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Topology and symmetry of surface Majorana arcs in cyclic superconductors
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We study the topology and symmetry of surface Majorana arcs in superconductors with nonunitary “cyclic”
pairing. Cyclic p-wave pairing may be realized in a cubic or tetrahedral crystal, while it is a candidate for the
interior 3P2 superfluids of neutron stars. The cyclic state is an admixture of full gap and nodal gap with eight
Weyl points and the low-energy physics is governed by itinerant Majorana fermions. We here show the evolution
of surface states from Majorana cone to Majorana arcs under rotation of surface orientation. The Majorana cone
is protected solely by an accidental spin rotation symmetry and fragile against spin-orbit coupling, while the arcs
are attributed to two topological invariants: the first Chern number and one-dimensional winding number. Lastly,
we discuss how topologically protected surface states inherent to the nonunitary cyclic pairing can be captured
from surface probes in candidate compounds, such as U1−xThxBe13. We examine tunneling conductance spectra
for two competitive scenarios in U1−xThxBe13—the degenerate Eu scenario and the accidental scenario.
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I. INTRODUCTION

The intense studies on anisotropic superfluidity and super-
conductivity in condensed matter and nuclear matter were ini-
tiated by the discovery of spin-triplet (S = 1), p-wave (L = 1)
superfluidity in 3He and the prediction of 3P2 superfluidity in
the dense core of neutron stars, respectively [1–3]. The liquid
3He, which behaves as isotropic Fermi liquid, preserves the
separate rotation symmetry in spin and orbital spaces, G =
SO(3)S × SO(3)L. In 3He-B, which occupies the almost region
of the superfluid phase diagram, the pairing maintains the total
angular momentum J = S + L = 0 and spontaneously breaks
the spin-orbit symmetry [4,5]. In contrast, in dense neutron
matter, a short-range attractive spin-triplet p-wave interaction
originates in a strong spin-orbit force mediated by the exchange
of vector mesons in nuclei and the existence of a repulsive
core in the 1S0 channel prevents the formation of conventional
s-wave pairing [2,3,6–9]. The Cooper pairs glued by the strong
spin-orbit force preserve the total angular momentum J = 2,
and are referred to as 3P2 states.

3P2 superfluid phases include uniaxial and biaxial nematic
phases, the ferromagnetic phase, and the cyclic phase [9–13].
The 3P2 order parameter is represented by the the second-rank,
traceless, and symmetric tensor, Aμi , which transforms as
a vector with respect to index μ = x,y,z and under spin
rotations, and, separately, as a vector with respect to index
i = x,y,z under orbital rotations. The nematic phases are
represented by Aμi = �[âμâi + rb̂μb̂i − (1 + r)ĉμĉi] where
r ∈ [−1,−1/2] and (â,b̂,ĉ) is an orthonormal triad. The
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uniaxial nematic state at r = −1/2 is fully gapped, while the
biaxial state in r �= −1/2 has nodal points. All the states are
categorized into DIII topological class and their low-energy
physics is governed by two-dimensional helical Majorana
fermions residing on the surface [14]. In contrast, the cyclic
phase is the nonunitary state with the order parameter

A
cyclic
μi = �[âμâi + ωb̂μb̂i + ω2ĉμĉi], (1)

where ω3 = 1. As shown in Fig. 1(a), the quasiparticle gap
structure is an admixture of the full gap and nodal gap.
Bogoliubov quasiparticles around nodal points behave as
three-dimensional Majorana fermions and the nontrivial Berry
curvature brings about characteristic surface states [14–17].

In addition to neutron stars, nematic and cyclic states
can also be realized in odd-parity superconductors as the
two-dimensional irreducible representation (Eu) of the cubic
(Oh) point-group symmetry [18–21] and tetrahedral (Th) point-
group symmetry [22]. Indeed the possibility of nonunitary
superconductivity has recently been argued in heavy fermion
compounds, such as the filled skutterudite superconductor
PrOs4Sb12 [16,23–25] and uranium compound U1−xThxBe13

[26]. Understanding their gap and topological structure may
be fed back to the interior 3P2 superfluids of neutron stars.

The superconducting gap symmetry and the multiple su-
perconducting phase transition in U1−xThxBe13 have been
longstanding unsolved issues [21]. The superconducting tran-
sition temperature, which is Tc ∼ 0.85 K at x = 0, shows
nonmonotonic behavior as dopant x increases [27–31]. For
x < 0.019, Tc decreases linearly with increasing x, while it
shows a domelike maximum of Tc in a narrow range of 0.019 <

x < 0.045, which is referred to as Tc1(x). The local maximum
of Tc1(x) appears at x ∼ 0.03. In 0.019 < x < 0.045, another

2469-9950/2018/97(2)/024506(15) 024506-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.024506&domain=pdf&date_stamp=2018-01-09
https://doi.org/10.1103/PhysRevB.97.024506


TAKESHI MIZUSHIMA AND MUNETO NITTA PHYSICAL REVIEW B 97, 024506 (2018)

FIG. 1. (a) Gap structure of the cyclic p-wave (Eu) and d-wave
(Eg) states, where the former is composed of the fully gapped [E+(k)]
and gapless [E−(k)] bands. (b) Discrete rotation symmetries in the
Oh symmetry group, which contains six C4 axes and six C2 axes in
the horizontal plane, and eight C3 axes. (c) Configuration of eight
Weyl points in the cyclic p- and d-wave states, where each node is
characterized by the monopole charge, qm = ±1. The gap function
has three C2 axes and four ωC3 axes in addition to the C and P
symmetries, where ωC3 stands for the C3 symmetry compensated by
the ω = ei2π/3 phase rotation.

phase transition occurs at Tc2(x) [<Tc1(x)]. According to
zero-field μSR experiment [32], the phase in T < Tc2 breaks
the time-reversal symmetry, while the phase in x < 0.019 does
not. Recent heat capacity and magnetization measurements
at x = 0.03 further indicate that Tc2 is the second transition
to a different superconducting state [26]. One of the possible
scenarios to resolve the issues is the accidental scenario, where
multiple order parameters are assumed to belong to different
irreducible representations of the Oh group [21,33]. Another
scenario is the odd-parity Eu state [26]. This suggests the
cyclic state in T < Tc2, biaxial nematic states in Tc2 < T < Tc1

for 0.019 < x < 0.045, and the uniaxial nematic state for
x < 0.019.

In this paper, we clarify the topological aspect of nonunitary
cyclic superconductors. The cyclic p-wave state hosts both
three-dimensional Majorana fermions [14–16] emerging from
the bulk Weyl points and surface Majorana fermions as a
reflection of nontrivial topology in the bulk. We show that
changing surface orientation leads to the evolution of surface
bound states from gapless Majorana cone to Majorana arcs.
The former is protected solely by accidental spin rotation
symmetry and may be sensitive to perturbation with the broken
symmetry, such as the Rashba spin-orbit coupling on the
surface. In contrast, Majorana arcs originate in two different
types of topological invariants: the first Chern number and
one-dimensional winding number, where the latter is attributed
to the combination of the time-reversal symmetry and mirror
reflection symmetry. The evolution of surface Fermi arcs in

cyclic d-wave states (Eg) has been argued in the context of
Andreev bound states [34]. It turns out that the topology and
symmetry of Majorana arcs in Eu are essentially different from
those of the Eg state. We demonstrate that the evolution of
surface Majorana fermions from a cone shape to arcs gives
rise to the evolution of tunneling conductance from a split peak
structure to zero-bias conductance peak. Understanding topo-
logically protected surface states inherent to the nonunitary
cyclic pairing may provide a possible way to determine the
gap symmetry of U1−xThxBe13 through surface probes.

This paper is arranged as follows. In Sec. II, we clarify
the connection between the gap structure and Berry curvature
of the cyclic phase in the momentum space. The low-energy
Bogoliubov quasiparticles are composed of single-species
Weyl fermions with tetrahedral symmetry. In Sec. III, based
on numerical results on the angle-resolved surface density of
states, we clarify the symmetry and topology of zero-energy
surface states in cyclic superconductors. We introduce two dif-
ferent types of one-dimensional winding numbers associated
with order-2 discrete symmetries. The evolution of surface
Majorana arcs with respect to surface orientation angles is
discussed on the basis of the Chern number and winding
numbers. Furthermore, in Sec. IV, we present the surface
density of states and tunneling conductance in U1−xThxBe13

superconducting junctions for various surface orientations and
argue their connection with the evolution of surface Majorana
fermions. The final section is devoted to conclusion and
discussion. The framework of the quasiclassical theory is
summarized in the Appendix.

II. CYCLIC STATES IN CUBIC SYMMETRY

The low-energy physics of bulk superconductors are deter-
mined by the second quantized Hamiltonian,

H = E0 + 1

2

∑
k

c†(k)H (k)c(k), (2)

where E0 is the constant and c†(k) = [c†↑(k),c†↓(k),
c↑(−k),c↓(−k)] are the creation and annihilation operators
of electrons in the Nambu space. The Bogoliubov-de Gennes
(BdG) Hamiltonian density is given by

H (k) =
(

ε(k) �(k)
−�∗(−k) −εT(−k)

)
. (3)

We here suppose that the 2×2 single-particle Hamiltonian
density, ε(k), preserves Oh crystalline symmetry when external
fields are absent. The 2×2 superconducting order parameter,
�(k), is decomposed into spin singlet scalar component ψ(k)
and triplet vectorial components d(k) as

�(k) = iσ2ψ(k) + iσ · d(k)σ2. (4)

The quasiparticle excitation energy at zero fields is given by
diagonalizing Eq. (3) as

E±(k) =
√

ε2
0(k) + |d(k)|2 ± |d(k) × d∗(k)|, (5)

for spin triplet pairing and E±(k)=
√

ε2
0(k) + |ψ(k)|2 for spin

singlet pairing, where ε0(k)= 1
2 trε(k). Wave numbers and

spin Pauli matrices are denoted as k = ka â + kb b̂ + kc ĉ and
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σ = σ1 â + σ2 b̂ + σ3 ĉ, respectively, in the basis of crystal
coordinates, (â,b̂,ĉ). In this paper, we set h̄ = kB = 1. σ (τ )
are the Pauli matrices in spin (Nambu) space (μ = 1,2,3) and
τ0 is the unit matrix in the Nambu space. The repeated Greek
and Roman indices imply the sum over x, y, and z.

A. Discrete symmetries

Let us summarize the fundamental discrete symmetries
of Eq. (3) which are relevant to topological invariants:
the particle-hole (C), time-reversal (T), inversion (P ), and
n-fold rotation (Cn) symmetries. These symmetries guar-
antee that the Hamiltonian in Eq. (2) is invariant under
the transformation of fermions with the momentum (k)
and spin (a,b =↑ , ↓), Cca(k)C−1 = 	abc

†
b(−k) (	 ≡ τx for

odd parity pairing and 	 ≡ iτ2 for even parity pairing),
Tca(k)T−1 = 
abc

†
b(−k) (
 ≡ iσ2), Pca(k)P −1 = ca(−k),

and Cnca(k)C−1
n = Uab(n̂,ϕn)cb(Rnk), where ϕn ≡ 2π/n de-

notes the n-fold rotation angle and the SU(2) rotation matrix
U (n̂,ϕn) represents a n-fold rotation of spin 1/2 about the n̂
axis and Rn is the corresponding SO(3) matrix.

The particle-hole symmetry (PHS) requires the BdG Hamil-
tonian density H (k) to hold the relation

C H (k)C −1 = −H (−k), (6)

with C = 	K , where K is the complex conjugation operator.
In addition, the time-reversal symmetry (TRS) and inversion
symmetry lead to

T H (k)T −1 = H (−k), (7)

PH (k)P−1 = H (−k), (8)

with the time-reversal operator T = 
K . The TRS guarantees
that d(k) and ψ(k) are real. The “inversion” operator is
given by P = τ3 for odd parity pairing and P = τ0 for
even parity pairing. For the odd parity case, the P operator
contains the π phase rotation of � that compensates the sign
change of � induced by the inversion k 	→ −k. The n-fold
rotation symmetry associated with the point-group symmetry
of crystals is given as

Un(n̂)H (k)U †
n (n̂) = H (Rnk), (9)

where Un(n̂) ≡ U (n̂,ϕn) ⊕ U ∗(n̂,ϕn) is the SU(2) matrix ex-
tended to the Nambu space and Rn ≡ R(n̂,ϕ) is the n-fold
rotation matrix about n̂. This requires that the diagonal and
off-diagonal block matrices obey the relations, Unε(k)U †

n =
ε(Rnk) and Un�(k)UT

n = �(Rnk).
As displayed in Fig. 1(b), the Oh symmetry group possesses

six C4 rotations about the â, b̂, and ĉ axes, six C2 rotations in
the â-b̂ plane, and eight C3 rotations. We notice that owing to
the presence of the inversion symmetry the C2 rotations are
accompanied by the mirror reflection symmetry,

MH (k)M −1 = H (−R2k). (10)

where the mirror reflection planes are normal to the C2 rotation
axes. The mirror reflection operator in the Nambu space
is constructed from a combination of the C2 rotation and
inversion symmetries as M ≡ U2(n̂)P = M ⊕ (−M∗) for
odd parity pairing. The operator M ≡ −iσ · n̂ stands for the

mirror reflection that flips the momentum and spin as k 	→
−R2k = k − 2n̂(n̂ · k) and σ 	→ −σ + 2n̂(n̂ · σ ), where n̂
characterizes a normal vector in the mirror reflection plane.
In Sec. III, we will demonstrate that the mirror reflection
symmetry is indispensable for understanding the evolution of
surface Majorana arcs in odd-parity cyclic states.

B. Cyclic p- and d-wave states

In this paper, we mainly consider the broken time-reversal
state in cubic crystals. According to the group theoretic
classification under cubic crystalline symmetry [18–21], there
are two-dimensional irreducible representations of theOh sym-
metry group: Eg and Eu representations for even parity and odd
parity states, respectively. The Eu irreducible representation
possesses the following two basis functions:

�
Eu

1 (k) = 1√
2

(2ĉk̂c − âk̂a − b̂k̂b), (11)

�
Eu

2 (k) =
√

3

2
(âk̂a − b̂k̂b), (12)

where k̂ = (k̂a,k̂b,k̂c) denotes the direction at the Fermi sur-
face. The odd-parity component of the superconducting gap in
Eq. (4) is then expanded in terms of these bases as

d(k) = η
Eu

1 �
Eu

1 (k) + η
Eu

2 �
Eu

2 (k), (13)

with complex variables (η

1 ,η


2 ). The cyclic state in the Eu

representation is obtained as the chiral pairing with broken
time-reversal symmetry, (ηEu

1 ,η
Eu

2 ) = (1,i). The d vector is
then recast into

d(k) = �(âk̂a + ωb̂k̂b + ω2 ĉk̂c), (14)

with ω3 =1. Introducing the tensor representation, dμ(k̂) =
Aμik̂i , one finds that Eq. (14) is equivalent to the cyclic order
parameter (1) in 3P2 superfluids.

As shown in Fig. 1(c), the cyclic state spontaneously breaks
the Oh symmetry into the tetrahedral symmetry which has three
C2 axes along â, b̂, and ĉ and four C3 axes accompanied by the
ω = ei2π/3 phase rotation. The tetrahedron has three mirror
reflection planes that contain the â, b̂, and ĉ axes and other
mirror reflection symmetries are spontaneously broken.

For 
 = Eg , the basis functions [ψ
Eg

1 (k),ψ
Eg

2 (k)] are ob-
tained from Eqs. (11) and (12) by replacing (â,b̂,ĉ) with
(k̂a,k̂b,k̂c). The cyclic d-wave state is defined as ψ

Eg

1 (k) +
iψ

Eg

2 (k), which can be recast into [34]

ψ(k) = �
(
k̂2
a + ωk̂2

b + ω2k̂2
c

)
. (15)

Similarly to the cyclic p-wave state, the time-reversal
symmetry-broken Eg state possesses eight point nodes and
maintains the tetrahedral symmetry. The gap structure is
displayed in Fig. 1(a).

The Ginzburg-Landau free-energy functional for the two-
dimensional representations can be written with the coeffi-
cients β1 and β2 as [21]

F [ηm,η∗
m] = α|η|2 + β1|η|4 + β2(|η · η|2 − |η|4), (16)

where α(T )∝Tc − T and η= (η1,η2)T. The time-reversal bro-
ken cyclic phase with (η1,η2) ∝ (1,i) can be realized for
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β2/β1 < 0, while the region β2/β1 > 0 is favored by time-
reversal invariant unitary states with (η1,η2) = (cos θ, sin θ ).
The unitary states correspond to highly degenerate minima of
F with respect to θ . In the context of the 3P2 superfluids which
are expected to be realized in the inner core of neutron stars,
the ordered state at θ = 0 is referred to as the uniaxial nematic
phase, while the biaxial nematic phase at θ = π/2 is invariant
under the the dihedral-four D4 symmetry. The intermediate θ

holds the dihedral-two D2 symmetry.
All the time-reversal invariant 3P2 superfluids with T 2 =

−1 and C 2 =+1 are categorized to the class DIII in the
topological table [35]. The topological structure of the D4

biaxial nematic state which has a PHS pair of point nodes
is characterized by the Z2 topological number [14]. This is
equivalent to the topological structure of the planar state [36],
the E1u state in UPt3 [37–39], and the Eu state in CuxBi2Se3

[36,40]. Since the uniaxial and D2 biaxial nematic states are
fully gapped, their topological structures are equivalent to
those of the superfluid 3He-B [35,41–43] and the A1u state
in CuxBi2Se3 [36,40,44].

C. Weyl fermions and Berry curvature

The nonunitary state has two distinct energy branches. In
Fig. 1(a), we display the gap structures, min E±(k), where the
upper branch E+(k) is fully gapped, and the lower branch
E−(k) has eight Fermi points. The tetrahedral symmetry
guarantees that four of the Fermi points reside on four vertices
of the tetrahedron,

knode = {k0,C2,a k0,C2,bk0,C2,ck0}, (17)

where one point node exists at the (111) direction, k0 =
kF(1,1,1)/

√
3 [see Fig. 1(b)]. In addition, Eq. (6) implies that

the point nodes, which obey det H (knode) = 0, must appear as
a PHS pair in the k space, C H (knode)C −1 = −H (−knode).

Let S be a small surface enclosing a Weyl point in the k
space and s be a normal vector to S. We here define the Chern
number or the monopole charge on S by

qm = 1

2π

∫
S

ds · �−(k), (18)

where the Berry curvature in the occupied states of the nth band
is obtained from the eigenvectors of the BdG Hamiltonian,
|un(k)〉, [�n(k)]μ = iεμνη〈∂kν

un(k)|∂kη
un(k)〉. The monopole

charge in Eq. (18) counts how many “magnetic” fluxes pene-
trate the surface S. A PHS pair of Weyl points, e.g., k0 and −k0,
possesses the monopole charge qm =+1 and −1, respectively.
This indicates that the nodal points are topologically protected
and a source of fictitious magnetic field �−(k) in the k space.

In Fig. 2(a), we plot the Berry curvature �−(k) on the Fermi
sphere k = kF for the cyclic p-wave state. The “magnetic”
fluxes are generated by the Weyl points with qm = +1 and
absorbed by the qm = −1 nodal points. It turns out that the
nontrivial configuration of �−(k) is also a source of the
formation of topological Fermi arcs on the surface.

Let us now consider the low-energy quasiparticle structure
of the cyclic state around the point nodes. We first show that
the effective low-energy Hamiltonian for the cyclic state is
described by the Weyl Hamiltonian. It is convenient to intro-
duce a new Cartesian triad (n̂1,n̂2,n̂3), where n̂3 ≡ n̂1 × n̂2

-0.1  0  0.1-0.1
 0

 0.10.9

1.0

1.1

0.10

FIG. 2. (a) Profiles of Berry curvature on the Fermi surface,
�n=−(k), constructed from E−(k), where the color map shows
the amplitude, |�−(kF)|. The Berry curvature diverges at the level
crossing lines (k̂ ‖ â, b̂, or ĉ). (b) Quasiparticle spectra, E±(k), in the
vicinity of the level crossing lines.

denotes one of the nodal directions, e.g., k0. In these bases, the
low-energy part of the 4×4 BdG Hamiltonian for the cyclic
p-wave (Eu) state is decomposed into a pair of 2×2 matrices
as

H (k) ≈ H+(k) ⊕ H−(k). (19)

The 2×2 submatrices are given by H+(k) = ε0(k)τ3 +√
2k̂1�̄τ1 and H−(k) = ε0(k)τ3 + �̄k̂1τ1 + �̄k̂2τ2, where k=

k1n̂1 + k2n̂2 + k3n̂3 and �̄ ≡ �ω2. The former submatrix
represents the fully gapped E+ band, and the gap function
is reduced to the polar state (�̄k̂1) around a Weyl point. In the
vicinity of a Weyl point, the lower band with E− is described
by the effective Hamiltonian, H−(k), for the chiral p-wave
state. The mixing of H+(k) and H−(k) appears in the order
of k2. Hence, the low-energy structure of the cyclic p-wave
state around a pair of nodes qk0 (q = ±1) is given by the
Hamiltonian for Weyl-type Bogoliubov quasiparticles with a
single pseudospin species,

H−(k) = eμ
a va

b τ
b(kμ − qk0,μ), (20)

where the vielbein e
μ
a is defined as (eμ

1 ,e
μ
2 ,e

μ
3 ) =

(n̂1,μ,n̂2,μ,n̂3,μ) with the velocity tensor va
b =

diag(�̄/kF,�̄/kF,qvF). This describes Weyl fermions with
an effective electric charge q coupled to the effective gauge
field k0.

The low-energy quasiparticles in the cyclic d-wave (Eg)
state are also described by the Weyl-type Hamiltonian similar
to Eq. (20) and the point nodes are identified as Weyl points
with qm = ±1. The gap function is displayed in Fig. 1(a).

We here mention that owing to the PHS in Eq. (6) a
pair of Weyl fermions at knode and −knode behaves as three-
dimensional Majorana fermions. To clarify this, we introduce
the coordinates centered on the Weyl point, K ≡ k − knode.
Then, the four-component real quantum field,

ψ(r) = C ψ(r), (21)

can be constructed from a PHS pair of the single-
species Weyl fermions as ψα(r)≡∑

K ei K ·rψα(K ) with
[cα(K ),cα(K ),c†α(−K ),c†α(−K )]T. The low-energy Hamilto-
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nian can be then recast into the Majorana-type Hamiltonian

S− =
∫

d4xψ̄(x)
(
i∂t − ieμ

a va
bγ

b∂μ

)
ψ(x) (22)

where we have introduced (γ 1,γ 2,γ 3)= (μ1τ1,μ1τ2,μ3) and
ψ̄ = (τ1ψ)T with the Pauli matrices μi labeled by q = ±1.
Hence, the low-energy structure of the cyclic phase is reduced
to three-dimensional massless Majorana fermions. The Ma-
jorana fermion possesses pseudospin 1/2 associated with the
pairwise Weyl points and forms a quartet (ψ1, . . . ,ψ4) as a
consequence of the tetrahedral point-group symmetry.

It is seen in Fig. 2(a) that the Berry fluxes form the
quadrupole field around â, b̂, and ĉ axes. The center of the
quadrupole field corresponds to the singularity in �−(k). This
singularity is attributed to the fact that the lower branch touches
the upper energy branch, E+(k) = E−(k), at k‖ â, k‖ b̂, and
k‖ ĉ [see Fig. 2(b)]. We notice that although Weyl points are
the sources of a nontrivial Chern number in the k space it is ill
defined on the plane which intersects the level-crossing lines.

III. SYMMETRY AND TOPOLOGY OF SURFACE
MAJORANA ARCS

A manifestation of nontrivial topological structure in nodal
superconductors and superfluids is the appearance of surface
Fermi arcs. Using the quasiclassical theory, we here show the
evolution of surface Majorana arcs in the cyclic p-wave state
with respect to the change of the surface orientation angles.

In a typical Weyl superconductor such as the chiral p + ip

state, the surface Fermi arc connecting the projections of
the bulk Weyl points is protected by the first Chern number.
In contrast, the one-dimensional winding number associated
with a chiral symmetry is responsible for the existence of the
surface Fermi arc in time-reversal-invariant superconductors
and superfluids [38,42–45]. We also notice that in chiral
superconductors with a line node the fragileness of the surface
Fermi arc was discussed in terms of a one-dimensional winding
number associated with the pseudo-time-reversal symmetry
[46]. For the nonunitary cyclic state which can be regarded as
an admixture of full gap and point node gap, however, we will
demonstrate below that the surface Majorana arcs are protected
by two different topological invariants: the first Chern number
Ch1 and one-dimensional winding number w1D.

A. Evolution of surface Majorana arcs

To calculate the surface density of states in nonunitary
superconductors, we here utilize the quasiclassical theory.
The central object of the quasiclassical theory is the prop-
agator, g(k̂,r; εn), that contains both quasiparticles and su-
perfluidity in equal footing. The propagator is obtained from
the Matsubara Green’s function G(k,r; εn) by integrating
G over a shell vF|k − kF| < Ec � EF [47], g(k̂,r; εn)=
1
a

∫ +Ec

−Ec
dξkτzG(k,r; εn). The normalization constant a corre-

sponds to the weight of the quasiparticle pole in the spectral
function. The quasiclassical propagator g that is a 4×4 matrix
in particle-hole and spin spaces is parameterized with spin
Pauli matrices σμ as

g =
(

g0 + σμgμ iσyf0 + iσμσyfμ

iσyf̄0 + iσyσμf̄μ ḡ0 + σ T
μ ḡμ

)
. (23)

FIG. 3. (a) Surface orientation with respect to the cyclic order
parameter under cubic crystalline symmetry. The surface normal
axis, ẑ, is parameterized with ϕ and ϑ , where ϑ denotes the relative
angle between ẑ and ĉ. (b) Weyl points projected onto the surface
momentum space kx-ky for ϕ = π/4 and ϑ/π = 0.4. The shaded
kx-kz plane shows the P2 symmetric momentum plane.

The off-diagonal propagators are composed of spin-singlet and
triplet Cooper pair amplitudes, f0 and fμ.

The quasiclassical propagator is governed by the transport-
like equation (A1) supplemented by the normalization con-
dition in Eq. (A3). We here consider a semi-infinite system,
z ∈ [0,∞), having a specular surface at r = rsurf = (x,y,0),
where z denotes the distance from the surface. A quasiparticle
incoming to the surface along the trajectory of k is specularly
scattered by the wall to the quasiparticle state with k = k −
2 ẑ( ẑ · k). The specular boundary condition is imposed on the
quasiclassical propagator as

g(k̂,rsurf ; εn) = g(k̂,rsurf ; εn). (24)

The further details on the formalism and the numerical proce-
dure are described in the Appendix.

As shown in Fig. 3(a), we parametrize the surface orienta-
tion ( ẑ) with (ϕ,ϑ) relative to the crystal coordinates. It is now
convenient to introduce new coordinates, (x̂, ŷ, ẑ), where the
crystal coordinates, (â,b̂,ĉ), are obtained by rotating (x̂, ŷ, ẑ)
with R ≡ Rb(−ϑ)Rz(−ϕ), as (âμ,b̂μ,ĉμ) = Rμν(x̂ν,ŷν,ẑν),
where Rn(θ ) stands for the rotation matrix by the angle θ about
the n axis. The relative rotation of the crystal coordinates from
the surface orientation transforms the order-parameter tensor
to Aμi = RμνÃνjRij , where Ãνj is the order-parameter tensor
for (â,b̂,ĉ) = (x̂, ŷ, ẑ).

The schematic picture on the configuration of monopole-
antimonopole pairs and surface momentum space for
(ϕ/π,ϑ/π ) = (0.25,0.4) is depicted in Fig. 3(b). The surface
configuration with ϕ/π = 0.25 preserves the P2 symmetry that
is the the order-2 discrete symmetry introduced in Eq. (28). We
will show below that some of the Fermi arcs are protected by
the one-dimensional winding number associated with the P2

symmetry but not the Chern number.
To clarify the structure of surface Majorana arcs and their

topological and symmetry backgrounds, we first show the dis-
tribution of the zero-energy quasiparticle states in the surface
momentum space. We start to introduce the angle-resolved
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surface density of states:

NS(kx,ky,E) ≡
∑

sgn(k̂z)

N (k̂,z = 0,E). (25)

The surface Brillouin zone is represented by (kx,ky). The k-
resolved local density of states, N (k̂,r; E), is obtained from
Eq. (A1) with the analytic continuation iεn → E + i0+ in the
diagonal part of the quasiclassical propagator

N (k̂,r; E) = −NF

π
Img0(k̂,r; εn → −iE + 0+), (26)

where NF =∫
d k̂

(2π)3|vF(k̂)| is the total density of states at the

Fermi surface in the normal state. In Eq. (25),
∑

sgn(k̂z) denotes

the sum over k̂z which satisfies k̂z = ±
√

1 − k̂2
x − k̂2

y , and
(kx,ky) is a set of the surface momenta.

Figure 4 shows the angle-resolved zero-energy density of
states on the surface Brillouin zone, NS(kx,ky,E = 0), in the
cyclic p-wave state for various surface orientation angles,
(ϕ/π,ϑ/π ) = (0.25,0.1), (0.25,0.2), (0.25,0.4), (0.25,ϑ111),
and (0.25,0.4), where ϑ111 = tan−1(

√
2) ≈ 0.6(π/2) stands

for the orientation angle for the [111] surface. In the right
panels of Fig. 4, we plot the bulk Weyl points projected onto
the surface k space. These Weyl points with monopole charges
qm = ±1 are sources of a nontrivial Chern number Ch1, which
characterizes the topological structure of the surface Majorana
arcs. As mentioned in Sec. II C, the band crossing at the â, b̂,
and ĉ axes gives rise to the singularity in the Berry curvature
in the bulk Brillouin zone. Since this prevents a well-defined
Chern number in a two-dimensional plane that contains the
singularities, we define the Chern number Ch1 on a small
surface enclosing each Weyl point. As the panels show, the
surface Majorana arcs connect the projections of the bulk Weyl
points.

B. Combined symmetry and topological invariant

We have seen that owing to the Weyl points in E−(k)
the cyclic state possesses a nontrivial Berry curvature in the
momentum space. For unitary states with a single pair of Weyl
points, the Fermi arc appears as a consequence of Ch1 �=0 well
defined in a sliced two-dimensional momentum plane. We here
introduce another type of topological invariants in connection
with crystalline symmetries. Both the Chern number and wind-
ing number are indispensable for understanding the structure
of surface Majorana arcs in cyclic p-wave states.

To introduce the winding number, we first clarify the
discrete symmetry of the cyclic p-wave state. We here fix ϕ

to be π/4 which is the most symmetric surface configuration.
Although cubic crystals with the Oh symmetry possess mirror
refection planes associated with the C2 axes, the formation
of the cyclic pairing spontaneously breaks the crystalline
symmetry into the tetrahedral symmetry and [110] mirror
reflection planes disappear. Hence, the cyclic p-wave state
in Eq. (14) spontaneously breaks T and M , independently.
However, it remains invariant under the combined symmetry:

T M�(k)(T M)−1 = −�(−kx,ky,−kz). (27)

The mirror operator M ≡ −iσ · n̂ flips the momentum
and spin as σ 	→ −σ + 2n̂(σ · n̂) and k 	→ σ − 2n̂(k · n̂),
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0.5
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-1.0
1.0

0.5

0
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-1.0
1.0

0.5

0

-0.5

-1.0
1.00.50-0.5 0.10.1- 0.50-0.5

4030200 10

FIG. 4. Left: Angle-resolved zero-energy density of states on
the surface, NS(kx,ky,E = 0), in the cyclic p-wave state for vari-
ous surface orientation angles, (ϕ/π,ϑ/π ) = (0.25,0.1), (0.25,0.2),
(0.25,0.4), (0.25,ϑ111), and (0.25,0.4). The set of angles, ϕ = π/2
and tan ϑ111 = √

2, correspond to the [111] surface. Right: Projected
Weyl points and topological invariants relevant to Fermi arcs, the
first Chern number Ch1 =±1, and one-dimensional winding number
w1D(kx,ky = 0), in the surface momentum space. The thin (green)
lines denote the P2 symmetric plane in which w1D ∈ Z is well defined.

respectively, where n̂ denotes the [110] surface orientation.
Equation (27) implies that the cyclic state is invariant under
the combined discrete symmetry, P2 = T M ,

P2H (k)P −1
2 = H (−kx,ky,−kz), (28)

where M = M ⊕ (σyMσy) stands for the mirror operator in
the Nambu space.

Combining it with the PHS in Eq. (6), one obtains the
chiral symmetry, 
 ≡ −iC P2, satisfying {
,H (kx,0,kz)}=0.
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Let U be a unitary matrix which diagonalizes 
 as U
U † =
diag(+1,+1,−1,−1). Then, U transforms the BdG Hamilto-
nian to the off-diagonal form

UH (kx,0,kz)U
† =

(
0 q(kx,kz)

q†(kx,kz) 0

)
. (29)

As long as the symmetry is maintained, the one-dimensional
winding number in the chiral symmetric momenta k=
(kx,0,kz) is defined as the topological invariant relevant to the
surface Fermi arc at ky =0 [45]:

w1D(kx) = − 1

4πi

∫ +π

−π

dkztr
[

H −1(k)∂kz

H (k)
]
ky=0

= 1

2π
Im

∫ +π

−π

dkz∂kz
ln det q(kx,kz). (30)

For the cyclic state with the orientation angle ϑ , the determi-
nant of the q matrix is given as

det q(kx,kz) = − [ε(kx,kz)]
2 − �2

k2
F

(
1 − 3

2
cos2ϑ

)
k2
x

− �2

k2
F

(
1 − 3

2
sin2ϑ

)
k2
z + 3

2

�2

k2
F

sin(2ϑ)kxkz

+ i
√

3
�

kF
ε(kx,kz)(cos ϑkx + sin ϑkz). (31)

The chiral symmetry guarantees that all energy eigenstates
are labeled by the eigenstates 
=±1. w1D is identical to the
difference in the number of zero-energy states in each chiral
subsector, |w1D|=|N+ − N−| [45]. In contrast to Ch1, the
Fermi arc is only protected by the P2 symmetry.

To evaluate Eq. (30), it is convenient to introduce the
following two-dimensional unit vector, m̂ = (m̂1,m̂2), where
m̂1(kx,kz) ≡ Re det q(kx,kz)/| det q(kx,kz)| and m̂2(kx,kz) ≡
Im det q(kx,kz)/| det q(kx,kz)|. Then, Eq. (30) can be recast
into

w1D(kx) = 1

2π

∫ +π

−π

dkzε
ij m̂i(kx,kz)∂kz

m̂j (kx,kz), (32)

which counts how many times the one-dimensional momentum
along kz wraps the target space represented by det q/| det q| ∈
S1 for a fixed kx (i,j = 1 and 2). Since only the neighborhood
of the zeros of ε(kx,0,kz) contributes to the integral, the
winding number is simplified to the sum at k0 that satisfies
ε(kx,0,k0) = 0 as

w1D(kx) = 1

2

∑
k0∈F.S.

sgn
[
∂kz

m̂2(kx,k0)
]{1 + sgn[m̂1(kx,k0)]}.

(33)

For kx = 0, this can be evaluated as

w1D(0) =
{

0 for ϑ < ϑ111

−2 for ϑ > ϑ111
, (34)

when H · ŷ = 0.
Figure 5 shows the evolution of the one-dimensional wind-

ing number, w1D(kx) with respect to the surface orientation
angle ϑ . Here we fix ϕ = 0.25 so that the P2 symmetry is
preserved even in the presence of the surface. It is seen that

-1.0

-0.5

 0

 0.5

 1.0

 0  0.2  0.4  0.6  0.8  1.0
 0

 2

1

FIG. 5. Evolution of the one-dimensional winding number,
w1D(kx,ky = 0), defined in Eq. (30), where we fix ϕ = 0.25.

the winding number becomes nontrivial, |w1D(kx)| = 1, in the
segment connecting the PHS pair of Weyl points, which implies
the P2 symmetry protection of the surface Majorana arc along
the kx axis. In the cases of ϕ/π = 0.1 and 0.2 in Fig. 4,
therefore, two Majorana arcs on the kx axis can be protected
by both the one-dimensional winding number |w1D(kx)| = 1
and the first Chern number. The former is well defined unless
the P2 symmetry is broken, while the latter is robust regardless
of the P2 symmetry breaking.

At ϑ111 and ϕ = 0.25π , the ωC3 rotation symmetry about
a normal surface is maintained even in the presence of the
surface. In this configuration, the surface maintains the three
P2 symmetric planes and all bulk Weyl points are placed on
the P2 symmetric planes. This indicates that the three Majorana
arcs in Fig. 4 (tan ϑ = √

2) originate from the P2 symmetry
protected winding number as well as Ch1. For ϑ > ϑ111, as
shown in Fig. 5, the topological invariant takes |w1D(kx)| = 2
in the central region of the kx axis and |w1D(kx)| = 1 otherwise.
For ϕ = 0.4π in Fig. 4, therefore, the central region of the
Fermi arc on ky = 0 is protected solely by |w1D(kx)| = 2,
while the outer arcs are characterized by both |w1D| = 1 and
|Ch1| = 1.

In addition to w1D, we can introduce another winding
number that ensures the existence of zero-energy states at
kx = ky = 0. It is obvious that for ϑ = 0 the gap function of
the cyclic p-wave state with kx = ky = 0 reduces to that of the
polar phase, d(0,0,kz) = �k̂z ẑ, at which the TRS emerges. The
emergent TRS at kx = ky = 0 leads to the chiral symmetry as
a combination of the TRS and PHS.

For ϕ = π/4, the BdG Hamiltonian has the accidental
symmetry, which is called the pseudo TRS [46]. At kx =
ky = 0, the cyclic order parameter is given as �(0,0,kz) =
�[

√
3
2 sin ϑ + 3

2
√

2
sin(2ϑ)σz + √

2(1 − 3
2 sin2 ϑ)σx]kz. The

2×2 matrix is diagonalized to V �(0,0,kz)V t = diag(akz,bkz),
where V ≡ cos φ0

2 − iσy sin φ0

2 is an SU(2) matrix representing
the spin rotation about the ŷ axis and a,b ∈ R stand for the
polarlike gap amplitudes. The rotation angle, φ0, is taken

so as to satisfy
√

2(1 − 3
2 sin2 ϑ) cos φ0 +

√
3
2 sin ϑ sin φ0 =

0. Hence, the BdG Hamiltonian for kx = ky = 0 has the
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FIG. 6. Momentum resolved zero-energy density of states,
NS(kx,ky,E = 0), in the cyclic p-wave state for (ϕ/π,ϑ/π ) =
(0.25,0.4) (a,b) and (0.15,0.4) (c). The applied magnetic field in (a)
preserves the P2 symmetry, while it breaks the symmetry in (b).

following pseudo TRS:

V †T V H (0,0,kz)V
†T −1V = H (0,0,−kz), (35)

where V = V ⊕ V ∗ is the spin rotation matrix in the Nambu
space. Using the spin rotation operator, the chiral operator is
defined as 
s = iV †C T V . With the chiral operator, we define
the one-dimensional winding number as

ws
1D = − 1

4πi

∫ +π

−π

dkztr
[

sH −1(0,0,kz)∂kz

H (0,0,kz)
]
.

(36)

The winding number is estimated as

ws
1D =

∑
k0∈F.S.

sgn
[
∂kz

ε(0,0,kz)
]
sgn(kz). (37)

For the case of a spherical Fermi surface, it yields ws
1D = 2

which ensures the existence of the zero-energy states at kx =
ky = 0 as shown in Fig. 4. Since the chiral symmetry originates
in the accidental spin rotation symmetry, the zero-energy states
at kx = ky = 0 will be sensitive to a perturbation with broken
spin rotation symmetry, e.g., spin-orbit interactions.

To demonstrate the fragileness of the Majorana arcs with
|w1D| = 2, in Fig. 6 we display the field-orientation and ϕ

dependence of the surface Majorana arcs in the cyclic p-wave
state. We notice that a magnetic field along the [110] mirror
reflection plane maintains the P2 symmetry because the mirror
reflection of the field, H 	→ −H , can be compensated by
the TRS. When the applied field is misoriented from the
[110] mirror plane, it explicitly breaks the P2 symmetry.
It is seen from Fig. 6(a) that the P2 symmetric field does
not alter the structure of surface Majorana arcs, while the
|w1D| = 2 segment of the surface Majorana arcs disappears
in the presence of the P2 symmetry-breaking field [Fig. 6(b)].
This implies that the surface Majorana arc with |w1D| = 2
is not characterized by the Chern number and protected by
solely the P2 symmetry. The fragileness of the Majorana arc
with |w1D| = 2 is attributed to the Ising-like anisotropy of the
zero-energy states solely protected by w1D [38,42,43,48–52].

For comparison, in Fig. 7, we show the momentum resolved
surface density of states, NS(kx,ky,E = 0) in the cyclic d-wave
state with the gap function in Eq. (14). The Fermi arc structure
was discussed in Ref. [34] in terms of the Andreev bound states
with the π -phase shift. In contrast to Fig. 4, the Fermi arc
characterized by |w1D| = 2 disappears in the cyclic d-wave
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0.5

0

-0.5

-1.0
1.00.50-0.5-1.0

1.0

0.5

0

-0.5

-1.0

1.00.50-0.5-1.0

FIG. 7. NS(kx,ky,E = 0) in the cyclic d-wave state:
(ϕ/π,ϑ/π ) = (0.25,0.1), (0.25,0.2), (0.25,ϑ111), and (0.25,0.4).

case for ϑ > ϑ111. All Fermi arcs connecting the Weyl points
are characterized solely by a nontrivial Chern number.

C. Van Hove singularities in the surface bound states

In Fig. 8, we display the angle-resolved surface density
of states, NS(kx,ky,E) defined in Eq. (25), in cyclic p-wave
states for different surface orientations. The gapless linear
dispersion appears at kx = ky = 0, which reflects the nontrivial
topological invariant ws

1D = 2 in Eq. (37). As mentioned
above, the topological invariant is attributed to the pseudo
TRS associated with a spin rotation. Hence, although the
zero-energy state survives for arbitrary misorientation angle
ϑ , it may be sensitive to perturbations with breaking the
symmetry, such as spin-orbit coupling.

It is seen from Fig. 8 that there is the anisotropic gapless
cone around kx = ky = 0. The dispersion along the antin-
odal direction (kπ/4) is linear, while along the nodal direc-
tion (kx) it is merged to the continuum states at the point
node (kx/kF,ky/kF) = (

√
2/3,0) and possesses the almost flat

0 1.00.50.5

0

-0.5

0.5

1.0

-1.0
1.0 0 1.00.50.5

FIG. 8. Angle-resolved surface density of states in cyclic p-wave
states for (ϕ,ϑ) = (π/4,0) (a) and (π/4,π/5) (b). k̄x and kπ/4 stand
for the nodal direction and the antinodal direction in the P2 symmetric
plane [see Fig. 3(b)], respectively.
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region at finite energies around E/� ≈ 0.2 in Fig. 8(a). As
the surface orientation angle ϑ is deviated from ϑ = 0, the
Majorana Fermi arcs develop along kx and the flat region
disappears. The appearance of the flat region in the dispersion
results in van Hove singularities in the surface density of states,
while the topologically protected Majorana arcs lead to a sharp
peak of the surface density of states at E = 0. This implies the
evolution of the surface density of states from the split peak
structure at E/� ≈ ±0.2 to the single peak structure at E = 0
when ϑ approaches ϑ111.

IV. TUNNELING CONDUCTANCE IN U1−xThxBe13

SUPERCONDUCTING JUNCTIONS

Lastly, using the Blonder-Tinkham-Klapwijk (BTK) the-
ory [53], we calculate tunneling conductance spectra in
U1−xThxBe13 superconducting junctions. For the gap symme-
try of U1−xThxBe13, there are two competitive scenarios—
the degenerate Eu scenario [26] and the accidental scenario
[21,33]. In the accidental scenario, the order parameter is
constructed from two different representations of the Oh

symmetry. Based on the numerical calculation of tunneling
conductance for both the scenarios, we discuss how the
tunneling spectra capture a hallmark of topologically protected
Majorana arcs in the nonunitary cyclic state.

The BTK theory was generalized to nonunitary supercon-
ductors [24,54]. Following [24,54], we consider a junction sys-
tem composed of a normal metal (z < 0) and a superconductor
(z > 0), and the insulating interface at z = 0 is modeled as a
δ-function potential of height H . We here consider standard
scattering and transmission processes of electrons injected
from the metal side [55]. We suppose that an electron is injected
into the superconductor from the − ẑ direction with momentum
k and spin s =↑ , ↓, where kz > 0. At the interface, the
electron may be reflected as a hole with momentum −k or
as an electron with k = k − 2 ẑ(k · ẑ). The former represents
the Andreev reflection, while the latter is the normal reflection.
The wave function for a spin-s incident electron in the normal
side is given by the four-component spinor as

ψN
s (r) = eik·r

⎛
⎜⎝

1
0

as↑(E)
as↓(E)

⎞
⎟⎠ + eik·r

⎛
⎜⎝

bs↑(E)
bs↓(E)

0
0

⎞
⎟⎠. (38)

The coefficients, a and b, represent the reflection coefficients
of the Andreev and normal reflections, respectively.

It may also be transmitted into the superconductor (z > 0)
as an “electronlike” quasiparticle with momentum k′ (k′

z > 0)
or as a “holelike” quasiparticle with −k′ = −k + 2 ẑ(k′ · ẑ).
Continuity of the wave function at the interface requires kx =
k′
x , ky = k′

y , and kz sin θ = k′
z sin θ ′, where θ and θ ′ are the

polar angles on either side of the barrier. For simplicity, we
will assume kz ≈ k′

z. In the superconductor side, therefore, the
general form of the wave function for transmitted quasiparti-
cles is

ψS
s (r) = eik·r [c+ϕ

p
+(k) + c−ϕ

p
−(k)]

+ e−ik·r [d+ϕh
+(−k) + d−ϕh

−(−k)]. (39)

The coefficients, c and d, represent the transmission coefficient
of the electronlike quasiparticle and that of the holelike
quasiparticle, respectively. In superconducting states, the BdG
Hamiltonian is diagonalized by using the Bogoliubov transfor-
mation matrix, U (k) ≡ [ϕp

+(k),ϕp
−(k),C ϕ

p
+(−k),C ϕ

p
−(−k)],

as

U †(k)H (k)U (k) =

⎛
⎜⎝

E+
E−

−E+
−E−

⎞
⎟⎠. (40)

Therefore, the wave functions,

[ϕp
+,ϕ

p
−] =

(
û(k)

v̂∗(−k)

)
, (41)

stand for the eigenfunctions of the upper/lower energy
branches E±(k).

For an incident electron beam with an incident energy E,
the tunneling conductance is

σ S(E) =
∑

s

〈
σ S

s (E,k̂)
〉
k̂, (42)

where σ S
s (E,k̂) is the angle-resolved tunneling conductance

of incident electrons with spin s and incident wave vector k,
given by

σ S
s (E,k̂) = 1 +

∑
s ′

[|ass ′ (E,k̂)|2 − |bss ′ (E,k̂)|2]. (43)

The coefficients, a, b, c, and d, are determined so as to follow
the boundary conditions at the interface (z = 0):

ψN(x,y,z → 0−) = ψS(x,y,z → 0+), (44)

∂ψN(r)

∂z

∣∣∣∣
z→0

− ∂ψS(r)

∂z

∣∣∣∣
z→0

= 2mHψ(x,y,0)

h̄2 . (45)

Analytic expressions for the conductance coefficients are
obtained by solving the continuity conditions as [54]

as ′s = k2
z [M−1]ss ′ , (46)

bs ′s = −ikz[(Zv̂û∗−1 + Y ûv̂∗−1)M−1]ss ′ − δss ′ (47)

where we have introduced Z ≡ mH/h̄2kF, Y = Z + ikz, M =
Z2v̂û∗−1 + (Z2 + k2

z )ûv̂∗−1, and used abbreviation û ≡ û(k),
v̂ ≡ v̂(−k), û∗ ≡ û∗(k), and v̂∗ ≡ v̂(−k).

The conductance coefficients, ass ′ and bss ′ , are functions
of the barrier potential Z, the bias voltage E, and the gap
function. The bias voltage is the energy eigenvalue of the solu-
tion. In unitary superconductors it appears in the expressions
ε =

√
E2 − |d(k)|2 for E2 > |d(k)|2 and ε = i

√
|d(k)|2 − E2

for E2 < |d(k)|2. The transformation matrices, û(E,k̂) and
v̂(E,k̂), are obtained by replacing E(k) by the incident energy
(bias) E, and û∗ and v̂∗ are evaluated by complex conjugating
all numbers except ε(k). For the nonunitary case, the energy
E+ (E−) in the first and third (second and fourth) terms in
Eq. (39) is replaced by the incident energy E. To this end, the
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FIG. 9. Top: Surface density of states for the cyclic p-wave state for various orientation angles: (ϕ/π,ϑ/π ) = (0.25,0.1), (0.25,0.2),
(0.25,ϑ111), and (0.25,0.4). The solid (dashed) curves show the surface (bulk) density of states. Bottom: Normalized tunneling conductance
σ S/σ N for varying the barrier potential Z.

matrices for the nonunitary case are given by

û(E,k) = Q

⎧⎨
⎩

√
E +

√
E2 − |d|2 − |q|2

E
(|q| + q · σ )(σ0 + σz) +

√
E +

√
E2 − |d|2 + |q|2

E
(|q| − q · σ )(σ0 − σz)

⎫⎬
⎭, (48)

v̂(E,k) = −i
Q√
E

⎧⎨
⎩ [|q|d − i(q × q)] · σσy√

E +
√

E2 − |d|2 − |q|2
(σ0 + σz) + [|q|d + i(d × q)] · σσy√

E +
√

E2 − |d|2 + |q|2
(σ0 − σz)

⎫⎬
⎭, (49)

with Q(k) ≡ [8|q|(|q| + qz)]−1/2 and q ≡ id × d∗.

A. Cyclic state

We first display the surface density of states in Fig. 9, which
is obtained by averaging the angle-resolved surface density of
states over the Fermi surface:

NS(E) = 〈N (k̂,z = 0; E)〉k̂. (50)

In Fig. 9, we also present the density of states in bulk cyclic
states. The bulk density of states possesses two characteristic
energies, �− and �+, denoted by broken arrows. The former
(latter) corresponds to the maximal energy gap in the E−
(E+) quasiparticle branch. The inner gap within |E| � 0.3�

represents the point nodal structure of E−(k), while the
coherence peak at |E| = � is attributed to the full gap structure
of E+(k).

The surface density of states for ϑ/π = 0.1 has two peaks
at E ≈ 0.2� which are the van Hove singularities associated

with the bent dispersion of the gapless surface bound states
along the nodal direction [see Fig. 8(a)]. In consistent with
the change of the surface dispersion, the split peaks shift to
E = 0 with increasing ϑ and merge to the zero-energy peak.
For the [111] surface, the surface density of states has a single
pronounced peak at E = 0.

The bottom panels in Fig. 9 show the normalized tunneling
conductance σ S(E)/σ N for cyclic p-wave states for various ϑ .
It is clearly seen that the results with a high potential barrier
Z, corresponding to a low transparent interface, reveal the
evolution of the surface density of states from the split peak
originating in the van Hove singularities to the sharp zero-
energy peak associated with Majorana arcs. The pronounced
zero-bias conductance peak is attributed to the evolution of
the Majorana arcs and is protected by the P2 symmetry and
Chern number. Hence, it is robust against the Rashba spin-orbit
coupling on the surface. In the case of low Z, corresponding
to the high transparency, the peak structure around zero bias is
smeared out and the evolution of surface states is not detectable.
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FIG. 10. Normalized tunneling conductance σ S/σ N in the uniax-
ial nematic state (a,b) and biaxial nematic state (c,d) for varying the
barrier potential Z: (a,c) the [001] surface and (b,d) the [110] surface.

B. Uniaxial and biaxial nematic states

The degenerate scenario which was recently proposed in
Ref. [26] explains the multiple superconducting phases of
U1−xThxBe13 in the basis of the Eu irreducible representation
of the Oh symmetry. The cyclic state is consistent with
the broken time-reversal symmetry observed in the lower T

phase within 0.019 � x � 0.045, while the uniaxial (biaxial)
nematic state occupies the phase in x � 0.019 (the higher T

phase within 0.019 � x � 0.045).
In Fig. 10, therefore, we plot the normalized tunneling

conductance in uniaxial and biaxial nematic states. The order
parameters of the uniaxial and (D4) biaxial nematic states
are obtained from Eq. (13) with (η1,η2) = (1,0) and (0,1),
respectively. For (1,0), the quasiparticle gap is uniaxially
elongated along the c direction and possesses two distinct
gaps, �max = � along c and �min = �/2 along â and b̂. In
contrast to the Weyl points in the cyclic state, two point nodes
at k = ±kF ĉ in the biaxial nematic state are protected by the
mirror reflection plane [56].

The nematic states are categorized to the three-dimensional
DIII topological class and the 4×4 matrix, H (k), is subject
to Eq. (6) with C 2 =+1 and Eq. (7) with T 2 =−1. Hence,
H (k) is parametrized by the four-dimensional spinor m̂=
(m̂1,m̂2,m̂3,m̂4)∈S3, as H (k)=|E(k)|∑4

j=1 m̂j (k)γj , where
γj denotes the Dirac γ matrices which obey {γi,γj } = 2δij .
This indicates that m̂(k) is a projector that maps k∈S3 onto the
spinor space m̂∈S3. The topological invariant relevant to the
fundamental group,π3(S3)=Z, is the winding number [42,43],

w3D =
∫

d3k
12π3

εμνηεijklm̂i∂kμ
m̂j ∂kν

m̂k∂kη
m̂l, (51)

which is calculated as w3D = −1 for r �=−1 (μ,ν,η=x,y,z

and i,j,k,l=1, · · · ,4). For the D4 biaxial nematic state at
r =−1, the point nodes can be removed by adding a small
perturbation that unchanges the symmetries. As a result, the
winding number can be calculated as w3D = −1 for the D4

biaxial nematic state. As pointed out in Ref. [36], however,
an ambiguity in choosing the perturbation makes w3D gauge
dependent. Only the parity of w3D, ν ≡ (−1)w3D ∈ {−1,+1},
remains gauge invariant. Hence, the nontrivial Z2 number ν =
−1 indicates that the D4 biaxial nematic state is topological.

Owing to the nontrivial Z and Z2 invariants, both the
uniaxial and biaxial nematic states in cubic superconductors
are accompanied by a single gapless Majorana cone and topo-
logically protected Fermi arc, respectively. Solving the An-
dreev equation H (kx,ky,−i∂z)ϕkx,ky

(z) = E(kx,ky)ϕkx,ky
(z)

with the boundary condition ϕ(z) = 0, one obtains the disper-
sion of the gapless surface state for the uniaxial/biaxial nematic
state as [14,57]

Esurf (kx,ky) =
√

v2
xk

2
x + v2

yk
2
y, (52)

where (kx,ky) denotes the momentum parallel to the surface.
For the uniaxial nematic state, the fully isotropic Majorana
cone with the velocities vx = vy = �min/kF appears on the
[001] surface, while the gapless states show the anisotropic
dispersion with vx = �max/kF and vy = �min/kF in the case
of the [100] surface. The Majorana nature and magnetic
anisotropy of the gapless surface states were discussed in
Ref. [14].

In Figs. 10(a) and 10(b), we plot the tunneling conductance
in the uniaxial nematic state. The conductance profiles are
essentially different from those in the Balian-Werthamer (BW)
state, i.e., the A1u state in Oh crystals, having the isotropic
Majorana cone [24], and reveals the anisotropy of the disper-
sion of surface Majorana fermions. The isotropic BW state
is accompanied by the isotropic cone with vx = vy = � and
the surface density of states is linear on |E| for |E| � �.
The tunneling conductance for large Z shows the M-shaped
broad double-hump structure within |E| � � [24], as shown in
Fig. 11 (β = 0). In contrast, when the long axis of the elongated
gap in the uniaxial nematic state is normal to the surface,
i.e., the [001] surface, the gapless surface states are confined
to |E| < �min = �max/2. This gives rise to the squeezing of

 00000000000000
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FIG. 11. Normalized tunneling conductance σ S/σ N in the
nonunitary A1u + iA2u state: (a) the [001] surface and (b) the [110]
surface. In all data, we fix Z = 5.0. The inset shows the gap structures
in the case of β = π/5.
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the M-shaped double-hump peak of σS(E)/σN within |E| <

�min as seen in Fig. 10(a). For the [110] surface, however,
the anisotropic dispersion implies that the surface states are
distributed to the wide range of the energy within |E| < �max.
As shown in Fig. 10(b), this broadens the σS(E)/σN and the
squeezed double-hump peak disappears.

For the biaxial nematic state, we set the nodal direction to
be normal to the [001] surface. In Fig. 10(c), the tunneling
conductance spectra on the [001] surface show the absence
of the characteristic surface structure. The [110] surface is
parallel to the nodal direction. The surface states are dis-
persionless along the nodal direction (kx) and linear on ky ,
i.e., Esurf (kx,ky) = �ky/kF for the up spin and Esurf (kx,ky) =
−�ky/kF for the down spin. The resulting spectra in Fig. 10(d)
show the domelike peak without a pronounced zero-bias peak,
which is similar to the tunneling conductance spectra for chiral
px + ipy superconductors [58].

C. Accidental scenario

Another scenario for the superconducting gap of
UxTh1−xBe13 is the accidental scenario [21,33]. This sce-
nario assumes that two different one-dimensional irreducible
representations of the Oh group are accidentally nearly de-
generate, and the d vector is obtained as a combination of
two representations. Although huge numbers of combinations
are possible, the recent experiment in Ref. [26] can narrow
down the possible gap symmetry. Following Ref. [26], we
here consider the accidental degeneracy of the p-wave A1u

and f -wave A2u states,

d(k) = �[cos β�A1u + i sin β�A2u], (53)

where β ∈ [0,π/2]. The basis functions are given by �A1u =
âk̂a + b̂k̂b + ĉk̂c and �A2u = âk̂a(k̂2

b − k̂2
c ) + b̂k̂b(k̂2

c − k̂2
a) +

ĉk̂c(k̂2
a − k̂2

b). The limit of β = 0 corresponds to the pure A1u

state with the nodeless gap which is consistent with the full
gap behavior in pure UBe13 (x = 0). For β ∈ (0,π/2), the
nonunitary chiral A1u ± iA2u state can explain both the broken
time-reversal symmetry and full gap behavior in 0 < T < Tc2

at x ∼ 0.03 [26], where β remains as the fitting parameter.
The pure f -wave state with β = π/2 occupies the higher T

phase in 0.019 � x � 0.045. Although the A1u + iA2u state
is nodeless as shown in the inset of Fig. 11, the f -wave A2u

state has point nodes along the [100] and [111] directions.
Figure 11 shows the tunneling conductance spectra in the

nonunitary A1u + iA2u state with various β ∈ [0,π/2] for
the [001] surface and the [110] surface (b). The β = 0 case
corresponds to the isotropic BW state, which shows the broad
M-shaped double-hump structure irrespective of the surface
orientation. For β = π/2, the spectrum on the [001] surface
shows the E2 dependence within |E| � �, which reveals the
point node along the [001] direction. The tunneling spectra for
all β ∈ [0,π/2] do not have any pronounced peak structure in
the vicinity of the zero energy.

V. CONCLUDING REMARKS

In this paper, we have discussed the symmetry and topology
of surface states in superconductors with nonunitary cyclic
pairing. The low-energy physics is governed by itinerant
Majorana fermions in the bulk, while gapless surface states

show the evolution from a single cone to zero-energy arcs
under rotation of surface orientation. We have clarified that
the gapless Majorana cone is protected solely by accidental
spin rotation symmetry, while the Majorana arcs are protected
by two different topological invariants: the first Chern number
originating in eight Weyl points in the [111] direction and one-
dimensional winding number associated with the combined
symmetry of time reversal and mirror reflection. Hence, the
gapless cone is fragile against the spin-orbit interaction.

Using the BTK theory, we have calculated tunneling spec-
tra in the nonunitary cyclic state, the uniaxial and biaxial
nematic states, and the A1u + iA2u state for various surface
orientations. By changing the surface orientation from the
[001] direction to the [110] direction, in the nonunitary cyclic
state, the tunneling conductance with a high barrier potential
shows the evolution from the sharp double peak structure to a
pronounced zero-bias conductance peak. The former reflects
the van Hove singularities in the dispersion of the Majorana
cone and the latter is attributed to the existence of the zero-
energy surface Majorana arcs. Such a pronounced zero-bias
conductance peak cannot be observed in the A1u + iA2u rep-
resentations, irrespective of the surface orientation. The cyclic
(A1u + iA2u) state is the candidate for the broken time-reversal
symmetry state of U1−xThxBe13 (0.019 � x � 0.045) in the
degenerate Eu (accidental) scenario [21,26,33]. Hence, the
tunneling spectroscopy can clearly capture the topologically
protected surface states in nonunitary cyclic superconductors.

It has recently been discussed that nonequilibrium fluc-
tuation phenomena give a fingerprint of the inherent feature
of an isolated Majorana zero mode [59]. The study on the
nonequilibrium physics of dispersive Majorana fermions might
be another direction for their hallmark.

Lastly, we would like to mention that the pronounced
zero-bias conductance peak was observed in the UBe13

superconductor-normal metal (Au) junction [60]. Neither the
degenerate scenario nor the accidental scenario explains the
characteristic spectra in the x = 0 case. The BW (A1u) state
in the accidental scenario shows the M-shaped double-hump
conductance peak regardless of the surface orientation, while
the enhancement or suppression of the M-shaped peak is
realized in the uniaxial nematic state in the degenerate scenario.
The discrepancy might be attributed to the polycrystal of
the pure UBe13, where the tip radii of the Au tip are much
larger than the average grain size. Our main outcomes may
be useful for further tunneling spectroscopy measurements
in high-quality single crystals. The discrepancy may also
originate in the characteristic electrons of the normal states.
For instance, it has been shown that the intertwining of surface
Majorana fermions with surface states proper to topological
insulators gives rise to the transition of the dispersion of the
surface state and a pronounced zero-bias conductance peak
may appear even in a fully gapped topological state [61–64].
Hence, the discrepancy may be resolved by taking into account
the more realistic information of the material such as the
topology of the Fermi surface [65,66] and so on.
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APPENDIX: QUASICLASSICAL THEORY

The quasiclassical propagator g ≡ g(k̂,r; εn) is governed
by the transportlike equation. Following the procedure in
Ref. [47], one obtains the quasiclassical transport equation
from the Gor’kov equation as

[iεnτz − v(k̂,r) − �(k̂,r),g] + ivF · ∇g = 0. (A1)

The Fermi velocity is defined as vF(k̂)=∂ε0(k)/∂k|k=kF k̂.
The external potential, v(k̂,r), is given with a magnetic
Zeeman field as v(k̂,r) = − 1

1+F a
0

1
2γHμσμ ⊕ σ T

μ , where F a
0

is the Fermi-liquid parameter. We here omit the self-energies
associated with the Fermi-liquid corrections. The off-diagonal
component of the quasiclassical self-energies is given as

�(k̂,r) =
(

0 iσ · d(k̂,r)σy

iσyσ · d∗(k̂,r) 0

)
. (A2)

The quasiclassical transport equation (A1) is a first-order
ordinary differential equation along a trajectory in the direction
of vF(k̂). To obtain a unique solution for g, Eq. (A1) must be
supplemented by the normalization condition:

[g(k̂,r; εn)]2 = −π2. (A3)

The order parameters for the Eu representation are determined
by solving the gap equation d(k̂,r) = ∑

m=1,2 ηm(r)�Eu

m (k̂).
The self-consistent d-vector field is obtained from the anoma-
lous propagator by solving the gap equation, dμ(k̂,r) =
T

∑
n〈Vμν(k̂,k′)fμ(k̂

′
,r; εn)〉k̂

′ . We use the following abbre-
viation for the average over the Fermi surface, 〈· · · 〉k̂ =

1
NF

∫
d k̂

(2π)3|vF(k̂)| · · · , and
∑

n denotes the Matsubara sum with
the cutoff energy Ec. Assuming the separable form of the pair-
ing interaction, Vμν(k̂,k̂

′
) = −∑

m gm
m,μ(k̂)
∗
m,ν(k̂

′
), one

obtains the self-consistent equation for ηm(r) as

ηm(r) = −gmT
∑

n

〈�∗
m(k̂) · f (k̂,r; εn)〉. (A4)

The coupling constant (gm > 0) is determined by the tran-
sition temperature T (m)

c through the linearized gap equa-
tion at the superconducting critical temperature T = T (m)

c ,
g−1

m = 1
3

∑
|εn|<εc

1
|(2n+1)| . For simplicity, we set T (m=1)

c =
T (m=2)

c = Tc.
The numerical integration of the quasiclassical equation

with the normalization condition can be simplified by intro-
ducing a parametrization for the propagator [67–69]

g = −iπN

(
1 + γ γ̄ 2γ

−2γ̄ −1 − γ̄ γ

)
, (A5)

where N ≡ (1 − γ γ̄ )−1 ⊕ (1 − γ̄ γ )−1. This parametrization
satisfies the normalization condition by construction and
reduces the number of independent components. By using
the parametrization, Eq. (A1) is generally mapped onto the
Riccati-type differential equation

ivF · ∇γ − γ �̄γ + (iεn − ν)γ − γ (−iεn − ν̄) + � = 0,

(A6)

ivF · ∇γ̄ − γ̄ �γ̄ + (−iεn − ν̄)γ̄ − γ̄ (iεn − ν) + �̄ = 0,

(A7)

with � ≡ iσ · dσy and �̄ ≡ iσyσ · d. The Riccati amplitudes
obey the relation γ̄ (k̂,r; εn) = γ ∗(−k̂,r; εn).

For quasiparticle momentum k̂, the Riccati equations for
γ (k̂) and γ̄ (k̂) are numerically stable along the quasiclassical
forward (k̂) and backward (−k̂) trajectories with an initial
value, respectively. We perform the numerical integration of
Eq. (A7) with the fourth-order Runge-Kutta method from the
homogenous solution at z = ∞. For the nonunitary state with
q ≡ id × d∗ �= 0, the homogeneous solution with constant d,
γμ ≡ 1

2 tr(−iσyσμγ ), is given by

γμ(k̂,z = ∞; ε̃) = − |d(k̂)|4
|d(k̂) · d(k̂)|2

× dμ(k̂) + i[d(k̂) × q(k̂)]μ/|d(k̂)|
ε̃ + is

√
|d(k̂)|2 − ε̃2

,

(A8)

where s = +1 for Imε̃ > 0 and s = −1 for Imε̃ < 0. We
here set ε̃ = iεn for the Matsubara propagator γ (εn) and ε̃ =
E ± i0+ for the retarded and advanced propagators γ R,A(E) =
γ (εn → −iE + 0+). We impose the boundary condition on the
4×4 quasiclassical propagator g(k̂,r; εn) as

γ (k̂,rsurf ; εn) = γ (k̂,rsurf ; εn), (A9)

and γ̄ as well, which represent the specular scattering of
quasiparticles on the surface.
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