While the
conventional dispersion relation (26) is obtained for the model
with semi-infinite spatial b gaps, in a real setup containing
finite constituents, the thickness db of the spatial b gaps alters
the dispersion relation to the form (34). The discussed deviation
is reduced by increasing the phase shift φb, specifically, with
increase of the thickness db or the incidence angle θ , see
Eq. (16). Evidently, both relations, (26) and (34), coincide
as db → ∞. Thus, Eq. (31b) and Fig. 5 elucidate that the
resonant perfect transmission with T = 1 is induced by ex-
citation of the specific electromagnetic modes localized on
the c slab of layered superconductor, however, with modified
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FIG. 6. Transmittance T vs the incidence angle θ for four
values of the normalized frequency: � = 2.55 (dot-dashed brown
curve), � = 2.556 (solid blue curve), � = �max = 2.5576 (dashed
red curve), and � = 2.559 (dotted green curve). The solid red circle
marks the top point θmax = 1.0057 and Tmax = 1 of the broadened
peak. The other parameters are the same as in Fig. 5.

spectrum obeying the dispersion relation (34). Remarkably,
the perturbed by db dispersion curves � = �n(θ ) keep all
the main peculiarities of the unperturbed curves despite the
perceptible quantitative difference. In what follows, in order to
avoid introducing new notations, � = �n(θ ) shall be refereed
to as the real-valued solution of the new perturbed dispersion
equation (34).

The inherent peculiarity of the resonant transmission
through the system containing a layered superconductor is the
nonmonotony of the dispersion law for the localized modes:
Each dispersion curve consists of two parts, with normal,
d�n/dθ > 0, and anomalous, d�n/dθ < 0, dispersion that is
clearly displayed in the panel (b) of Fig. 5. Note, according to
definition (4), the sign of the derivative d�n/dθ coincides with
the sign of the group velocity dω/dkz of the localized mode.
Therefore, the concept of the normal and anomalous dispersion
used here is equivalent to that introduced in Sec. IV.

The dynamics of the resonance line shape in the T (θ )
dependence provided by the nonmonotony of the spectral
curves is illustrated in Fig. 6. One can see four T (θ ) curves
depicted for four close values of the normalized frequency
�. For the lowest frequency � = 2.55, there is just a single,
normally dispersive, solution θ = θ (+)(�) of the dispersion
relation (34) that is located on the growing part of the dispersion
curve [see panel (b) in Fig. 5]. This solution corresponds to
the single, relatively narrow, resonant peak with T = 1 of
the dot-dashed brown line T (θ ). At � = 2.556, in addition
to the solution θ = θ (+)(�) with normal dispersion there arise
the second, anomalously dispersive, solution θ = θ (−)(�) that
belongs to the falling down part of the spectral curve. As a
result, the solid blue curve T (θ ) contains two resonant peaks
with perfect transmission. When the normalized frequency
attains to the value � = �max where the dispersion curve
achieves its maximum denoted with the solid red circle in panel
(b) of Fig. 5, the twin peaks degenerate into the single broad
one with T = 1 as shown by the dashed red curve in Fig. 6.
In agreement with the dotted green straight line presented in
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panel (b) of Fig. 5, the normalized frequency � = 2.559 gets
inside the spectral gap where the solution θ = θ (�) to the
perturbed dispersion relation (34) turns out to be of complex
value. Therefore, the T (θ ) dependence described by the dotted
green curve in Fig. 6, being exponentially suppressed (T � 1),
does not experience the resonant excitation of the localized
mode.

In order to clarify analytically the dynamics of the resonant
peaks in the dependence of T (θ ), we perform below the
general study of its line shape for two different cases, when the
frequency � is far from or close to the maximum frequency
�max marked on the perturbed dispersion curve in panel (b) of
Fig. 5.

A. Resonance line shape for � far from �max

The perfect transmission with T = 1 occurs when the
spectral function

ρ(θ,�) ≡ 1
2β−D22 exp(2φb) + β+α− sin ϕc (35a)

entering the expression (31b) for the transmittance T , vanishes,

ρ(θ,�) = 0, (35b)

at certain real value θ = θ0 of the incidence angle and cor-
responding resonant (real) value � = �0 ≡ �n(θ0) of the
normalized frequency, where the nth localized mode is excited.

Consider the point (θ0,�0) to be located on the left, growing,
normally dispersive part of the spectral curve � = �n(θ ), far
from the top point (θmax,�max). In this case, the expansion of
the spectral function ρ(θ,�) in small deviations from θ0 and
�0 can be restricted by linear approximation,

ρ(θ,�) =
[

∂ρ

∂θ

]
0

(θ − θ0) +
[

∂ρ

∂�

]
0

(� − �0). (36)

Here the symbol [. . .]0 means substituting the values θ = θ0

and � = �0 into the inner expression. With the use of this
expansion, Eq. (31b) for the transmittance T (θ ) is reduced to
the conventional Lorentzian form

T (θ ) = �2
norm

�2
norm + (θ − θpeak)2

. (37a)

The position θ = θpeak of the only resonant peak with
T (θpeak) = 1 is determined by

θpeak = θ0 +
[
d�n

dθ

]−1

0

(� − �0), (37b)

and its half-width �norm turns out to be proportional to
exp(−2φb),

�norm =
∣∣∣∣∂ρ∂θ

∣∣∣∣−1

0

∝ exp(−2φb). (37c)

Note that the derivative[
d�n

dθ

]
0

= −
[

∂ρ

∂θ

/
∂ρ

∂�

]
0

(38)

should be positive by definition of the normal dispersion.
In accordance with Eq. (16), increasing the spatial b gap

thickness db or the incidence angle θ results in the increase of

the phase-shift modulus φb, and, as a consequence of Eq. (37c),
in the thinning of the resonant peak. An example of the T (θ )
dependence described by Eqs. (37) is given by the dot-dashed
brown curve in Fig. 6.

B. Resonance line shape for � close to �max

As the dispersion curve � = �n(θ ) defined by Eqs. (35) is
nonmonotonic, it achieves the top (maximum) point �max =
�n(θmax) in which the following conditions are met:

ρ(θmax,�max) = 0,

[
∂ρ

∂θ

]
max

= −
[

∂ρ

∂�

d�n

dθ

]
max

= 0,

(39a)

with the notation [. . .]max implying the value of the inner
expression taken at θ = θmax and � = �max. Therefore, the
expansion of the spectral function ρ(θ,�) in the vicinity of the
top point should be extended up to the quadratic approximation
in the deviation θ − θmax,

ρ(θ,�) =
[
∂2ρ

∂θ2

]
max

(θ − θmax)2 +
[

∂ρ

∂�

]
max

(� − �max).

(39b)
This expansion gives rise to the following expression for

the transmittance T (θ ):

T (θ ) = �4
anom

�4
anom + [

(θ − θmax)2 − δθ2
peak

]2 . (40a)

Here the squared resonant θ shift read

δθ2
peak =

[
d2�n

dθ2

]−1

max

(� − �max), (40b)

and the parameter of the resonance-line width is referred to as

�anom =
∣∣∣∣∂2ρ

∂θ2

∣∣∣∣−1/2

max

∝ exp(−φb). (40c)

At the maximum point (θmax,�max), the second derivative of
the spectrum � = �n(θ ) is negative and can be associated with
the corresponding derivatives of the spectral function ρ(θ,�),[

d2�n

dθ2

]
max

= −
[
∂2ρ

∂θ2

/
∂ρ

∂�

]
max

< 0. (41)

For fixed frequency � < �max, the parameter δθ2
peak is

positive, δθ2
peak > 0. As a consequence, Eq. (40a) describes two

close peaks positioned at the points θ = θpeak ≡ θmax ± δθpeak

with T (θpeak) = 1. The line shape of T (θ ) dependence near all
of the twin peaks is Lorentzian,

T (θ ) = �2
twin

�2
twin + (θ − θmax ± δθpeak)2

, � < �max, (42a)

with the half-width �twin being determined by

�twin = �2
anom/2δθpeak ∝ exp(−2φb) . (42b)

Such a situation emerges due to the coexistence of normal and
anomalous dispersions in the frequency spectrum � = �n(θ ).
It is displayed by the solid blue curve in Fig. 6.

When the normalized frequency � = �max, the parame-
ter δθ2

peak vanishes, δθpeak = 0. Hence, two previous peaks
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FIG. 7. Transmittance T vs the incidence angle θ for two values
of the normalized frequency, � = 2.556 and � = �max = 2.5576:
respectively, solid blue and dashed red curves related to νx = νz = 0,
and dotted blue and dot-dashed red curves associated with νx = νz =
10−3. The other parameters are the same as in Fig. 6.

merge into the single broad one positioned at θpeak = θmax

with T (θmax) = 1. The T (θ ) dependence is described by the
degenerated line shape,

T (θ ) = �4
anom

�4
anom + (θ − θmax)4

. (43)

This expression is illustrated by the dashed red curve in Fig. 6.
The parameter �anom defining the half-width of the peak, is
proportional to exp(−φb). Consequently, the width of the single
broad peak appears to be in exp(φb) � 1 times greater than the
width of the single normal peak governed by Eqs. (37), as well
as the width of each of the twin peaks obeying Eqs. (42).

Finally, for certain � > �max, which is located inside
the spectral gap, the parameter δθ2

peak expectedly becomes
negative, δθ2

peak < 0, and the resonant θ -shift δθpeak turns out to
be imaginary. Equation (40a) shows that there is no resonance
in this case since the excitation of the localized mode is absent
in the spectral gap. The T (θ ) dependence may contain the
only peak, very weak and broad, with Tmax � 1 situated at
θpeak = θmax and arising due to proximity to the resonance at
the top point � = �max of the dispersion curve, see dotted
green curve in Fig. 6.

VII. RESONANT TRANSMISSION
WITH ACCOUNT FOR DISSIPATION

All results obtained in Sec. VI are valid for the case of
negligible dissipation, νx = 0 and νz = 0, in the c slab of
the layered superconductor. However, even in the case of

finite dissipation the most important features of the resonant
transmission caused by the excitation of the localized modes
can be observed. To demonstrate this fact we have realized the
numerical calculations of transmittance T based on its general
definition (28) complemented by expression (22d) for the
element M

(T )
22 of the total transfer matrix. The corresponding

results are plotted in Fig. 7.
The solid blue line (� = 2.556) and dashed red line (� =

�max = 2.5576) which are obtained for νx = νz = 0 and taken
from Fig. 6, show two close peaks and a single broadened peak
in the T (θ ) dependence, respectively. The dotted blue line and
dot-dashed red line are depicted for the same corresponding
values of the dimensionless frequency �, however, for nonzero
νx = 10−3 and νz = 10−3. One can see that the two close peaks
and single broadened peak persist even in the case of small (but
realistic) dissipation.

VIII. CONCLUSIONS

We have presented the theoretical study of the THz wave
transmission through a slab of layered superconductor sepa-
rated from two dielectric leads by spatial gaps made from a
dielectric material of softer optical density. Using the transfer
matrix techniques, we have derived the analytic expression for
the transmittance T and have analyzed it in detail as a function
of the angle θ of the wave incidence from the lead onto the
lead-gap interface. We have determined the conditions for the
perfect transmission with T = 1 and revealed the possibility
of excitation of the specific electromagnetic modes localized
on the layered superconductor. Such modes occur when the
wave does not propagate inside the spatial gaps resulting in
strong resonant enhancement of the transmission. The inherent
features of this phenomenon are directly related to the nontriv-
ial electrodynamics of the Josephson plasma in the layered
superconductor, which represents a hyperbolic medium in a
wide range of the THz frequencies. The nonmonotony of
the dispersion law ω = ω(θ ) for the localized modes gives
rise to emerging two resonant peaks in the T (θ ) dependence
associated with the same value of the wave frequency ω and
their merge into the broadened single peak with subsequent ω

increase.
It is important to emphasize that the phenomena predicted

here can be fine tuned by a weak external DC magnetic
field, similarly to what happens with the other electromagnetic
effects in the layered superconductors (see, e.g., Ref. [34]).
This opens prospects for possible future applications, such as
tuning the emission or receiver frequency from THz sources.
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