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Vanishing Hall conductance in the phase-glass Bose metal at zero temperature
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Motivated in part by numerical simulations [H. G. Katzgraber and A. P. Young, Phys. Rev. B 66, 224507
(2002); J. M. Kosterlitz and N. Akino, Phys. Rev. Lett. 81, 4672 (1998); 81, 4672 (1998)] that reveal that the
energy to create a defect in a gauge or phase glass scales as Lθ with θ < 0 for two dimensions, thereby implying
a vanishing stiffness, we reexamine the relevance of these kinds of models to the Bose metal in light of the new
experiments [N. P. Breznay and Kapitulnik (unpublished); Y. Wang, I. Tamir, D. Shahar, and N. P. Armitage,
arXiv:1708.01908 [cond-mat.supr-con]], which reveal that the Hall conductance is zero in the metallic state that
disrupts the transition from the superconductor to the insulator in two-dimensional (2D) samples. Because of the
particle-hole symmetry in the phase-glass model, we find that bosonic excitations in a phase-glass background
generate no Hall conductance at the Gaussian level. Furthermore, this result persists to any order in perturbation
theory in the interactions. We show that when particle-hole symmetry is broken, the Hall conductance turns on
with the same power law as does the longitudinal conductance. This prediction can be verified experimentally by
applying a ground plane to the 2D samples.

DOI: 10.1103/PhysRevB.97.024508

Because of the canonical relationship between phase and
particle number, bosons are traditionally thought to either con-
dense in an eigenstate of phase (superconducting) or insulate
as dictated by particle number eigenstates. Indeed, the initial
experiments [1–3] seemed to conform to the predictions [4]
of the phase-only XY model that only at the critical point do
bosons exhibit the quantum of resistance of h/4e2. However,
subsequent experiments [5–8] indicated that there is nothing
special about the value of the resistance at the critical point,
thereby calling into question the relevance or accuracy of the
prediction of the phase-only model that only bosons on the
brink of localization conduct with the quantum of resistance
for charge 2e carriers. More importantly, since 1989 [8–21],
a state with apparent finite T → 0 resistivity appeared imme-
diately upon the destruction of superconductivity. Although
questions of thermometry were raised regarding the initial
[5] observation, the leveling of the resistance persisted in the
magnetic-field tuned transition in MoGe [9,13,18], Ta [10,22],
InOx [19,23], and NbSe2 [16,20]. The key contribution of the
magnetic-field tuned data was to clarify that the intervening
state occurred well below Hc2. Consequently, if these obser-
vations constitute a true metallic state at T = 0, the charge
carriers must be 2e bosons that lack phase coherence. As a
result, the insulator above Hc2 is mediated by the breaking of
the Cooper pairs.

The newer observations of the Bose metal in cleaner
samples with either gate [12] or magnetic-field tuning [20]
tell us three things. First, in the field-effect transistors [12]
composed of ion-gated ZrNCl crystals, the superconducting
state that obtains for gate voltages exceeding 4 V is destroyed
[12] for perpendicular magnetic fields as low as 0.05T . The
authors [12] attribute this behavior to weak pinning of vortices,
and hence they reach the conclusion that throughout most of
the vortex state, be it a liquid or a glass, a metallic state obtains.
Second, in the NbSe2 samples, essentially crystalline materials,

the resistance turns on [20] continuously as ρ ≈ (g − gc)α ,
where gc is the critical value of the tuning parameter for
the onset of the metallic state. Similar results have also been
observed in MoGe [14]. Third, in InOx and TaNx , the Hall
conductance is observed [23] to vanish throughout the Bose
metallic state, thereby indicating that particle-hole symmetry
is an intrinsic feature of this state. In strong support of this
last claim are the recent experiments demonstrating that the
cyclotron resonance vanishes in the Bose metallic state [24].

While there have been numerous proposals for a Bose metal
[25–30], a state with a finite resistance at T = 0, the new
experiments greatly constrain possible theoretical descriptions.
In light of the new experimental findings, we reexamine the
phase-glass model we proposed several years ago [25,31,32],
which we demonstrated, using the Kubo formula in the
collision-dominated (or hydrodynamic) regime, to have a
finite T → 0 resistivity that turns on as ρ ≈ (g − gc)α , as
highlighted in the experiments on NbSe2 [20]. While questions
[33] regarding the phase stiffness of the phase glass have
been raised, numerical simulations all indicate [34–36] that
the energy to create a defect in a two-dimensional (2D) phase
or gauge glass scales as Lθ , where θ = −0.39. Hence, the
stiffness is nonexistent. In three dimensions [34–36], θ > 0
and a stiffness obtains. Consequently, such glass states are
candidates to explain the vortex glass [37,38]. In addition,
θ < 0 [34–36] in 2D is consistent with the experimental finding
[12] in ion-gated ZrNCl, an extreme 2D system, and that
the resultant vortex state is indeed metallic and not a true
superconductor.

In this paper, we show that the Hall conductance in the
phase-glass model vanishes as observed experimentally as a
result of an inherent particle-hole symmetry. As shown previ-
ously [29], any amount of dirt in a 2D superconductor induces
±J disorder, whereJ is the Josephson coupling. Consequently,
a disordered superconductor is closer to a disorderedXY model
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rather than a dirty superfluid. Justifiably, the starting point for
analyzing the experiments is the disordered XY model. Since
we wish to calculate the Hall conductance from the Kubo
formula, we consider

H = −EC

∑
i

(
∂

∂θi

)2

−
∑
〈i,j〉

Jij cos(θi − θj − Aij ), (1)

the phase glass in a perpendicular magnetic field, where Aij =
e∗/h̄

∫ j

i
Adl (e∗ = 2e), EC is the constant on site, and Jij

is the strength of the Josephson couplings, which are ran-
domly distributed according to P (Jij ) = 1/

√
2πJ 2 exp[(Jij −

J0)2/2J 2], with nonzero mean J0. In terms of the phase on
each island, we introduce the vector Si = (cos(θi), sin(θi)).
This will allow us to to recast the interaction term in the
random Josephson Hamiltonian as a spin problem with random
magnetic interactions,

∑
〈i,j〉 Jij Si · Sj . Let 〈· · · 〉 and [· · · ]

represent averages over the thermal degrees of freedom and
over the disorder, respectively. In the superconductor, not only
〈Siν〉 but also [〈Siν〉] acquire a nonzero value. In the phase (or
spin) glass, however, 〈Siν〉 �= 0 but [〈Siν〉] = 0. As we have
shown previously [39,40], the Landau theory for this problem
is obtained by using replicas to average over the disorder and
the identity ln[Z] = limn→0([Zn] − 1)/n to obtain the zero
replica limit. The quartic and quadratic spin-spin interaction
terms that arise from the disorder average can be decoupled by
introducing the auxiliary real fields,

Qab
μν(	k,	k′,τ,τ ′) = 〈

Sa
μ(	k,τ )Sb

ν (	k′,τ ′)
〉

(2)

and 	a
μ(	k,τ ) = 〈Sa

μ(	k,τ )〉, respectively. Here the superscripts
indicate the replica indices, and the subscripts indicate the
components of the spin. To simplify our notation, we will
introduce the one-component complex field ψa = (	a

1 ,	a
2 ).

Taking into account the effects of the magnetic field B =
Bẑ, we will use the Landau gauge A = (0,Bx,0) and rewrite
ψ as a sum over different Landau levels,

ψa(l,x,y,ω,py) = Ca
l,py

(ω)φl

(
x − h̄py

e∗B

)
eipyy, (3)

where φl is the normalized eigenstate of the harmonic oscilla-
tor. The relevant part of the free energy consists of the purely
bosonic degrees of freedom and their coupling to the phase-
glass sector, which is controlled by the Edwards-Anderson
order parameter. This free energy has been derived previously
[25,39]. To tailor the expressions to a calculation of the Hall
conductance, we expand the ψ degrees of freedom in terms of
the Landau levels. The resulting free energy per replica is then

Fψ [C,Q] =
∑

a,l,py ,ωn

(
m2

H

(
l + 1

2

)
+ ω2

n + m2

)∣∣Ca
l,py

(ωn)
∣∣2

− 1

κt

∑
a,b,l

py ,ωn,ω
′
n

Ca
l,py

(ωn)Cb∗
l,py

(ω′
n)Qab(l,py,ωn,ω

′
n)

+ U

2

∑
a,li ,ωni ,pyi

|ψa(li ,x,y,ωni,pyi)|4, (4)

where Ca
l,m describes bosonic excitations with charge 2e; κ , t ,

and U are standard Landau theory parameters [25,40]; m2 is an

inverse correlation length; ωn are the Matsubara frequencies;
and m2

H = e∗
ch̄

B. We have left the interaction in terms of ψ

for simplicity, with i = (1,2,3,4). There is also a contribution
to the free energy from terms only proportional to Q. In our
analysis, we will only be treating the ψ field dynamically, and
so these terms can be ignored. As shown previously [31,40],
the spin-glass order parameter is of the form

Qab(l,py,ω1,ω2) = β(2π )2δl,0δpy,0
[−η|ω1|δω1+ω2,0δ

ab

+βδω1,0δω2,0q
ab

]
, (5)

where η = 1/κ2τ and qab is a symmetric (qab = q for all a,b)
ultrametric matrix. Due to the factor of |ωn|, the dynamic
critical exponent of this system is z = 2, and as a result
particle-hole symmetry is a natural consequence.

Substituting Eq. (5) into the free energy, we obtain

Fψ [C] =
∑

a,l,m,ωn

[
m2

H

(
l+1

2

)
+ω2

n+η|ωn|+m2

]∣∣Ca
l,py

(ωn)
∣∣2

−βqab
∑

a,b,l,py ,ωn

Ca
l,py

(ωn)Cb∗
l,py

(ωn)

+ U

2

∑
a,l,py

|ψa(l,x,y,py)|4, (6)

where we have shifted q → qκt . The propagator for the
Gaussian part of the theory is given by

Gab(l,py,ωn) = G0(l,ωn)δab + βG2
0(l,ωn)qab,

G0(l,ωn) = [
m2

H

(
l + 1

2

) + ω2
n + η|ωn| + m2

]−1
. (7)

As is well known, G0, the propagator in the presence of Ohmic
dissipation [41,42], is insufficient to describe the metallic state.
Such physics originates from the characteristic double-trace
deformation the spin-glass term induces in the full Gaussian
propagator, Gab. Note that G(l,ωn) is symmetric under ωn →
−ωn. This will be referred to as particle-hole symmetry from
here on.

To find the Hall conductance for this system, we will use
the Kubo formula

σH (iων) = σxy(iων) = h̄

ων

∫
d2(x − x ′)

∫
d(τ − τ ′)

× ∂2[Zn]

∂Ax(x,τ )∂Ay(x ′,τ ′)
eiων (τ−τ ′). (8)

For our system, this simplifies to

σH (iων) = i(e∗mH )2

2ωνh̄β

∑
a,b,l,l′,py ,p

′
y ,

p′′
y ,ωn,ω

′
n,ω

′′
n

∫
dτ eiωντ

√
(l + 1)(l′ + 1)

× 〈[
Ca

l,py
(ωn)Ca∗

l+1,py
(ωn) + Ca

l+1,py
(ωn)Ca∗

l,py
(ωn)

]
× [

Cb
l′,p′

y
(ω′

n)Cb∗
l′+1,p′′

y
(ω′′

n)

−Cb
l′+1,p′

y
(ω′

n)Cb∗
l′,p′′

y
(ω′′

n)
]〉
. (9)
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At the Gaussian level, py has no effect, and so for the following
calculations we will suppress it. Using Eq. (7), we then have

σH (iων) = i(e∗mH )2

2ωνh̄β

∑
a,b,lωn

(l + 1)

× [Gab(l,ωn)Gab(l + 1,ωn + ων)

−Gab(l + 1,ωn)Gab(l,ωn + ων)]. (10)

It has already been shown that in an array of Josephson
junctions without random couplings, the Hall conductance
vanishes as T → 0 [43]. As such, we will only be considering
terms in Eq. (10) that are proportional q. Since qabqab vanish
in the n → 0 limit, we will only consider terms involving
qabδab = q. After using the δ functions to sum over ωn, we
then have for the Hall conductance

σH = i(e∗mH )2

2ωνh̄

∑
a,b,l

(l + 1)q[G0(l, − ων)G2
0(l + 1,0)

+G0(l + 1,ων)G2
0(l,0) − G0(l + 1, − ων)G2

0(l + 1,0)

−G0(l,ων)G2
0(l + 1,0)].

(11)

Due to the particle-hole symmetry of the propagator, the
Hall conductance then vanishes independent of ων and
limων→0 σH (iων) = 0. After taking the T → 0 limit, we con-
clude that at the Gaussian level, the Hall conductance at T = 0
vanishes.

We now look at the role of interactions. To do this, we will
consider the exact propagator, the exact four-point vertex, and
show that even with interactions, the Hall conductance still
vanishes as T → 0. In doing this, we are assuming that all
effects can be resummed into a new propagator and a new
vertex. Taking into account the quartic interaction term in the
free energy, we rewrite the exact propagator in the n → 0 limit
in the form

Gab(l,ωn,py) = G̃(l,ωn,py)δab + βqabg(l,py)δωn,0, (12)

where we have split the propagator into a diagonal component
involving G̃ and an off-diagonal component involving g

[31]. Since all diagrams have particle-hole symmetry, we can
conclude that G̃ must also have particle-hole symmetry. Since
β only couples to the diagonal component in the original free
energy, we conclude that the diagonal components of Eq. (12)
must be independent of β.

The exact four-point propagator is given by

�(li ,ωj ,pyk) = U

β

∑
l1,ωj ,pyk

δ�ωi,0δ�pyk,0f (li ,ωj ,pk)

×Cl1,py1 (ω1)C∗
l2,py2

(ω2)Cl3,py3 (ω3)C∗
l4,py4

(ω4),

(13)

where the exact form of f (nl,ωj ,pyk) is unknown, but since
any diagram can be rotated or switched, we expect f to be inde-
pendent of the order of its parameters [31]. Due to the particle-
hole symmetry of all diagrams, we can also conclude that
f (ni,ωj ) = f (ni,−ωj ). If we use the exact propagator and the
exact vertex, there are two diagrams that contribute to σH (iων);
see Fig. 1.

FIG. 1. (a) The nonvertex and (b) vertex diagrams that contribute
to the Hall conductance. Here the propagators are the exact propagator,
and the vertex is the exact vertex.

The diagram in Fig. 1(a) has a contribution of

σH1 = i(e∗mH )2

2ωνh̄β

∑
a,b,lωn,py

[GabA1(l)(l,ωn,py)

×Gab(l + 1,ωn + ων,py)] − [Gab(l+1,ωn,py)

×Gab(l,ωn + ων,py)], (14)

where A1(l) is a dimensionless function of l. Using Eq. (12),
we can expand Eq. (14) into terms proportional to δabδab, terms
proportional to βqabδab, and terms proportional to β2qabqab.
The terms proportional to δabδab vanish in the T → 0 limit,
and the β2qabqab terms vanish in the n → 0 limit (which is
taken before the T → 0 limit). So the only terms remaining
are proportional to βqabδab = βq. Evaluating these terms, we
find that, due to the particle-hole symmetry of G̃, this diagram
does not contribute to the Hall conductance.

Similarly, the diagram in Fig. 1(b) yields

σH2 = U (e∗mH )2

2ωνh̄β2

∑
a,b,l,l′

ωn,ωn,py ,p
′
y

A2(l,l′)f (l,l′,ωn,ω
′
n,py,p

′
y)

×Gab(l,ωn,py)Gab(l + 1,ωn + ων,py)

×Gbc(l′ + 1,ω′
n,p

′
y)Gbc(l′,ω′

n + ων,p
′
y)

+Gab(l + 1,ωn,py)Gab(l,ωn + ων,py)

×Gbc(l′ + 1,ω′
n,p

′
y)Gbc(l′,ω′

n + ων,p
′
y),

− (l′ ↔ l′ + 1), (15)

where A2(l,l′) is dimensionless and is symmetric in l and l′.
For this diagram, let us first fix the values of l and l′. If we
then expand the propagators as we did with the propagators
in the first diagram and invoke particle-hole symmetry of
f and G, we find that the contribution from each l and l′
vanishes independently of ων . Thereby, the second diagram
also does not contribute to the Hall conductance. From this,
we can conclude that the Hall conductance will remain 0 at
all levels in perturbation theory. Consequently, the phase-glass
model of the Bose metal is consistent with the vanishing of
the Hall conductance even in the presence of interactions. In
the Appendix, we explicitly carry out the calculations to linear
order in U and show that these contributions vanish.

We now consider the effects of breaking the particle-hole
symmetry of this system. This can be done by including a term
iλψ∗∂τψ in the free energy. This changes the propagator to

G0(l,ωn,py) = [
m2

H

(
l+ 1

2

)+ω2
n+η|ωn|+iλωn+m2

]−1
.

(16)
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This term breaks particle-hole symmetry. Without the effects
of dissipation (η = 0), the number of particles at finite temper-
ature is given by N (ω±) = [exp(βω±) − 1]−1, where ω± =
∓λ + √

λ2 + m2 [43]. Particle-hole symmetry is thereby re-
stored at λ = 0.

We will first look at the Hall conductance of this system
at the Gaussian level (again suppressing py). Using the Kubo
formula, Eq. (10), we find that

σH (iων) = λ(e∗m2
H )2

h̄

∑
a,b,l

q(l + 1)
[
G0(l,−ων)G0(l,ων)

×G2
0(l + 1,0) + G0(l + 1,−ων)

×G0(l + 1,ων)G2
0(l,0)

]
. (17)

Taking the limits ων → 0 and T → 0, and then evaluating the
sum, we find

σH (iων) = λq
(
e∗m2

H

)2

h̄m4

(
2

x
− 	

(
1, x+2

2x

)
x3

)
, (18)

where x = m2
H

m2 , and 	(1,x) is the first digamma function. In
the low-magnetic-field regime (x 
 1), the Hall conductance
is approximately

σH (iων) = λq4e2∗

3h̄m4

(
1 + m2

H

m2

)
. (19)

In the high-magnetic-field regime (x � 1), the Hall conduc-
tance is

σH (iων) = λqe∗2

h̄m4
H

(
2 + π2m2

m2
H

)
. (20)

So in the case of broken particle-hole symmetry, there
is a nonvanishing Hall conductance for all ranges of the
magnetic field. The Hall conductance also scales algebraically
throughout this range. This is contrary to the results from a
nonrandom array of Josephson junctions, where it was shown
that the Hall conductance vanishes when T → 0 even in the
case of a broken particle-hole [43] term.

In the presence of a broken particle-hole symmetry, the
longitudinal conductance of this system is given by

σxx(iων) = ηq(e∗mH )2

h̄m4

(
2

x
− 	

(
1, x+2

2x

)
x3

)
, (21)

which is unchanged from the particle-hole symmetric case
[31]. Thus if both λ �= 0 and η �= 0, we see that the longitudinal
and Hall conductances have the same algebraic scaling, a
falsifiable prediction of this theory.

We will now look at corrections to the Hall conductance
arising from quartic interactions at linear order in U . These
contributions come from the following diagrams in Fig. 2. The
effects from Fig. 2(a) can be expressed as a redefinition of the
m term given in the ων → 0 and T → 0 limit [32],

m̃2 =m2+ Uqm2
H

4π

∑
l

(
G

(0)
l,0

)2 = Uq

4πm2
H

	(1,x+1/2). (22)

For the high-magnetic-field regime, the correction to the mass
in Eq. (22) is approximately πUq

8m2
H

(1 + 	(2,1/2)m2

2πm2
H

), and in the

low-magnetic-field regime it is Uq

4πm2 .

FIG. 2. The two diagrams that contribute to the Hall conductance
in the presence of a broken particle-hole symmetry: (a) the loop
correction that will be expressed as a rescaling of the mass, and (b)
the vertex correction. The propagator shown here is at the Gaussian
level, and the vertex is that which appears in the free energy.

To evaluate Fig. 2(b), we will use Eq. (3) to write the
interaction term as

� = U

2

∑
li ,ωj ,pyk

Ca
l1,py1

(ω1)C∗a
l2,py2

(ω2)Ca
l3,py3

(ω3)C∗a
l4,py4

(ω4)

×φl1

(
x − h̄py1

e∗B

)
φl2

(
x − h̄py2

e∗B

)
φl3

(
x − h̄py3

e∗B

)
×φl4

(
x − h̄py4

e∗B

)
δ�ωj ,0δ�pyk,0. (23)

Inserting Eq. (23) into Eq. (9) and evaluating the sums and
integrating, we find that the contribution is zero due to the
orthogonality of ψl and ψl+1. This calculation will be explicitly
done in the Appendix. As a result, to linear order in U the only
correction to the Hall conductance comes from the rescaling
of the mass term.

In conclusion, we have shown that the vanishing of the
Hall conductance found in experiments is consistent with the
phase-glass model. Even if interactions are considered, the Hall
conductance remains zero. This is a consequence of the fact
that the system obeys a particle-hole symmetry. However, if the
particle-hole symmetry is broken explicitly, we see that there
is a nonvanishing Hall conductance that persists even at zero
temperature. This finite Hall conductance at zero temperature
is a result of both breaking the particle-hole symmetry and the
glassy nature of the system. Furthermore, the Hall conductance
scales in the same way as the longitudinal conductance of
this system and the phase glass with particle-hole symmetry.
This falsifiable prediction can be confirmed by ground-plane
experiments and should offer a new window into the true nature
of the ground state of the Bose metal.

We thank Steve Kivelson for pointing out Ref. [34], and the
NSF DMR-1461952 for partial funding of this project.

APPENDIX

Here we will briefly show that the contribution to the Hall
conductance is 0 at linear order in U if there is particle-hole
symmetry. Furthermore, we will also explicitly show that the
vertex diagram, Fig. 2(b), does not contribute independently
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from the actual form of the Gaussian propagator. The linear order corrections to the Hall conductance are shown in Fig. 2. It has
been shown that this loop correction can be expressed as a correction to the mass term of the free energy [32],

δm2 = UT m2
H

4ı

∑
ωn,l

[
G0(l,ωn) + βδωn,0qG2

0(l,ωn)
]
. (A1)

Since this affects the particle-hole symmetry of the propagator, the result from the Gaussian level shows that this contribution
is zero. We now will explicitly calculate the contribution from the diagram in Fig. 2(b). In full, the contribution to the Hall
conductance is

σH (iων) = i(e∗mH )2

2ωνh̄β

∑
a,b,c,l,l′,py ,p

′
y ,

p′′
y ,ωn,ω

′
n,ω

′′
n

∫
dz

∫
dτeiωντ

√
(l + 1)(l′ + 1)

〈[
Ca

l,py
(ωn)Ca∗

l+1,py
(ωn) + Ca

l+1,py
(ωn)Ca∗

l,py
(ωn)

]

× [
Cb

l′,p′
y
(ω′

n)Cb∗
l′+1,p′′

y
(ω′′

n) − Cb
l′+1,p′

y
(ω′

n)Cb∗
l′,p′′

y
(ω′′

n)
]U

2

∑
li ,ωj ,pyk

Cc
l1,py1

(ω1)C∗c
l2,py2

(ω2)Cc
l3,py3

(ω3)C∗c
l4,py4

(ω4)

〉

×φl1

(
z − h̄py1

e∗B

)
φl2

(
z − h̄py2

e∗B

)
φl3

(
z − h̄py3

e∗B

)
φl4

(
z − h̄py4

e∗B

)
δ�ωj ,0δ�pyk,0. (A2)

We will now fix l and l′ and focus on the contribution of

B(li) =
∑

a,b,py ,p
′
y ,

p′′
y ,ωn,ω

′
n,ω

′′
n

∫
dz

〈
Ca

l1,py
(ωn)Ca∗

l2,py
(ωn)Cb

l3,p′
y
(ω′

n)Cb∗
l4,p′′

y
(ω′′

n)
U

2

∑
l′i ,ωj ,pyk

Ca
l1,py1

(ω1)C∗a
l2,py2

(ω2)Ca
l3,py3

(ω3)C∗a
l4,py4

(ω4)

〉

×φl′1

(
z − h̄py1

e∗B

)
φl′2

(
z − h̄py2

e∗B

)
φl′3

(
z − h̄py3

e∗B

)
φl′4

(
z − h̄py4

e∗B

)
δ�ωj ,0δ�pyk,0. (A3)

Equation (A2) is then simply

σH (iων) = i(e∗mH )2

2ωνh̄β

∑
l,l′

∫
dz

∫
dτeiωντ

√
(l + 1)(l′ + 1)[B(l,l + 1,l′,l′ + 1) + B(l + 1,l,l′,l′ + 1)

−B(l,l + 1,l′ + 1,l′) − B(l + 1,l,l′ + 1,l′)]. (A4)

Returning to Eq. (A3) and using Wick’s theorem and the fact that 〈Ca
l,py

(ω)C∗b
l′,p′

y
(ω′)〉 = Gab(l,py,ω)δl,l′δpy,p′

y
δω,ω′ , we then

have

B(li) = 2U
∑

a,b,py ,p
′
y ,

p′′
y ,ωn,ω

′
n,ω

′′
n

∫
dzGac(l1,pyωn)Gac(l2,py,ωn)Gbc(l3,p

′
y,ω

′
n)Gbc(l4,p

′′
yω

′′
n)

×φl1

(
z − h̄py

e∗B

)
φl2

(
z − h̄py

e∗B

)
φl3

(
z − h̄py ′

e∗B

)
φl4

(
z − h̄py ′′

e∗B

)
δω′

n−ω′′
n,0δp′

y−p′′
y ,0. (A5)

Summing over py , we find that there is a term in the propagator that is independent of py (see the expression defining the full
propagator in the text). So the only py dependence is from the φ functions. Therefore,

B(li) ∝
∑
py

φl1

(
z − h̄py

e∗B

)
φl2

(
z − h̄py

e∗B

)
= δl1,l2 , (A6)

where we have used the orthonormality of the eigenfunctions of the harmonic oscillator. Plugging Eq. (A6) into Eq. (A4) we see
that limων→0 σH (ων) = 0. This is true for any propagator, provided that it is independent of py . Since this is true of the phase
glass, both with and without particle-hole symmetry, we conclude that Fig. 2(b) does not contribute in either case.
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