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Odd-frequency superconductivity describes a class of superconducting states where the superconducting gap
is an odd function in relative time and Matsubara frequency. We present a group theoretical analysis based on the
linearized gap equation in terms of Shubnikov groups of the second kind. By discussing systems with spin-orbit
coupling and an interaction kernel which is symmetric under the reversal of relative time, we show that both
even- and odd-frequency gaps are allowed to occur. Specific examples are discussed for the square lattice, the
octahedral lattice, and the tetragonal lattice. For irreducible representations that are even under the reversal of
relative time the common combinations of s- and d-wave spin singlet and p-wave spin triplet gaps are revealed,
irreducible representations that are odd under reversal of relative time give rise to s- and d-wave spin triplet and
p-wave spin singlet gaps. Furthermore, we discuss the construction of a generalized Ginzburg-Landau theory
in terms of the associated irreducible representations. The result complements the established classification of
superconducting states of matter.
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I. INTRODUCTION

Unconventional superconductors such as the heavy
fermion systems, e.g., CeCu2Si2 [1,2], Sr2RuO4 [3],
and UPt3 [4,5]; the cuprates, e.g., YBa2Cu3O7 [6]
and HgBa2CuO4+δ [7]; and the organic superconductors
like the Bis(ethylenedithio)tetrathiafulvalene-based charge-
transfer salts [8–12] exhibit symmetries of the superconduct-
ing gap beyond the conventional BCS s wave [13]. In this
connection, a group theory analysis based on the underlying
symmetry of the pairing potential is crucial in establishing a
unified classification of the arising superconducting states of
matter [14–19]. In general, the pairing wave function of two
electrons has to be antisymmetric under particle interchange
leading to the Pauli principle. At equal times, and by neglecting
orbital degrees of freedom, two cases can occur: first, a gap odd
in spin and even in parity, such as spin singlet s- and d-wave
gaps, and, second, a gap even in spin and odd in parity, such
as spin triplet p- and f -wave gaps.

However, as pointed out by Berezinskii [20] and Balatsky
and Abrahams [21], a pairing of particles beyond the conven-
tional ones is possible, if the particle-particle correlator is zero
at equal times but nonzero otherwise. This is achieved when the
superconducting gap is an odd function in relative time, leading
to the notion of odd-time or odd-frequency superconductiv-
ity, respectively (odd-frequency also refers to gap functions
odd in Matsubara frequency). Among others, odd-frequency
contributions were reported to occur in connection to diffu-
sive ferromagnet/superconductor junctions [22,23], normal-
metal/superconductor junctions [24], topological insulators
[25], heterostructures of transition-metal dichalcogenides and
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s-wave superconductors [26], multiband superconductors [27],
and driven systems [28,29]. Also, odd-frequency states were
discussed in connection to time-reversal topological supercon-
ductivity in double Rashba wires, where it was found that
odd-frequency pairing is strongly enhanced in the topological
state [30]. For some of the above-mentioned systems, the
respective signatures of odd-frequency correlations could also
be verified experimentally [31–34]. An extensive discussion
of edge states and topology in superconductors including odd-
frequency gap functions was communicated by Tanaka, Sato,
and Nagaosa [35]. A comprehensive review on odd-frequency
superconductivity with the overview of possible realizations is
given in Ref. [36].

In general, odd-frequency superconductivity can only occur
when retardation is explicitly taken into account. Close to the
superconducting transition temperature, the underlying gap
equations can be linearized, leading to the so-called linearized
gap equation or Bethe-Salpeter equation [37]. By solving for
the eigenvalues of the Bethe-Salpeter equation, odd-frequency
solutions were found numerically, for example, in the repulsive
Hubbard model [38,39] and also in organic charge-transfer
salts [40]. In such models with strong on-site repulsion, pairs
can avoid the repulsion either by exhibiting a pair wave
function with zero on-site amplitude, i.e., with nonzero angular
momentum, or by establishing an odd-ω dependence which
implies a vanishing equal-time pair amplitude.

Here, we extend the formalism of Refs. [14–19] and show
how a symmetry analysis of the Bethe-Salpeter equation can
be performed by explicitly incorporating reversal of relative
time similarly to the construction of Shubnikov groups of the
second kind. Since a solution of the Bethe-Salpeter equation,
i.e., a superconducting gap function, transforms as one of the
irreducible representations of the underlying symmetry group,
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it generally breaks certain symmetries of the pairing potential.
Therefore, gap functions that are odd under time-reversal
symmetry can naturally occur even if the pairing potential itself
is time-reversal symmetric.

The paper is structured as follows. First, we introduce the
formalism by introducing the Bethe-Salpeter equation and the
transformation behavior of the superconducting gap. Then,
we summarize the construction of Shubnikov groups, together
with the construction of faithful representations needed for
the calculation of their character tables. Afterwards, we show
possible superconducting gap symmetries for the examples of
the square lattice, the cubic lattice, as well as the noncen-
trosymmetric tetragonal lattice. In the last part, we discuss
the generalized Ginzburg-Landau theory for even- and odd-
frequency superconductors.

II. LINEARIZED GAP EQUATION AND
TRANSFORMATION BEHAVIOR OF THE

SUPERCONDUCTING GAP

For a standard BCS approach, the superconducting gap is
taken as frequency independent. Since the anomalous Green’s
function vanishes at zero time for odd-frequency supercon-
ductivity [41,42] we have to choose a formalism incorporating
a summation over time or frequency, respectively. Therefore,
we stick to the Eliashberg formalism which is valid in the the
strong-coupling regime [43]. In general, the underlying Eliash-
berg equations which need to be solved self-consistently are
nonlinear. However, in the region close to the superconducting
transition temperature T ≈ Tc, a corresponding linear equation
can be formulated, which is called the linearized Eliashberg or
Bethe-Salpeter equation. In the most general form it can be
written as follows [37,39,40]:

v�αβ(�k,iωn)

= − T

N

∑
γ,δ

∑
�k′

∑
m

�αβγ δ(�k,�k′,iωm,iωn)

×Gγ (�k′,iωm)Gδ(−�k′, − iωm)�γδ(�k′,iωm). (1)

Here, �αβγ δ denotes the interaction kernel, the specific form
of which depends on the system under consideration, e.g.,
electron-phonon interaction or a Berk-Schriefer-like interac-
tion mediated by spin fluctuations [44,45], to name but a few.
Furthermore, Greek indices denote the spin components, Gα

is the Green’s function for a particle with spin α, �α,β is
the superconducting gap, and N denotes the total number of
momenta in the Brillouin zone. The eigenvalue ν corresponds
to a generalization of the linearized Eliashberg formalism
allowing for multiple solutions of Eq. (1), where a physical
interpretation is only valid when the largest eigenvalue equals
ν = 1, indicating a superconducting transition exhibiting the
respective superconducting gap corresponding to ν. Yet, the
knowledge of the competing eigenvalues even if not physically
realized in the system of interest gives an important insight into
the allowed superconducting instabilities. Additionally, even
in the nonlinear regime the symmetry of the solutions of the
linearized equation can be used to study admixed phases as
described in Refs. [18,46,47]. As Eq. (1) is a linear eigenvalue
equation, it can be written as v� = V̂ �, where V̂ denotes the

kernel:

Vαβγ δ(�k,�k′,iωm,iωn) = �αβγ δ(�k,�k′,iωm,iωn)

×Gγ (�k′,iωm)Gδ(−�k′, − iωm). (2)

It is assumed that the symmetry of the crystal is reflected in
the kernel V and described by the symmetry group G. Each
eigenvector of Eq. (1) transforms as a basis function of an
irreducible representation �p of G and the degeneracy of the
corresponding eigenvalue is determined by the dimension of
�p, which will be denoted by dp. Hence, the linearized gap
equation can be reformulated as

vp,ν�̃p,ν
m = V̂ �̃p,ν

m , (3)

wherem = 1, . . . ,dp and ν = 1,2, . . . counts over the multiple
nonequivalent subspaces transforming as the same irreducible
representation. A superconducting instability with a gap trans-
forming as an irreducible representation �p occurs, if the
corresponding eigenvalue vp,ν reaches 1. Even though the
pairing potential is invariant under every symmetry transfor-
mation of the group G, the dominating gap function itself is
only invariant under a subgroup, represented by one of the
irreducible representations of G.

It is assumed that the gap function transforms similarly
to a pairing wave function. Considering spin-orbit coupling,
each rotation in space (proper or improper) is connected to a
specific rotation in spin space. Due to spin-orbit coupling, the
single-particle states cannot be eigenstates of the spin operator
in general, but can be labeled as pseudo-spin-states in a similar
manner [18]. The pseudo-spin-state is generated from a spin
eigenstate by turning on the spin-orbit interaction adiabatically,
leading to a one-to-one correspondence between the original
spin state and the pseudo-spin-state. Here we discuss the
situation of having two states (↑, ↓) similarly to the ordinary
spin, where the transformations in the pseudo-spin space (or
just spin space in the following) are generated by the Pauli
matrices.

Applying the transformation operator ĝ associated to a
specific symmetry transformation g ∈ G gives

ĝ�̃(�k) = ũT (g)�̃[R̃−1(g)�k]ũ(g). (4)

Here, R̃(g) ∈ O(3) denotes a three-dimensional rotation ma-
trix and ũ(g) ∈ SU (2) denotes the corresponding rotation
matrix in spin space. The concept of odd- and even-frequency
gaps relates to the gap function being an odd or even function
of relative time or Matsubara frequency. For a given gap
function �̃(�k,t1,t2), the relative time-reversal operator T̂ acts
by permuting the times t1 and t2. As shown in Appendix B, a
similar representation of T̂ is found by applying a combination
of matrix transpose, and �k → −�k,

T̂ �̃(�k) = −�̃T (−�k). (5)

Doing so, the action of T̂ can be discussed without explicitly
taking into account t1 and t2.

With respect to the interchange of the spin indices within the
gap function, mediated by the operator Ŝ, the gap function can
be considered to be odd (singlet) or even (triplet). The resulting
form of the gap in these cases is given by the antisymmetric
matrix

�̃(�k) = i
(�k)σ̃ y (6)
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for the spin singlet and by the symmetric matrix

�̃(�k) = i[ �d(�k) · �σ ]σ̃ y (7)

for the spin triplet. Following Eqs. (4) and (5), the transforma-
tion under group elements ĝ and under relative time reversal
T̂ can be expressed in terms of transformations of 
 and �d via

ĝ
(�k) = 
[R̃−1(g)�k], (8)

T̂ 
(�k) = 
(−�k) (9)

and

ĝ �d(�k) = det[R̃(g)]R̃(g) �d[R̃−1(g)�k], (10)

T̂ �d(�k) = −�d(−�k). (11)

The gap function has to be odd under the application of a
combination of the parity operator (P̂ ), spin interchange (Ŝ),
and relative time reversal (T̂ ) [28]:

P̂ ŜT̂ = −1. (12)

Therefore, by considering an even behavior under time reversal
T̂ �̃ = �̃, a spin singlet gap (odd under spin interchange)
restricts the gap function to be even under parity, whereas a
spin triplet gap (even under spin interchange) has to come with
an odd parity. We now know, by allowing for an odd-time (or
odd-frequency) dependence of the gap function, T̂ �̃ = −�̃,
that options for constructing an odd-parity spin singlet and an
even-parity spin triplet gap arise. We proceed to show how the
linearized gap equation allows for odd-frequency solutions.

III. SHUBNIKOV POINT GROUPS

Superconductivity is mediated by a pairing of electrons in �k
space. In three dimensions it is possible to define seven crystal
systems and 32 crystal classes. The latter are connected to the
32 point groups. Whereas point groups only describe the spatial
symmetries of the system they can be extended to incorporate
time-reversal symmetry.

According to Eq. (5), relative time reversal is a symmetry
element of order 2, i.e., T̂ 2 = 1̂. To include T̂ as a symmetry
element, we follow the Shubnikov construction for colored
groups. However, note that the relative time-reversal consid-
ered here is a unitary symmetry element. Denoting the point
group of the system by G, three kinds of Shubnikov groups can
be defined (Fig. 1). The Shubnikov group of the first kind is

(a) (b) (c)

FIG. 1. Illustration of the Shubnikov point-group construction.
(a) first kind, (b) second kind, and (c) third kind.

given by the point group itself:

GI = G. (13)

Shubnikov groups of the second kind are introduced by
combining each element of G with T̂ :

GII = G + T̂ G. (14)

Since each symmetry element occurs twice, once in connection
to time reversal and once without, these groups are also
referred to as gray groups. Shubnikov groups of the third kind
describe systems without a global time-reversal symmetry,
e.g., magnetic structures. Here, time-reversal symmetry is
only connected to a few elements. Starting from an invariant
subgroupN ⊂ G of index 2 (ord G/N = 2), Shubnikov groups
of the third kind are constructed via

GIII = N + T̂ (G − N ). (15)

If the pairing potential in Eq. (1) is time-reversal symmetric,
it is invariant under a group GII. Hence, to discuss odd- and
even-frequency gaps for time-reversal symmetric pairing po-
tentials, Shubnikov groups of the second kind are considered.
In comparison to Shubnikov groups of the first kind and
Shubnikov groups of the third kind, this approach allows for
an explicit distinction between representations odd and even
under relative time reversal, as will be explained within the
next section.

For Shubnikov groups of the second kind it follows from
Eq. (14) that ord GII = 2 ord G. Furthermore, T̂ commutes with
every element of GII. Thus, {E,T̂ } is an Abelian invariant
subgroup. It follows that GII can be written as a semidirect
product of G and {E,T̂ } and, by induction [48], that twice as
many irreducible representations occur for GII in comparison
to G. If �i is an irreducible representation of G, then �+

i and
�−

i are irreducible representations of GII, where the characters
are given by

χ+
i (T̂ g) = χi(g), (16)

χ−
i (T̂ g) = −χi(g), (17)

for all g ∈ GII.
Since the linearized gap equation (3) is an eigenvalue equa-

tion, where the operator V̂ is invariant under all transformations
of a symmetry group GII, each eigenfunction transforms as one
of the irreducible representations. Hence, each eigenfunction
or gap function is an eigenfunction of the character projection
operator P̂p, given by

P̂p =
∑
g∈G

[χp(g)]∗ĝ. (18)

Here, χp(g) denotes the character (the trace of the repre-
sentation matrix) of the element g within the irreducible
representation �p of G. Due to the orthogonality of irreducible
representations P̂p has the property

P̂q�̃p,ν
m = δpq �̃p,ν

m . (19)

Applied to an arbitrary gap function �̃, the character projection
operator P̂p projects out the part of �̃ transforming as the
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TABLE I. Character table of the Shubnikov group DII
4h.

E 2C ′
2 2σv 2C ′′

2 2σd 2S4 2C4 I C2 σh T̂ 2T̂ C ′
2 2T̂ σv 2T̂ C ′′

2 2T̂ σd 2T̂ S4 2T̂ C4 T̂ I T̂ C2 T̂ σh ⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

T̂ even

A+
1g 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

A+
2g 1 −1 −1 −1 −1 1 1 1 1 1 1 −1 −1 −1 −1 1 1 1 1 1

B+
1g 1 1 1 −1 −1 −1 −1 1 1 1 1 1 1 −1 −1 −1 −1 1 1 1

B+
2g 1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1 1 1 −1 −1 1 1 1

E+
g 2 0 0 0 0 0 0 2 −2 −2 2 0 0 0 0 0 0 2 −2 −2

A+
1u 1 1 −1 1 −1 −1 1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 −1

A+
2u 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

B+
1u 1 1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 −1 1 −1

B+
2u 1 −1 1 1 −1 1 −1 −1 1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 ⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

T̂ odd

E+
u 2 0 0 0 0 0 0 −2 −2 2 2 0 0 0 0 0 0 −2 −2 2

A−
1g 1 1 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

A−
2g 1 −1 −1 −1 −1 1 1 1 1 1 −1 1 1 1 1 −1 −1 −1 −1 −1

B−
1g 1 1 1 −1 −1 −1 −1 1 1 1 −1 −1 −1 1 1 1 1 −1 −1 −1

B−
2g 1 −1 −1 1 1 −1 −1 1 1 1 −1 1 1 −1 −1 1 1 −1 −1 −1

E−
g 2 0 0 0 0 0 0 2 −2 −2 −2 0 0 0 0 0 0 −2 2 2

A−
1u 1 1 −1 1 −1 −1 1 −1 1 −1 −1 −1 1 −1 1 1 −1 1 −1 1

A−
2u 1 −1 1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 −1 1

B−
1u 1 1 −1 −1 1 1 −1 −1 1 −1 −1 −1 1 1 −1 −1 1 1 −1 1

B−
2u 1 −1 1 1 −1 1 −1 −1 1 −1 −1 1 −1 −1 1 −1 1 1 −1 1

E−
u 2 0 0 0 0 0 0 −2 −2 2 −2 0 0 0 0 0 0 2 2 −2

irreducible representation �p, denoted by �̃p:

P̂p�̃ =
∑

ν

dp∑
m=1

�̃p,ν
m = �̃p. (20)

Taking into account all N inequivalent irreducible represen-
tations �p of a symmetry group G and summing over all �p

obtained by mutual application of P̂p to �, the original gap
function has to be revealed:

�̃ =
N∑

p=1

�̃p. (21)

With these remarks we are now ready to analyze the self-
consistent solution for gap functions.

IV. COMPUTATIONAL DETAILS

The group theoretical analysis was performed by applying
the MATHEMATICA group theory package GTPack [48,49]. As
a faithful representation of the point-group elements, rotation
matrices of the group O(3) are used. Since GII from Eq. (14) is
isomorphic to the direct product group G ⊗ {1,−1}, a faithful
representation for the Shubnikov point group is found by the
4 × 4 matrices

D̃(g) =
(

R̃(g) 0̃

0̃ 1

)
, and D̃(T̂ g) =

(
R̃(g) 0̃

0̃ −1

)
. (22)

Character tables were calculated by applying the Burnside
algorithm [50], which is a reasonable choice due to the small
order of the crystallographic point groups. For the general-

ized Ginzburg-Landau theory, representation matrices of the
irreducible representations and the corresponding Clebsch-
Gordan coefficients were calculated by applying the algorithms
of Flodmark and Blokker [51] and van Den Broek and Cornwell
[52], respectively. The superconducting gap can be expanded
in terms of tesseral harmonics Sl

m (real spherical harmonics)
as


(�k) =
∑

l

l∑
m=−l

cl
mSl

m(x,y,z) (23)

and

�d(�k) =
∑

l

l∑
m=−l

�dl
mSl

m(x,y,z). (24)

Throughout the paper the Sl
m are discussed in Cartesian form.

V. SQUARE LATTICE (DII
4h)

To give a specific example of the emergence of even- and
odd-frequency superconducting states we choose a specific
group. In the following, a square lattice having the point group
D4h is discussed. The group is generated by the elements
{C4z,C2y,I }, where C4z denotes a fourfold rotation about
the z axis, C2y denotes a twofold rotation about the y axis,
and I denotes the inversion. In total, D4h has 16 elements.
Consequently, the corresponding Shubnikov group of the
second kind DII

4h has 32 elements and is constructed according
to Eq. (14). The character table of DII

4h is shown in Table I.
For the irreducible representations the Mulliken notation is
used [53,54]. Additionally, they are labeled with a superscript
indicating an even (+) or odd (−) behavior with respect to
time-reversal according to Eqs. (16) and (17).
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TABLE II. Even- and odd-frequency gap symmetries for the
square lattice (DII

4h), considering s-,p-, andd-wave superconductivity.

Even frequency

s wave: A+
1g 
 � const, k2

x + k2
y + k2

z

p wave: A+
1u

�d � kx �ex + ky �ey + kz�ez

A+
1u

�d � 2kz�ez − kx �ex − ky �ey

A+
2u

�d � ky �ex − kx �ey

B+
1u

�d � kx �ex − ky �ey

B+
2u

�d � ky �ex + kx �ey

E+
u

�d � kx �ez

�d � ky �ez

E+
u

�d � kz�ex

�d � kz�ey

d wave: A+
1g 
 � 2k2

z − k2
x − k2

y

B+
1g 
 � (k2

x − k2
y)

B+
2g 
 � kxky

E+
g 
 � kxkz


 � kykz

Odd frequency

s wave: A−
2g

�d � (k2
x + k2

y + k2
z )�ez

E−
g

�d � (k2
x + k2

y + k2
z )�ex

�d � (k2
x + k2

y + k2
z )�ey

p wave: A−
2u 
 � kz

E−
u 
 � kx


 � ky

d wave: A−
1g

�d � kykz�ex − kxkz�ey

A−
2g

�d � kxkz�ex + kykz�ey

A−
2g

�d � (2k2
z − k2

x − k2
y)�ez

B−
1g

�d � kykz�ex + kxkz�ey

B−
1g

�d � kxky �ez

B−
2g

�d � kxkz�ex − kykz�ey

B−
2g

�d � (k2
x − k2

y)�ez

E−
g

�d � kxky �ex

�d � kxky �ey

E−
g

�d � kzky �ez

�d � kzkx �ez

E−
g

�d � (2k2
z − k2

x − k2
y)�ex

�d � (k2
x − k2

y)�ex

E−
g

�d � (2k2
z − k2

x − k2
y)�ey

�d � (k2
x − k2

y)�ey

For the spin singlet gaps, the allowed irreducible represen-
tations occurring for a certain angular momentum l can be
determined by decomposing the representations of the orbital
part only (see Appendix A). These are given by

s wave : D0
g,+ � A+

1g, (25)

p wave : D1
u,− � A−

2u ⊕ E−
u , (26)

d wave : D2
g,+ � A+

1g ⊕ B+
1g ⊕ B+

2g ⊕ E+
g . (27)

D1
g,−

E−
g

A−
2g

O(3) ×
{
E, T̂

}
DII

4h

(a)

D1
u,−

E−
u

A−
2u

O(3) ×
{
E, T̂

}
DII

4h

(b)

FIG. 2. Splitting of pairing states for a pairing potential with DII
4h

symmetry. (a) spin triplet, s-wave and (b) spin singlet, p-wave.

Analogously, for the spin triplet gaps the allowed irreducible
representations are found by decomposing the direct product
belonging to the orbital part with D1

g,−, representing the
transformation properties of the spin triplet state:

s wave : D0
g,+ ⊗ D1

g,− � A−
2g ⊕ E−

g , (28)

p wave : D1
u,− ⊗ D1

g,− � A+
2u ⊕ B+

2u ⊕ B+
1u ⊕ 2A+

1u ⊕ 2E+
u ,

(29)

d wave : D2
g,+ ⊗ D1

g,− � A−
1g ⊕ 2A−

2g ⊕ 2B−
1g ⊕ 2B−

2g ⊕ 4E−
g .

(30)

The obtained terms in Eqs. (25)–(30) are in agreement with
Eq. (12). They reflect the following options: (1) spin singlet,
even parity, even time [Eqs. (25) and (27)]; (2) spin singlet,
odd parity, odd time [Eq. (26)]; (3) spin triplet, odd parity,
even time [Eq. (29)]; and (4) spin triplet, even parity, odd
time [Eqs. (28) and (30)]. Specific terms for gap symmetries
are obtained by applying the character projection operator to
Eqs. (23) and (24). The results are illustrated in Table II and
discussed subsequently for two examples.

A. s-wave spin triplet

As a first example, we consider a s-wave superconductor.
Whereas the conventional BCS theory [13] describes a s-wave
spin singlet pairing which is even under time reversal, it is
possible to construct a s-wave spin triplet that is odd under
time reversal [Eq. (28)]. Under full rotational symmetry, a
spin triplet transforms as the three-dimensional representation
D1

g,− as discussed in Appendix A. However, for the square
lattice, the triplet state splits into A−

2g and E−
g as illustrated in

Fig. 2(a). Since the z axis is chosen as the principal axis, two
linearly independent solutions belonging to E−

g transform as
�k2�ex and �k2�ey . Solutions belonging to A−

2g transform as �k2�ez.
The resulting gap functions are given by

�̃
E−

g

1 (�k) = −�k2σ̃z, (31)

�̃
E−

g

2 (�k) = i�k2σ̃0, (32)

and

�̃
A−

2g

1 (�k) = �k2σ̃x . (33)

As expected, all three matrices are symmetric and thus even
under spin interchange. They are even under parity since they
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contain �k2. But, they are odd with respect to the relative time
reversal introduced in Eq. (5).

B. p-wave spin singlet

Another unconventional odd-frequency pairing is given by
the p-wave spin singlet. Here, the three-dimensional odd-
parity representation D1

u,− splits into the irreducible represen-
tations A−

2u and E−
u . The gap transforms as kx and ky for E−

u and
as kz for A−

2u. The resulting superconducting gaps behave as

�̃
E−

u
1 (�k) = ikxσ̃y, (34)

�̃
E−

u
2 (�k) = ikyσ̃y, (35)

and

�̃
A−

2u
1 (�k) = ikzσ̃y . (36)

Clearly, the three matrices are antisymmetric and odd under
spin, odd under parity, and also odd under relative time
reversal according to Eq. (5).

VI. OCTAHEDRAL SYMMETRY (OII
h )

Similarly to DII
4h, the gap symmetry is analyzed for OII

h .
As mentioned before, due to the semidirect product structure
of Shubnikov groups of the second kind each irreducible
representation of a point group occurs twice (see Table I for
DII

4h). Therefore, we stick to the standard nomenclature of
the irreducible representations of Oh as can be found, e.g.,
in Refs. [48,55,56]. As in the example of DII

4h, superscripts
+ and − distinguish between the even and odd symmetric
representations with respect to relative time reversal. For OII

h ,
the occurring irreducible representations for spin singlet and
triplet gaps are given by

s wave : D0
g,+ � A+

1g, (37)

p wave : D1
u,− � T−

1u, (38)

d wave : D2
g,+ � E+

g ⊕ T+
2g (39)

and

s wave : D0
g,+ ⊗ D1

g,− � T−
1g, (40)

p wave : D1
u,− ⊗ D1

g,− � A+
1u ⊕ E+

u ⊕ T+
1u ⊕ T+

2u, (41)

d wave : D2
g,+ ⊗ D1

g,− � A−
2g ⊕ E−

g ⊕ 2T−
1g ⊕ 2T−

2g, (42)

respectively. The specific forms of the even- and odd-frequency
gap symmetries are shown in Table III.

A. s-wave spin triplet

For octahedral symmetry the three-dimensional representa-
tion D1

g,− does not split and thus a threefold degenerate eigen-
value occurs, transforming as the irreducible representation
T−

1g. Similarly to Eqs. (31)–(33), the resulting gaps transform as

�̃
T−

1g

1 (�k) = −�k2σ̃z, (43)

TABLE III. Even- and odd-frequency gap symmetries for cubic
lattices with octahedral symmetry (Oh), considering s-, p-, and d-
wave superconductivity.

Even frequency

s wave: A+
1g 
 � const, k2

x + k2
y + k2

z

p wave: A+
1u

�d � kx �ex + ky �ey + kz�ez

E+
u

�d � kx �ex − ky �ey

�d � 2kz�ez − kx �ex − ky �ey

T+
1u

�d � ky �ex − kx �ey

�d � kz�ey − ky �ez

�d � kx �ez − kz�ex

T+
2u

�d � ky �ex + kx �ey

�d � kz�ey + ky �ez

�d � kx �ez + kz�ex

d wave: E+
g 
 � (k2

x − k2
y)


 � (2k2
z − k2

x − k2
y)

T+
2g 
 � kxky


 � kykz


 � kxkz

Odd frequency
s wave: T−

1g
�d � (k2

x + k2
y + k2

z )�ex

�d � (k2
x + k2

y + k2
z )�ey

�d � (k2
x + k2

y + k2
z )�ez

p wave: T−
1u 
 � kx


 � ky


 � kz

d wave: A−
2g

�d � kykz�ex + kxkz�ey + kxky �ez

E−
g

�d � kykz�ex − kxkz�ey

�d � 2kxky �ez − kykz�ex − kxkz�ey

T−
1g

�d � kxky �ex + kykz�ez

�d � kxkz�ex + kykz�ey

�d � kxky �ey + kxkz�ez

T−
1g

�d � (2k2
x − k2

y − k2
z )�ex

�d � (2k2
y − k2

z − k2
x)�ey

�d � (2k2
z − k2

x − k2
y)�ez

T−
2g

�d � kxky �ex − kykz�ez

�d � kxkz�ex − kykz�ey

�d � kxky �ey − kxkz�ez

T−
2g

�d � (k2
y − k2

z )�ex

�d � (k2
z − k2

x)�ey

�d � (k2
x − k2

y)�ez

�̃
T−

1g

2 (�k) = i�k2σ̃0, (44)

�̃
T−

1g

3 (�k) = �k2σ̃x . (45)

The three matrices are even under spin interchange, even under
parity, and odd under relative time reversal. The relationship
between the s-wave spin triplets for OII

h and DII
4h symmetry is

shown in Fig. 3.

B. d-wave spin triplet

Another option of having a spin triplet and even parity, but
odd time pairing, is given by the d-wave spin triplet. According
to Eq. (42) and Table III, the d-wave spin triplet pairing is

024507-6



SYMMETRY ANALYSIS OF ODD- AND EVEN-FREQUENCY … PHYSICAL REVIEW B 97, 024507 (2018)

T−
1

T−
1g

E−
g

A−
2g

TII
d OII

h DII
4h

FIG. 3. s-wave spin triplet pairing for a pairing potential with T II
d ,

O II
h , and DII

4h symmetry.

mediated by 15 eigenvectors belonging to six subspaces. As
an example we consider the two subspaces belonging to T−

2g.
The corresponding gaps transform as

�̃
T−

2g

1 (�k) = −kxkyσ̃z − kykzσ̃x, (46)

�̃
T−

2g

2 (�k) = −kxkzσ̃z − ikykzσ̃0, (47)

�̃
T−

2g

1 (�k) = ikxkyσ̃0 − kxkzσ̃x (48)

and

�̃
T−

2g

1 (�k) = −(
k2
y − k2

z

)
σ̃z, (49)

�̃
T−

2g

2 (�k) = i
(
k2
z − k2

x

)
σ̃0, (50)

�̃
T−

2g

3 (�k) = (
k2
x − k2

y

)
σ̃x . (51)

Both sets of matrices belong to two different eigenvalues within
the linearized gap equation (3). Due to the absence of σ̃y , all
matrices are symmetric and thus represent a gap even under
spin interchange. Second-order terms in �k guarantee even
behavior under parity. Nevertheless, following Eq. (5) they are
odd under relative time reversal.

VII. NONCENTROSYMMETRIC TETRAGONAL
LATTICE (T II

d )

Even for noncentrosymmetric groups, i.e., groups that do
not contain the inversion, it is possible to keep the notion of
parity within the gap function. The point group Td describes
the point group of a tetragonal lattice having no inversion
symmetry. However, as a subgroup of Oh, the irreducible
representations of both groups can be related to each other.
In the context of the Shubnikov group of the second kind
T II

d ⊂ OII
h , the following correspondences can be found:

A±
1g,A

±
2u → A±

1 , (52)

A±
2g,A

±
1u → A±

2 , (53)

E±
u ,E±

g → E±, (54)

T±
1g,T

±
2u → T±

1 , (55)

T±
2g,T

±
1u → T±

2 . (56)

Hence, the specific gap symmetries for T II
d can be taken

from Table III. The occurring irreducible representations are
given by

s wave : D0
g,+ � A+

1 , (57)

p wave : D1
u,− � T−

2 , (58)

d wave : D2
g,+ � E+ ⊕ T+

2 (59)

and

s wave : D0
g,+ ⊗ D1

g,− � T−
1 , (60)

p wave : D1
u,− ⊗ D1

g,− � A+
2 ⊕ E+ ⊕ T+

2 ⊕ T+
1 , (61)

d wave : D2
g,+ ⊗ D1

g,− � A−
2 ⊕ E− ⊕ 2T−

2 ⊕ 2T−
1 . (62)

The discussion of examples follows the line of OII
h in the

previous section. The relationship between T II
d , OII

h , and DII
4h

for s-wave spin triplet pairing is shown in Fig. 3.

VIII. GINZBURG-LANDAU THEORY

The transition to a superconducting state occurs when the
largest eigenvalue of the Bethe-Salpeter equation (1) is equal
to ν = 1. This relation also uniquely defines the supercon-
ducting transition temperature Tc. The gap related to the first
superconducting state arising immediately below Tc can be
constructed as a linear combination of the eigenfunctions of
the Bethe-Salpeter equation �̃i

m, m = 1, . . . ,di :

�̃i =
di∑

m=1

ηm�̃i
m. (63)

The generalized Ginzburg-Landau free energy [18] can be
entirely expressed in terms of ηm:

F (T ,�η) = FLandau(T ,�η) + FGradient(�η) +
∫

dx3
�B2

8π
. (64)

We start the discussion with the Landau term, given by

FLandau(T ,�η) = F0(T ) + V

[
Ai(T )

di∑
m=1

|ηm|2 + f (�η4)

]
.

(65)

Here, f (�η4) denotes all fourth-order terms in ηm and its
complex conjugate η∗

m. Since F (T ,�η) has to be real, only
products containing the same number of ηm and η∗

m are allowed.
Furthermore, F (T ,�η) has the same symmetry as the system
itself and thus transforms as the identity representation.

Since the gap and the anomalous Green’s function vanish
at equal times (effectively t = 0) the order parameter for
odd-frequency superconductivity is widely discussed, e.g., by
considering a composite order of a Cooper pair and a charge or
spin fluctuation [36,41,42,57]. Since the minimum of Eq. (65)
is achieved for a particular value of the time-independent vector
�η, it can be regarded as a generalized order parameter covering
both odd- and even-frequency superconductivity.

The fourth-order terms in Eq. (65) only depend on the
dimension of the irreducible representation but not on the
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specific characteristics. The number of different invariant
terms can be determined by decomposing the direct prod-
uct [�]4 = �∗ ⊗ � ⊗ �∗ ⊗ �. Here, we introduce the short-
hand notation [�]4 for convenience, e.g., [A+

1g]
4 = (A+

1g)∗ ⊗
A+

1g ⊗ (A+
1g)∗ ⊗ A+

1g. For the groups DII
4h and OII

h it follows
that

[A±
ix]4 � [B±

ix]4 � A+
1g, (66)

[E±
x ]4 � 4A+

1g ⊕ 4A+
2g ⊕ 4B+

1g ⊕ 4B+
2g (67)

and

[A±
ix]4 � A+

1g, (68)

[E±
x ]4 � 3A+

1g ⊕ 3A+
2g ⊕ 5E+

g , (69)

[T±
ix]4 � 4A+

1g ⊕ 3A+
2g ⊕ 7E+

g ⊕ 10T+
1g ⊕ 10T+

2g, (70)

respectively. The abbreviations i = 1,2 and x = g,u were
used. The analogous terms for T II

d can be derived using
Eqs. (52)–(56).

The gradient term FGradient of the free energy incorporates a
gauge-invariant coupling of the order parameter to a magnetic
field via the gradient vector �D = ∇ − 2i e

c
�A. As �D transforms

as the vector representation �V of the underlying point group,
the contributions of FGradient are obtained from decomposing
the direct product:

�∗
V ⊗ �∗ ⊗ �V ⊗ � = [�]V . (71)

Similarly to [�]4, [�]V is an abbreviation for the direct product
in Eq. (71), e.g., [A+

1g]
V

= (�V )∗ ⊗ (A+
1g)

∗ ⊗ �V ⊗ A+
1g. The

vector representation of DII
4h is given by �V = A+

1u ⊕ E+
u

and the vector representation of OII
h is �V = T+

1u. The corre-
sponding Clebsch-Gordan sums for the decomposition of the
gradient terms are

[A±
ix]V � [B±

ix]V � 2A+
1g ⊕ A+

2g ⊕ B+
1g ⊕ B+

2g ⊕ 2E+
g , (72)

[E±
x ]V � 5A+

1g ⊕ 5A+
2g ⊕ 5B+

1g ⊕ 5B+
2g ⊕ 8E+

g (73)

for DII
4h and

[A±
ix]V � A+

1g ⊕ E+
g ⊕ T+

1g ⊕ T+
2g, (74)

[E±
x ]V � 2A+

1g ⊕ 2A+
2g ⊕ 4E+

g ⊕ 4T+
1g ⊕ 4T+

2g, (75)

[T±
ix]V � 4A+

1g ⊕ 3A+
2g ⊕ 7E+

g ⊕ 10T+
1g ⊕ 10T+

2g (76)

for OII
h .

With respect to the second-order, fourth-order, and gradient
terms within the Ginzburg-Landau free-energy functional (65)
it turns out that the explicit forms of the invariant polynomials
only depend on the dimension of the irreducible representa-
tion involved. This statement follows from Eqs. (72)–(76).
However, we want to exemplify the derivation of the invariant
terms for the example of a tetragonal symmetry (DII

4h) and an
odd-frequency p-wave gap transforming as the irreducible rep-
resentation E−

2u. Hence, the superconducting gap is expressed
as

�̃(�k) = η1�̃1(�k) + η2�̃2(�k), (77)

where �̃1 and �̃2 transform as basis functions of
E−

2u. As [E−
2u]

4 � (A+
1g ⊕ A+

2g ⊕ B+
1g ⊕ B+

2g) ⊗ (A+
1g ⊕ A+

2g ⊕
B+

1g ⊕ B+
2g), we start with forming a direct product basis in ηi

and η∗
i , i = 1,2, for the direct product representations E−∗

2u ⊗
E−

2u � A+
1g ⊕ A+

2g ⊕ B+
1g ⊕ B+

2g. This can be done straightfor-
wardly from the Clebsch-Gordan coefficients which were
calculated using GTPack. Products of these basis functions
span the invariant basis of the fourth-order terms. It turns
out that only three independent fourth-order polynomial terms
remain in total, which are given by

f (�η4) = β1[|η1|4 + |η2|4] + β2[η2∗
1 η2

2 + h.c.] + β3[|η1|2|η2|2].

(78)

These expressions are similar to the ones reported by Sigrist
and Ueda [18], by setting β1 = β ′

1, β2 = 4β ′
1 − 4β ′

2 + β ′
3, and

β3 = β ′
3, where β ′

i denote the coefficients chosen in Ref. [18].
For the gradient terms we follow a similar procedure as for the
fourth-order terms. The basis of the vector representation is
chosen to be Dx and Dy for E+

u and Dz for A+
2u. The resulting

terms are

FGradient = γ1[|Dxη1|2 + |Dyη2|2] + γ2[|Dyη1|2 + |Dxη2|2]

+γ3[Dxη1D
∗
yη

∗
2 + c.c.] + γ4[Dxη2D

∗
yη

∗
1 + c.c.].

(79)

Explicit expressions of fourth-order invariant terms forD4h and
Oh were reported before and discussed in great detail [14–19].

Additional terms resulting from external fields can be
included into the Ginzburg-Landau theory, leading to further
contributions to the free-energy functional. With respect to
odd-frequency superconductivity, fields which transform as an
irreducible representation odd in time-reversal or Matsubara
frequency, respectively, might be of special interest.

IX. CONCLUSION

We presented a general formalism for the classification of
superconducting states of matter incorporating time-reversal
symmetry. We find it necessary to extend the standard sym-
metry analysis to keep track of the time-reversal properties
by analyzing colored, i.e., Shubnikov, groups. The specific
approach that is conducive to analyze the pairing instabilities is
the Shubnikov group of the second kind that keeps the relative
time reversal as an explicit symmetry element. We thus develop
an approach in terms of Shubnikov groups of the second kind
that allows us to identify odd- and even-frequency solutions
within the Bethe-Salpeter equation. In doing so we extend the
previous ground-laying work by Volovik and Gor’kov [14,15],
Sigrist and coworkers [17,18], and Blount [16]. Since the com-
bination of spin interchange, parity, and relative time reversal
has to be odd for a pair of electrons, the found odd-frequency
gap symmetries are either both even under spin and even under
parity or odd under spin and odd under parity. Consequently,
for an experimental identification of the symmetry of a bulk su-
perconducting gap in simple single-band systems, it is required
to measure at least two of the three above-mentioned infor-
mation, e.g., as performed in Ref. [34]. Even though signals
for the experimental verification of odd-frequency states are
often discussed in connection to systems which explicitly break
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time-reversal symmetry [31–33], our paper reveals that odd-
frequency solutions do not require a time-reversal breaking
potential. Odd-frequency solutions can arise naturally for a
time-reversal symmetric interaction as a symmetry-breaking
ground state of a many-particle system with time-reversal
invariant interactions. Although exhibiting a dynamical order,
the phenomenon of odd-frequency superconductivity as such
is similar to other symmetry-breaking transitions.
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APPENDIX A: IRREDUCIBLE REPRESENTATIONS
OF SO(3), O(3), AND O(3) × {x E,T̂ }

The group SO(3) contains all proper three-dimensional
representation matrices, i.e., orthogonal matrices with deter-
minant +1. The spherical harmonics Y l

m represent a set of basis
functions for all irreducible representations of SO(3). To each
angular momentum quantum number l belongs a dl = 2l +
1-dimensional irreducible representation Dl . Representation
matrices D̃l(g) for an element g ∈ SO(3) can be found from
the transformation behavior of the spherical harmonics via

ĝY l
m =

l∑
m′=−l

Dl
m′m(g)Y l

m′ . (A1)

The Dl
m′m(g) are also denoted as Wigner D functions. The

group O(3) contains all orthogonal matrices with determinant
±1. Hence, it incorporates all proper and improper rotations,
i.e., rotations, reflections, and the inversion I . The inversion
acts on the spherical harmonics as

P̂ (I )Y l
m = (−1)lY l

m′ . (A2)

However, since O(3) can be written as the semidirect product
O(3) = SO(3) × {E,I }, we can construct odd (u) and even (g)
representations with respect to inversion via

Dl
g(g) = Dl

u(g) = Dl(g), (A3)

Dl
u(Ig) = −Dl(Ig), (A4)

Dl
g(Ig) = Dl(Ig), (A5)

where g denotes a proper rotation, i.e., g ∈ SO(3) ⊂ O(3). The
spherical harmonics are basis functions of Dl

g for even values
of l and basis functions of Dl

u for odd values of l. Incorporating
the relative time reversal, a similar strategy can be applied to
construct representations of O(3) × {E,T̂ }. It follows for an

element h ∈ O(3) ⊂ O(3) × {E,T̂ } that

Dl
x,+(h) = Dl

x,−(h) = Dl
x(h), (A6)

Dl
x,−(T g) = −Dl

x(T g), (A7)

Dl
x,+(T g) = Dl

x(T g), (A8)

where x = u,g.

APPENDIX B: TRANSFORMATION BEHAVIOR UNDER
RELATIVE TIME-REVERSAL

We discuss the transformation behavior under relative time-
reversal for the anomalous Green function F , given by

Fσσ ′(�k,t1,t2) = 〈T cσ (�k,t1)cσ ′(−�k,t2)〉. (B1)

Here, the operator T denotes the time-ordering operator, i.e.,

Fσσ ′(�k,t1,t2) = 〈θ (t1 − t2)cσ (�k,t1)cσ ′(−�k,t2)

− θ (t2 − t1)cσ ′(−�k,t2)cσ (�k,t1)〉 (B2)

Reversing t1 and t2 leads to

Fσσ ′(�k,t2,t1) = 〈θ (t2 − t1)cσ (�k,t2)cσ ′(−�k,t1)

− θ (t1 − t2)cσ ′(−�k,t1)cσ (�k,t2)〉. (B3)

Hence, by comparing (B2) and (B3), one obtains

Fσσ ′(�k,t2,t1) = −Fσ ′σ (−�k,t1,t2). (B4)

Since the gap �̃ is related to F̃ , a similar transformation
behavior is present,

�σσ ′(�k,t2,t1) = −�σ ′σ (−�k,t1,t2). (B5)

For a spin singlet, the gap can be written as �̃s(�k) = i
(�k)σ̃y ,

�̃s(�k) =
(

0 
(�k)

−
(�k) 0

)
. (B6)

Hence, from (B5) it follows

T̂ �̃s(�k) = i
(−�k)σ̃y (B7)

T̂ : 
(�k) → 
(−�k). (B8)

As a result, the action of T̂ is similar to the action of the parity
operator P̂ for a spin singlet gap. The product of both is equal
to the identity,

singlet: T̂ P̂ = 1̂. (B9)

For a spin triplet, the gap is given by �̃t(�k) = i( �d(�k) · �̃σ ) · σ̃y ,

�̃t(�k) =
(

−d1(�k) + id2(�k) d3(�k),

d3(�k) d1(�k) + id2(�k)

)
. (B10)

Applying equation (B5) leads to

T̂ �̃t(�k) = −i( �d(−�k) · �̃σ ) · σ̃y, (B11)

T̂ : �d(�k) → −�d(−�k). (B12)

Hence, for the spin triplet, the action of T̂ differs from the
action of P̂ by a minus sign, and the product of both operators
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is equal to minus the identity,

triplet: T̂ P̂ = −1̂. (B13)

As the action of T̂ can be mediated entirely in spin and �k-space,
a similar transformation behavior is revealed for reversing ω

after a Fourier transform of the relative time.

[1] C. Pfleiderer, Rev. Mod. Phys. 81, 1551 (2009).
[2] F. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, W.

Franz, and H. Schäfer, Phys. Rev. Lett. 43, 1892 (1979).
[3] K. Nelson, Z. Mao, Y. Maeno, and Y. Liu, Science 306, 1151

(2004).
[4] J. Strand, D. Bahr, D. Van Harlingen, J. Davis, W. Gannon, and

W. Halperin, Science 328, 1368 (2010).
[5] R. Joynt and L. Taillefer, Rev. Mod. Phys. 74, 235 (2002).
[6] M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L.

Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu, Phys. Rev. Lett.
58, 908 (1987).

[7] A. Schilling, M. Cantoni, J. Guo, and H. Ott, Nature (London)
363, 56 (1993).

[8] B. Commeau, R. M. Geilhufe, G. W. Fernando, and A. V.
Balatsky, Phys. Rev. B 96, 125135 (2017).

[9] N. Tajima, A. Ebina-Tajima, M. Tamura, Y. Nishio, and K.
Kajita, J. Phys. Soc. Jpn. 71, 1832 (2002).

[10] G. Kamarchuk, A. Khotkevich, I. Ianson, and K. Pokhodnia, Fiz.
Nizk. Temp. 16, 711 (1990).

[11] A. Kobayashi, R. Kato, H. Kobayashi, S. Moriyama, Y. Nishio,
K. Kajita, and W. Sasaki, Chem. Lett. 16, 459 (1987).

[12] H. Urayama, H. Yamochi, G. Saito, K. Nozawa, T. Sugano, M.
Kinoshita, S. Sato, K. Oshima, A. Kawamoto, and J. Tanaka,
Chem. Lett. 17, 55 (1988).

[13] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108,
1175 (1957).

[14] G. Volovik and L. Gor’kov, JETP Lett. 39, 550 (1984).
[15] G. Volovik and L. Gor’kov, in Ten Years of Superconductivity:

1980–1990 (Springer, New York, 1985), pp. 144–155.
[16] E. I. Blount, Phys. Rev. B 32, 2935 (1985).
[17] K. Ueda and T. M. Rice, Phys. Rev. B 31, 7114 (1985).
[18] M. Sigrist and K. Ueda, Rev. Mod. Phys. 63, 239 (1991).
[19] M. Sigrist and T. Rice, Z. Phys. B 68, 9 (1987).
[20] V. Berezinskii, JETP Lett. 20, 287 (1974).
[21] A. Balatsky and E. Abrahams, Phys. Rev. B 45, 13125

(1992).
[22] T. Yokoyama, Y. Tanaka, and A. A. Golubov, Phys. Rev. B 75,

134510 (2007).
[23] A. F. Volkov, F. S. Bergeret, and K. B. Efetov, Phys. Rev. Lett.

90, 117006 (2003).
[24] Y. Tanaka, Y. Tanuma, and A. A. Golubov, Phys. Rev. B 76,

054522 (2007).
[25] A. M. Black-Schaffer and A. V. Balatsky, Phys. Rev. B 86,

144506 (2012).
[26] C. Triola, D. M. Badiane, A. V. Balatsky, and E. Rossi, Phys.

Rev. Lett. 116, 257001 (2016).
[27] A. M. Black-Schaffer and A. V. Balatsky, Phys. Rev. B 88,

104514 (2013).
[28] C. Triola and A. V. Balatsky, Phys. Rev. B 94, 094518 (2016).
[29] C. Triola and A. V. Balatsky, Phys. Rev. B 95, 224518 (2017).
[30] H. Ebisu, B. Lu, J. Klinovaja, and Y. Tanaka, Prog. Theor. Exp.

Phys. 2016, 083I01 (2016).

[31] A. Di Bernardo, S. Diesch, Y. Gu, J. Linder, G. Divitini, C.
Ducati, E. Scheer, M. G. Blamire, and J. W. Robinson, Nat.
Commun. 6, 8053 (2015).

[32] A. Di Bernardo, Z. Salman, X. L. Wang, M. Amado, M. Egilmez,
M. G. Flokstra, A. Suter, S. L. Lee, J. H. Zhao, T. Prokscha, E.
Morenzoni, M. G. Blamire, J. Linder, and J. W. A. Robinson,
Phys. Rev. X 5, 041021 (2015).

[33] A. Pal, J. A. Ouassou, M. Eschrig, J. Linder, and M. G. Blamire,
Scientific Reports 7, 40604 (2017).

[34] F. L. Pratt, T. Lancaster, S. J. Blundell, and C. Baines, Phys. Rev.
Lett. 110, 107005 (2013).

[35] Y. Tanaka, M. Sato, and N. Nagaosa, J. Phys. Soc. Jpn. 81,
011013 (2012).

[36] J. Linder and A. V. Balatsky, arXiv:1709.03986.
[37] P. S. Riseborough, G. M. Schmiedeshoff, and J. L. Smith, in

The Physics of Superconductors (Springer, New York, 2004),
pp. 889–1086.

[38] N. Bulut, D. J. Scalapino, and S. R. White, Phys. Rev. B 47,
14599 (1993).

[39] K. Shigeta, S. Onari, K. Yada, and Y. Tanaka, Phys. Rev. B 79,
174507 (2009).

[40] M. Vojta and E. Dagotto, Phys. Rev. B 59, R713 (1999).
[41] A. Balatsky, E. Abrahams, D. Scalapino, and J. Schrieffer,

Physica B 199-200, 363 (1994).
[42] E. Abrahams, A. Balatsky, D. J. Scalapino, and J. R. Schrieffer,

Phys. Rev. B 52, 1271 (1995).
[43] D. J. Scalapino, J. R. Schrieffer, and J. W. Wilkins, Phys. Rev.

148, 263 (1966).
[44] P. Monthoux and D. J. Scalapino, Phys. Rev. Lett. 72, 1874

(1994).
[45] N. F. Berk and J. R. Schrieffer, Phys. Rev. Lett. 17, 433 (1966).
[46] W. Wojtanowski and P. Wölfle, Phys. Lett. A 115, 49 (1986).
[47] A. J. Leggett, Rev. Mod. Phys. 47, 331 (1975).
[48] W. Hergert and R. M. Geilhufe, Group Theory in Solid State

Physics and Photonics: Problem Solving with Mathematica
(Wiley, New York, 2018).

[49] W. Hergert and M. Geilhufe, MATHEMATICA group theory pack-
age GTPack, Ver. 1.0, 2017.

[50] D. F. Holt, B. Eick, and E. A. O’Brien, Handbook of Computa-
tional Group Theory (CRC, Boca Raton, 2005).

[51] S. Flodmark and E. Blokker, Int. J. Quantum Chem. 1, 703
(1967).

[52] P. van Den Broek and J. Cornwell, Phys. Status Solidi B 90, 211
(1978).

[53] R. S. Mulliken, J. Chem. Phys. 23, 1997 (1955).
[54] R. S. Mulliken, J. Chem. Phys. 24, 1118 (1956).
[55] S. Altmann and P. Herzig, Point-Group Theory Tables (Oxford

University, New York, 1994).
[56] J. Cornwell, Group Theory in Physics (Academic, New York,

1984), Vol. 1.
[57] H. P. Dahal, E. Abrahams, D. Mozyrsky, Y. Tanaka, and A. V.

Balatsky, New J. Phys. 11, 065005 (2009).

024507-10

https://doi.org/10.1103/RevModPhys.81.1551
https://doi.org/10.1103/RevModPhys.81.1551
https://doi.org/10.1103/RevModPhys.81.1551
https://doi.org/10.1103/RevModPhys.81.1551
https://doi.org/10.1103/PhysRevLett.43.1892
https://doi.org/10.1103/PhysRevLett.43.1892
https://doi.org/10.1103/PhysRevLett.43.1892
https://doi.org/10.1103/PhysRevLett.43.1892
https://doi.org/10.1126/science.1103881
https://doi.org/10.1126/science.1103881
https://doi.org/10.1126/science.1103881
https://doi.org/10.1126/science.1103881
https://doi.org/10.1126/science.1187943
https://doi.org/10.1126/science.1187943
https://doi.org/10.1126/science.1187943
https://doi.org/10.1126/science.1187943
https://doi.org/10.1103/RevModPhys.74.235
https://doi.org/10.1103/RevModPhys.74.235
https://doi.org/10.1103/RevModPhys.74.235
https://doi.org/10.1103/RevModPhys.74.235
https://doi.org/10.1103/PhysRevLett.58.908
https://doi.org/10.1103/PhysRevLett.58.908
https://doi.org/10.1103/PhysRevLett.58.908
https://doi.org/10.1103/PhysRevLett.58.908
https://doi.org/10.1038/363056a0
https://doi.org/10.1038/363056a0
https://doi.org/10.1038/363056a0
https://doi.org/10.1038/363056a0
https://doi.org/10.1103/PhysRevB.96.125135
https://doi.org/10.1103/PhysRevB.96.125135
https://doi.org/10.1103/PhysRevB.96.125135
https://doi.org/10.1103/PhysRevB.96.125135
https://doi.org/10.1143/JPSJ.71.1832
https://doi.org/10.1143/JPSJ.71.1832
https://doi.org/10.1143/JPSJ.71.1832
https://doi.org/10.1143/JPSJ.71.1832
https://doi.org/10.1246/cl.1987.459
https://doi.org/10.1246/cl.1987.459
https://doi.org/10.1246/cl.1987.459
https://doi.org/10.1246/cl.1987.459
https://doi.org/10.1246/cl.1988.55
https://doi.org/10.1246/cl.1988.55
https://doi.org/10.1246/cl.1988.55
https://doi.org/10.1246/cl.1988.55
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRevB.32.2935
https://doi.org/10.1103/PhysRevB.32.2935
https://doi.org/10.1103/PhysRevB.32.2935
https://doi.org/10.1103/PhysRevB.32.2935
https://doi.org/10.1103/PhysRevB.31.7114
https://doi.org/10.1103/PhysRevB.31.7114
https://doi.org/10.1103/PhysRevB.31.7114
https://doi.org/10.1103/PhysRevB.31.7114
https://doi.org/10.1103/RevModPhys.63.239
https://doi.org/10.1103/RevModPhys.63.239
https://doi.org/10.1103/RevModPhys.63.239
https://doi.org/10.1103/RevModPhys.63.239
https://doi.org/10.1007/BF01307857
https://doi.org/10.1007/BF01307857
https://doi.org/10.1007/BF01307857
https://doi.org/10.1007/BF01307857
https://doi.org/10.1103/PhysRevB.45.13125
https://doi.org/10.1103/PhysRevB.45.13125
https://doi.org/10.1103/PhysRevB.45.13125
https://doi.org/10.1103/PhysRevB.45.13125
https://doi.org/10.1103/PhysRevB.75.134510
https://doi.org/10.1103/PhysRevB.75.134510
https://doi.org/10.1103/PhysRevB.75.134510
https://doi.org/10.1103/PhysRevB.75.134510
https://doi.org/10.1103/PhysRevLett.90.117006
https://doi.org/10.1103/PhysRevLett.90.117006
https://doi.org/10.1103/PhysRevLett.90.117006
https://doi.org/10.1103/PhysRevLett.90.117006
https://doi.org/10.1103/PhysRevB.76.054522
https://doi.org/10.1103/PhysRevB.76.054522
https://doi.org/10.1103/PhysRevB.76.054522
https://doi.org/10.1103/PhysRevB.76.054522
https://doi.org/10.1103/PhysRevB.86.144506
https://doi.org/10.1103/PhysRevB.86.144506
https://doi.org/10.1103/PhysRevB.86.144506
https://doi.org/10.1103/PhysRevB.86.144506
https://doi.org/10.1103/PhysRevLett.116.257001
https://doi.org/10.1103/PhysRevLett.116.257001
https://doi.org/10.1103/PhysRevLett.116.257001
https://doi.org/10.1103/PhysRevLett.116.257001
https://doi.org/10.1103/PhysRevB.88.104514
https://doi.org/10.1103/PhysRevB.88.104514
https://doi.org/10.1103/PhysRevB.88.104514
https://doi.org/10.1103/PhysRevB.88.104514
https://doi.org/10.1103/PhysRevB.94.094518
https://doi.org/10.1103/PhysRevB.94.094518
https://doi.org/10.1103/PhysRevB.94.094518
https://doi.org/10.1103/PhysRevB.94.094518
https://doi.org/10.1103/PhysRevB.95.224518
https://doi.org/10.1103/PhysRevB.95.224518
https://doi.org/10.1103/PhysRevB.95.224518
https://doi.org/10.1103/PhysRevB.95.224518
https://doi.org/10.1093/ptep/ptw094
https://doi.org/10.1093/ptep/ptw094
https://doi.org/10.1093/ptep/ptw094
https://doi.org/10.1093/ptep/ptw094
https://doi.org/10.1038/ncomms9053
https://doi.org/10.1038/ncomms9053
https://doi.org/10.1038/ncomms9053
https://doi.org/10.1038/ncomms9053
https://doi.org/10.1103/PhysRevX.5.041021
https://doi.org/10.1103/PhysRevX.5.041021
https://doi.org/10.1103/PhysRevX.5.041021
https://doi.org/10.1103/PhysRevX.5.041021
https://doi.org/10.1038/srep40604
https://doi.org/10.1038/srep40604
https://doi.org/10.1038/srep40604
https://doi.org/10.1038/srep40604
https://doi.org/10.1103/PhysRevLett.110.107005
https://doi.org/10.1103/PhysRevLett.110.107005
https://doi.org/10.1103/PhysRevLett.110.107005
https://doi.org/10.1103/PhysRevLett.110.107005
https://doi.org/10.1143/JPSJ.81.011013
https://doi.org/10.1143/JPSJ.81.011013
https://doi.org/10.1143/JPSJ.81.011013
https://doi.org/10.1143/JPSJ.81.011013
http://arxiv.org/abs/arXiv:1709.03986
https://doi.org/10.1103/PhysRevB.47.14599
https://doi.org/10.1103/PhysRevB.47.14599
https://doi.org/10.1103/PhysRevB.47.14599
https://doi.org/10.1103/PhysRevB.47.14599
https://doi.org/10.1103/PhysRevB.79.174507
https://doi.org/10.1103/PhysRevB.79.174507
https://doi.org/10.1103/PhysRevB.79.174507
https://doi.org/10.1103/PhysRevB.79.174507
https://doi.org/10.1103/PhysRevB.59.R713
https://doi.org/10.1103/PhysRevB.59.R713
https://doi.org/10.1103/PhysRevB.59.R713
https://doi.org/10.1103/PhysRevB.59.R713
https://doi.org/10.1016/0921-4526(94)91839-2
https://doi.org/10.1016/0921-4526(94)91839-2
https://doi.org/10.1016/0921-4526(94)91839-2
https://doi.org/10.1016/0921-4526(94)91839-2
https://doi.org/10.1103/PhysRevB.52.1271
https://doi.org/10.1103/PhysRevB.52.1271
https://doi.org/10.1103/PhysRevB.52.1271
https://doi.org/10.1103/PhysRevB.52.1271
https://doi.org/10.1103/PhysRev.148.263
https://doi.org/10.1103/PhysRev.148.263
https://doi.org/10.1103/PhysRev.148.263
https://doi.org/10.1103/PhysRev.148.263
https://doi.org/10.1103/PhysRevLett.72.1874
https://doi.org/10.1103/PhysRevLett.72.1874
https://doi.org/10.1103/PhysRevLett.72.1874
https://doi.org/10.1103/PhysRevLett.72.1874
https://doi.org/10.1103/PhysRevLett.17.433
https://doi.org/10.1103/PhysRevLett.17.433
https://doi.org/10.1103/PhysRevLett.17.433
https://doi.org/10.1103/PhysRevLett.17.433
https://doi.org/10.1016/0375-9601(86)90108-8
https://doi.org/10.1016/0375-9601(86)90108-8
https://doi.org/10.1016/0375-9601(86)90108-8
https://doi.org/10.1016/0375-9601(86)90108-8
https://doi.org/10.1103/RevModPhys.47.331
https://doi.org/10.1103/RevModPhys.47.331
https://doi.org/10.1103/RevModPhys.47.331
https://doi.org/10.1103/RevModPhys.47.331
https://doi.org/10.1002/qua.560010676
https://doi.org/10.1002/qua.560010676
https://doi.org/10.1002/qua.560010676
https://doi.org/10.1002/qua.560010676
https://doi.org/10.1002/pssb.2220900123
https://doi.org/10.1002/pssb.2220900123
https://doi.org/10.1002/pssb.2220900123
https://doi.org/10.1002/pssb.2220900123
https://doi.org/10.1063/1.1740655
https://doi.org/10.1063/1.1740655
https://doi.org/10.1063/1.1740655
https://doi.org/10.1063/1.1740655
https://doi.org/10.1063/1.1742716
https://doi.org/10.1063/1.1742716
https://doi.org/10.1063/1.1742716
https://doi.org/10.1063/1.1742716
https://doi.org/10.1088/1367-2630/11/6/065005
https://doi.org/10.1088/1367-2630/11/6/065005
https://doi.org/10.1088/1367-2630/11/6/065005
https://doi.org/10.1088/1367-2630/11/6/065005



