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Global entanglement and quantum phase transitions in the transverse XY Heisenberg chain
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We provide a study of various quantum phase transitions occurring in the XY Heisenberg chain in a transverse
magnetic field using the Meyer-Wallach (MW) measure of (global) entanglement. Such a measure, while being
readily evaluated, is a multipartite measure of entanglement as opposed to more commonly used bipartite measures.
Consequently, we obtain analytic expression of the measure for finite-size systems and show that it can be used
to obtain critical exponents via finite-size scaling with great accuracy for the Ising universality class. We also
calculate an analytic expression for the isotropic (XX) model and show that global entanglement can precisely
identify the level-crossing points. The critical exponent for the isotropic transition is obtained exactly from an
analytic expression for global entanglement in the thermodynamic limit. Next, the general behavior of the measure
is calculated in the thermodynamic limit considering the important role of symmetries for this limit. The so-called
oscillatory transition in the ferromagnetic regime can only be characterized by the thermodynamic limit where
global entanglement is shown to be zero on the transition curve. Finally, the anisotropic transition is explored where
it is shown that global entanglement exhibits an interesting behavior in the finite-size limit. In the thermodynamic
limit, we show that global entanglement shows a cusp singularity across the Ising and anisotropic transition, while
showing non-analytic behavior at the XX multicritical point. It is concluded that global entanglement, despite its
relative simplicity, can be used to identify all the rich structure of the ground-state Heisenberg chain.
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I. INTRODUCTION

Quantum phase transition (QPT) occurs as a result of a
sudden change in the ground state as a system’s parameter (e.g.,
external field) is slowly changed [1]. Quantum fluctuations,
instead of thermal fluctuations, drive such transitions, i.e., T ≈
0. This sudden change is accompanied by interesting behavior
on the macroscopic level. QPT has attracted intense attention in
the field of condensed-matter physics. The prominent exam-
ples are quantum Hall systems [2], superconductor-insulator
transitions [3], and heavy-fermion compounds [4]. It is not
unexpected that such interesting quantum systems should be
able to be characterized using tools of quantum information
theory [5]. In fact, in recent years, various entanglement
measures have been used to study various properties of QPT in
strongly interacting quantum systems. This type of approach
is interesting because it uses a pure quantum mechanical
measure in order to identify and study QPT. Furthermore,
since entanglement can be used as a resource for quantum
technology, QPT can provide a fertile playground as criticality
implies highly correlated systems, which implies maximal
entanglement.

Entanglement as an indicator of QPT was initially in-
vestigated in Ref. [6], where concurrence as a bipartite en-
tanglement measure was used to extract correlation length
exponent in the transverse XY model using a finite-size scaling
method. Wei et al. [7], on the other hand, used a mulitipartite
entanglement measure based on the maximum overlap of a
given state with an unentangled state and explicitly extracted
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the correlation length exponent for Ising transition in XY
and XX models as well as detected the classical transition
line over which the entanglement measure was shown to be
zero. The authors in Ref. [8] have used an entanglement
measure obtained by taking an average over entanglement
between various bipartite divisions of the isotropic XY chain
to detect level crossing points. The standard deviation of
these bipartite entanglements determines how many moments
must be calculated to get the proper precision. Moreover,
concurrence has been used as a measure that is able to detect
the anisotropic phase transition in the transverse XY model as
it is shown to be maximum at the corresponding critical point
for finite-size systems [9].

There are many studies which use various measures (or
witnesses) of entanglement (or quantum correlations) in order
to identify and characterize quantum critical points. Most such
studies consider the more common bipartite measures, which
do not seem appropriate for many-body, highly correlated
systems. On the other hand, more appropriate multipartite
measures are usually difficult to define and and/or to calculate.
In this work, we propose to study various QPTs in the XY chain
using a multipartite measure which is both simple to define and
easy to study. Furthermore, we apply this simple measure to
all critical aspects of the XY chain, instead of focusing on a
particular transition in the model.

Entanglement as a function of control parameter, its scaling,
and its nonanalytic behavior are key issues when studying
quantum critical phenomena. While early studies focused on
bipartite measures of entanglement [6,10–12], it has recently
been argued that a better characterization is provided by
multipartite measures of entanglement [7,13]. This is partic-
ularly important since criticality is achieved by long-range
correlations in short-range interacting systems. Such long-

2469-9950/2018/97(2)/024434(8) 024434-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.024434&domain=pdf&date_stamp=2018-01-30
https://doi.org/10.1103/PhysRevB.97.024434


ROYA RADGOHAR AND AFSHIN MONTAKHAB PHYSICAL REVIEW B 97, 024434 (2018)

range correlations are argued to be much better character-
ized by global measures. We therefore propose to study the
archetypical XY Heisenberg chain of a spin-1/2 model using
the Meyer-Wallach [14] measure of global entanglement. The
XY chain in the presence of transverse field plays a central
role in condensed matter theory (e.g., quantum Hall effect
[15]) and is a good candidate to connect small quantum
processors in quantum computers [16] and to transmit informa-
tion between long-distance sites in quantum communication
protocols [17,18].

While being relatively simple, the model exhibits a rich
phase diagram, including a quantum Ising critical transition
line, an anisotropic transition line, and the intersection of these
two lines which provides a unique (XX) multicritical point. The
model also exhibits a (classical) transition in the ferromagnetic
regime known as the oscillating transition. Most studies have
focused on the Ising critical line which belongs to Ising
universality class. Here, taking advantage of analytic solutions
of the model, we provide expressions for global entanglement.
We study all the above transitions using the finite-size limit
as well as the infinite-size (thermodynamic) limit. We show
that global entanglement is capable of providing important
characterizations for each transition considered, including
scaling behavior, level crossing, and critical exponents. Our
results provide further evidence that a multipartite measure
of entanglement could act as a thermodynamic parameter in
quantum many-body systems.

The paper is organized as follows: In the next section, we
discuss the XY model and its phase diagram. We also provide
a brief introduction to global entanglement measure which
we use throughout our study. In Sec. III, we first provide
an analytical expression of global entanglement for the XY
model and extract the correlation length exponent by applying
finite-size scaling for the Ising transition. We then calculate
the measure for the XX model, determining the level-crossing
points as well as obtaining the critical exponent. Next, global
entanglement behavior in the thermodynamic limit and the
(classical) oscillating line are considered in Sec. IV. In Sec. V,
we consider the behavior of global entanglement near the
anisotropic phase transition line. We close by summarizing
our results and providing some commentary.

II. MODEL AND MEASURE

The system under consideration is a family of models
consisting of N spin-1/2 (qubits) arranged in a chain interact-
ing through nearest-neighbor coupling and transverse external
field in the z direction. The Hamiltonian of the system is given
by

H =
N−1∑
i=0

−J

(
1 + r

2
σx

i σ x
i+1 + 1 − r

2
σ

y

i σ
y

i+1

)
− hσ z

i , (1)

where σ
μ

i (μ = x,y,z) are the Pauli matrices, J is the ex-
change coupling (J = 1 in this paper), h is the strength
of the magnetic field, and r measures anisotropy degree of
spin-spin interactions in the x-y plane which typically varies
from 0 (isotropic model) to 1 (Ising model). Moreover, we
impose periodic boundary conditions (PBC) σx

N = σx
0 and

σ
y

N = σ
y

0 . This model describes one of the few exactly solvable
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FIG. 1. Phase diagram of the one-dimensional (1D) XY model.
Green solid lines h = 1 (Ising) and r = 0 (anisotropic) are critical
lines, and their intersection is the multicritical point. Blue dashed
curve separates the oscillatory part of the ferromagnetic phase.

quantum many-body systems, and its various thermodynamic
properties have been extensively investigated in the literature
dating back to 1961. The free-field Hamiltonian was originally
introduced by Lieb et al. in a seminal paper [19]. In the paper,
the authors diagonalized XY Hamiltonian by exploiting the
Jordan-Wigner transformation and mapping spin-1/2 systems
into spinless fermions, and exactly calculated its spectrum and
eigenstates as well as the instantaneous correlation functions.
Niemeijer [20] added a constant transverse magnetic field to
the XY Hamiltonian and calculated the z magnetization in an
arbitrary field and temperature as well as z-correlation func-
tions. He also investigated the effect of a small oscillating field
superimposed on the constant field and approximately found
the time evolution of the magnetization in Ref. [21]. Pfeuty
[22] considered a special case of the XY model as r = 1, Ising
model, with constant transverse field and calculated correlation
functions in x,y, and z directions as well as the x and z

components of magnetization. In a series of papers, McCoy and
his coworkers have intensively investigated the nonequilibrium
properties of XY model in the presence of a time-dependent
magnetic field in Refs. [23,24] and calculated correlation
functions in the case of constant field in Refs. [25,26].

The zero-temperature phase diagram of the model is
schematically shown in Fig. 1. In a free-field XY chain (h = 0),
the system exhibits ferromagnetic order with nonzero mag-
netization originating from the exchange coupling between
nearest-neighbor spins. Adding the external field tends to align
the spins in the z direction such that the system undergoes a
ferromagnet to paramagnet transition at h = 1. The green solid
line h = 1 represents the (Ising) critical points separating the
regimes of ferromagnetic and paramagnetic phase. The other
critical green solid line r = 0 (isotropic model) is the boundary
between the ferromagnetic phases in the x phase (upper half-
plane) and y phase (lower half-plane). The intersection of these
two lines (r = 0 and h = 1) is the XX critical point with
a different universality class from that of Ising universality.
The ferromagnetic phase is divided into two parts by the
dashed blue circle: Outside the circle, the correlation functions
decay exponentially, while they have oscillatory tails inside
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[23]. The ground state on the dashed blue circle (called the
classical line) has a simple direct product form of single-qubit
states, implying zero two-point functions and extremely short
correlation length [27].

Quite generally, correlations are expected to reach a maxi-
mum as long-range correlations dominate system’s behavior
at the critical point. QPT occurs when small variation in
the parameters of Hamiltonian fundamentally changes the
symmetry of the ground state, resulting in the actual level
crossing or the limiting case of avoided level crossing between
the ground and excited state [1]. At the critical point, the length
scale characterizing the exponential decay or the crossover
of correlation functions diverges as ξ ∼ |h − hc|−ν . On the
other hand, entanglement, as a purely quantum mechanical
property, has a close relation with quantum correlations and
can be exploited as an indicator of quantum phase transition
[6,7]. However, bipartite measures of entanglement between
individual qubits typically decay fast as a function of distance
even near the critical point [6,10–12]. It is therefore expected
that a more global (multipartite) measure of entanglement
would provide a more appropriate measure to study criticality
in QPT.

In this paper, we use global entanglement measure intro-
duced by Meyer and Wallach [14]. The measure is a function
of N -qubit pure states of |ψ〉 ∈ (C2)⊗N as

Eg(|ψ〉) = 4

N

N∑
k=1

D(|ũk〉,|ṽk〉), (2)

where the non-normalized vectors |ũk〉 and |ṽk〉 are the projec-
tions of the state |ψ〉 onto the kth-qubit subspaces

|ψ〉 = |0〉 ⊗ |ũk〉 + |1〉 ⊗ |ṽk〉 (3)

and D is the norm squared of the wedge product of two vectors
|ũk〉 and |ṽk〉 as

D(|ũk〉,|ṽk〉) =
∑
i<j

∣∣ũk
i ṽ

k
j − ũk

j ṽ
k
i

∣∣2
. (4)

Meyer and Wallach [14] proved that this measure is entangle-
ment monotone in the sense that it is a nonincreasing function
under local operations and classical communications (LOCC).
Using the invariance under local operations, |ψ〉 can be written
in the Schmidt basis over bipartite divisions of the kth qubit
and other qubits, that simplifies Eq. (2) as [28]

Eg = 2

[
1 − 1

N

N−1∑
k=0

tr
(
ρ2

k

)]
, (5)

where ρk is the reduced density matrix for the kth qubit
obtained by tracing over other qubits. Global entanglement
(Eg) has been used to detect quantum critical points [29], and
its scaling properties for the Ising model in various dimensions
have been studied in Ref. [13]. It has also been used to study
decoherence effects in finite-qubit systems [30].

Since the MW measure was unable to distinguish global
and subglobal entanglements (e.g., globally entangled four-
qubit state and product of two two-qubit entangled states
[31]), Scott [32] generalized the MW measure to multiqudit
states of |ψ〉 ∈ (CD)⊗N considering all the possible bipartite

divisions as

Qm(ψ) = Dm

Dm − 1

⎡
⎣1 − m!(N − m)!

N !

∑
|S|=m

tr
(
ρ2

S

)⎤⎦ (6)

in which m = 1,2, . . . ,[N/2] ([k] denotes the integer part of
k) and S is a set of m qubits. Although Qm is able to distinguish
between fully global and subglobal entanglements, its direct
computation is a quite challenging task for realistic models as
it requires all m-site reduced-density matrices. We therefore
propose to study the XY model using Eg to see how much
information one can extract regarding various transitions using
such a measure.

III. ISING QUANTUM PHASE TRANSITION

A. XY model

The transverse XY Heisenberg model has been solved in
Ref. [19] by the Jordan-Wigner transformation which maps
the spin operators σi into the spinless fermionic operators:

σ z
i = 1 − 2c

†
i ci , σ

†
i = (

�j<iσ
z
j

)
ci, (7)

followed by Fourier transformation

ck = 1√
N

N−1∑
j=0

exp

(
−2πikj

N

)
cj (8)

and Bogoliubov transformation

bk = ck cos(θk/2) − ic
†
−k sin(θk/2), (9)

where cos θk = cos(2πk/N)−h

ωk
and

ωk =
√

[h − cos(2πk/N )]2 + r2 sin2(2πk/N ) (10)

are obtained in Ref. [23]. Thus, the Hamiltonian takes the
diagonal form

H =
∑

k

ωk(b†kbk − 1), (11)

where we may neglect the boundary terms for large systems.
We want to obtain an analytical expression for global entangle-
ment of the XY chain in the presence of a traverse magnetic
field. To this end, we expand the reduced density matrix ρi

as [33]

ρi = 1

2

(
q0I +

∑
μ=x,y,z

qμσ
μ

i

)
, (12)

where I is the identity matrix and σ
μ

i (μ = x,y,z) are the
Pauli matrices at the ith qubit. The reality of the Hamiltonian
[Eq. (1)] and its global phase-flip symmetry ([�N−1

i=0 σ z
i ,H ] =

0) implies qx = qy = 0. In addition, the reduced density matrix
is unit trace, so q0 = 1, and the single-particle density matrix
can be written as [33]

ρi = 1
2

(
I + 〈

σ z
i

〉
σ z

i

)
, (13)

where [23]

〈
σ z

i

〉 = − 2

N

N−1
2∑

k=1

cos(2πk/N ) − h√
r2 sin2

(
2πk
N

)+[
h − cos

(
2πk
N

)]2
− 1

N
(14)
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FIG. 2. Global entanglement for a transverse XY chain (r = 0.5)
as a function of Hamiltonian parameter λ = J/h for various system
sizes.

and we consider odd number of qubits. Since we use PBC, the
single-particle density matrix is the same for all the qubits of
chain, and using Eq. (5) we get [13]

Eg = 2
(
1 − trρ2

i

)
. (15)

The global entanglement in this case can be obtained as

Eg = 1 − 〈
σ z

i

〉2
. (16)

We begin our analysis by considering Eg as a function of
λ = J

h
for various system sizes N and fixed value of r = 0.5.

The results are shown in Fig. 2. Eg increases from zero at
λ = 0 (h → ∞), where the ground state of the system is a
product state of spins aligned in the z direction and reaches
its maximal value Eg = 1 with a sharp rise at (the finite-size)
transition point, λm. A better picture arises when one looks at
the derivative of such a function, which displays a divergence at
the critical point in the thermodynamic limit. Figure 3 displays
such information. As the system size grows, the peak of the
derivative approaches the critical point as it diverges in its
value. As indicated in the inset, the divergence is logarithmic,
indicating a slow divergence. However, the convergence to
the critical point is fast as λm approaches the critical point
λc = 1 with |λm − λc| ∼ N−α with relatively large “finite-size
exponent” of α = 3.34. As indicated in the inset, the maximum
value of the derivative dEg/dλ obeys

dEg

dλ
|λm

≈ κ1 ln N (17)

with κ1 = 0.9783.

We next calculate the all-important critical exponent ν using
finite-size scaling of the derivative of Eg . The scaling relation
we use is dEg

dλ
∼ Q[N1/ν(λ − λm)] with Q(x) ∼ ln(x) [34].

As can be seen in Fig. 4, all the curves of F = 1 − exp[ dEg

dλ
−

dEg

dλ
|λ=λm

] as a function of N1/ν(λ − λm) collapse nicely on
a single curve for ν = 1, in agreement with the well-known
result for the Ising universality class [25]. We finally note that
our results were obtained for r = 0.5; however, similar results
hold for 0 < r � 1.
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FIG. 3. The derivative of global entanglement for a transverse
XY chain (r = 0.5) as a function of Hamiltonian parameter λ for
various system sizes. The left inset shows that the maximal value
λm approaching the critical point λc = 1 as |λm − λc| ∼ N−3.34. The
right inset shows the logarithmic divergence of the peak as a function
of N , dEg

dλ
|λm

≈ κ1 ln N , where κ1 = 0.9783. The system sizes are the
same as in Fig. 2.

B. XX model

The XX model is the isotropic case of the XY Heisenberg
model which belongs to a different universality class from that
of the Ising. In this model, as the magnetic field is varied, the
energy gap between the ground and the first excited state van-
ishes and the intersections exhibit a sequence of level-crossing
points for the finite-size chains. Since the global entanglement
directly depends on the ground state of the system, we expect to
see sudden jumps in Eg at the level-crossing points. To this end,
we are interested in the global entanglement behavior for finite-
size chains where the boundary effect terms of the Hamiltonian
cannot be neglected. These terms break the periodicity of the
Jordan-Wigner operators

c
†
i = (

�j<iσ
z
j

)
σ
†
i = eiπni↓σ

†
i (18)
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FIG. 4. Finite-size-scaling data collapse of derivative of global
entanglement for transverse XY chain (r = 0.5). The best collapse of
dEg

dλ
∼ Q[N 1/ν(λ − λm)] occurs at ν = 1.
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as

c
†
0 = σ

†
0 , c

†
N = eiπnN ↓σ

†
N = eiπnN ↓σ

†
0 , (19)

in which ni↓ is the operator counting the total number of
down spins in the chain. In this case, the Hamiltonian can
be diagonalized by the Jordan-Wigner transformation and the
following deformed Fourier transformation [8]:

cj = 1√
N

e
2πiαj

N

∑
k

e−ikj ck, (20)

where αj is a local gauge. The ground state of this model was
obtained in Ref. [8] as

|ψn〉 = 1√
N

∑
j1<j2<...<jn

{
λj1,j2,...,jn

(−1)nj1 (−1)(n−1)(j2−j1)

(−1)(n−2)(j3−j2)...(−1)jn−jn−1
}|↓〉0...|↑〉j1 ...|↑〉j2

...|↑〉jn
...|↓〉N−1, (21)

while λj1,j2,...,jn
is given by

λj1,j2,...,jn
=

∑
p

(−1)p exp

[
2πi

N
(k1jp1+k2jp2+ · · · +knjpn

)

]

(22)

and 1 � n � [N/2] depends on the magnetic field h such that

sin
[ (n+1)π

N

] − sin
(

nπ
N

)
sin(π/N )

< h �
sin

(
nπ
N

) − sin
[ (n−1)π

N

]
sin(π/N )

. (23)

Moreover, the sum [in Eq. (22)] extends over the permutation
group. Therefore, the z magnetization is 〈σ z

i 〉 = 1 − 2n
N

. This
allows us to calculate global entanglement in an analytic
fashion for finite size system, which leads to

Eg = 4n(N − n)

N2
. (24)

Interestingly, this indicates a steplike behavior for the Eg

as a function of h. In fact, the points hs = sin( nπ
N

)−sin[ (n−1)π
N

]
sin(π/N) are

exactly the same as the level-crossing points obtained by the
exact solution of XX model; see Ref. [8]. Figure 5 shows
the global entanglement for an XX chain of N = 15 qubits
obtained from Eq. (24) in terms of h. The stepwise behavior
of global entanglement determines the position and number of
level crossings in the system. Note that the number of steps is
[N/2].

It might be interesting to look into the behavior of Eg

in the thermodynamic limit for the XX model to see what
happens to the steplike structure, as well as the behavior near
the critical point. In the thermodynamics limit, we can neglect
the boundary effects, use Eq. (14) at r = 0, and write the global
entanglement for XX model

Eg = 1 −
{

1

π

∫ π

0

h − cos(φ)

|h − cos(φ)|
}2

= 1 − 1

π2
(2φc − π )2,

(25)

where φc = cos−1(h) is the pole of the denominator. The
behavior is shown as an inset in Fig. 5. The effect of finite
number of steps naturally disappear and Eg behaves much as
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FIG. 5. Global entanglement [Eq. (24)] as a function of magnetic
field for XX Heisenberg (r = 0) chain of N = 15 qubits. The level
crossings coincide with jumps in Eg . The inset shows the N → ∞
limit.

an order parameter for this transition. One can also use this
expression to obtain scaling of the derivative of entanglement
in order to obtain correlation length exponent [7,35]. Hence,
we get

dEg

dh
|h→1− ≈ 4

√
2

π2

1√
1 − h

. (26)

This allows us to obtain the exponent ν, which governs the
divergence of the correlation length as dEg

dh
∼ |h − 1|−ν with

ν = 1/2, consistent with previous reports [25].

IV. THERMODYNAMIC LIMIT AND THE CLASSICAL
LINE

In the previous section, we used the finite-size behavior of
Eg in order the characterize the behavior of QPT at h = 1, as
well as characterizing the XX model. We also obtained a closed
form expression for Eg in the thermodynamics limit which
allowed us to calculate the critical exponent for this universality
class. We now propose to calculate Eg in the thermodynamic
limit for the entire parameter regime and extract more infor-
mation in this limit of the system, paying particular attention
to the so-called classical transition. Let us start by explaining
the simplest model of XY Heisenberg family, the Ising model
(r = 1). In the absence of external field (h = 0), the spins are
either all pointed in the positive or negative x direction and
the corresponding ground state is doubly degenerate. Turning
on a small h may be regarded as a perturbation changing
the orientation of a small fraction of spins to the opposite
direction. In the case of a finite-size system, such a field induces
quantum tunneling between the degenerate ordered states and
leaves the system in a superposition state satisfying phase-flip
symmetry. As we go to the thermodynamic limit, this energy
barrier becomes infinitely high such that it does not allow
tunneling events for any finite h and therefore keeps the system
in the degenerate ground state [36]. Therefore, this breaking
of phase-flip symmetry requires us to take into account the
coefficient qx in Eq. (12) and rewrite Eq. (13) as [33]

ρi = 1
2

(
I + 〈

σ z
i

〉
σ z

i + 〈
σx

i

〉
σx

i

)
, (27)
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FIG. 6. Global entanglement as a function of λ for r = 0.5 in the
thermodynamic limit. The inset displays the logarithmic divergence
behavior of dEg/dλ as it approaches the critical point. The slope gives
κ2 = −0.9789.

where [23]

〈σ z〉 = 1

π

∫ π

0
dφ

h − cos(φ)√
r2 sin2(φ) + [h − cos(φ)]2

(28)

and [25]

〈σx〉 =
{

2[2(1 + r)]−1/2r1/4(1 − h2)1/8 if h � 1

0 otherwise
. (29)

Given the above and considering Eq. (15), global entanglement
can now be obtained for the entire parameter regime in the
thermodynamic limit. Figure 6 shows an example for Eg as a
function of λ for r = 0.5.

In the weak exchange regime (λ < 1), the XY Hamiltonian
term may be regarded as a perturbation that is unable to break
the phase-flip symmetry and therefore leaves the system in
a nondegenerate ground state, so Eg in this case is the same
as the one for finite-size chains (see Fig. 2). At the critical
point, 〈σx〉 begins to rise, breaking the phase-flip symmetry,
leading to a sudden decline in entanglement, and exhibiting
absolute maximal value for entanglement at the critical point.
This, by the way, is consistent with the general expectation of
highly correlated system at the critical point [29,33]. However,
entanglement quickly decreases and vanishes at λ = 1.15 (h =
0.87) where the ground state is unentangled (product states)
since it lies exactly on the classical line r2 + h2 = 1. In order
to obtain a better understanding of the behavior of Eg , we plot
it in terms of h and r in Fig. 7.

For all the nonzero anisotropic parameter, Eg is maximum
on the Ising transition line separating paramagnetic and ferro-
magnetic phases. In the case of r = 0 (isotropic model), the
global entanglement exhibits a different behavior indicating
a different universality class. For a better understanding, a
corresponding contour plot is provided in Fig. 8.

Here, we can more clearly see the behavior on the classical
line. The solid black line separates the oscillation part of
ferromagnetic phase in the diagram phase where the ground
state is a product state and Eg is exactly zero along this
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FIG. 7. Three-dimensional (3D) plot of global entanglement as a
function of r and h in the thermodynamic limit.

transition. Therefore, Eg is also able to indicate the transition to
the oscillating phase in the ferromagnetic case as it becomes
zero across such transition. We note that this value of zero,
and therefore indicator of the classical transition, is only
valid in the thermodynamic limit and does not occur for the
finite-size systems. Note also that in the thermodynamic limit
entanglement is maximal at the critical point as expected
but only exhibits a sharp (well-behaved) rise for the finite
N even if N is taken to be very large. This provides a
good indication that Eg can behave similarly to the usual
thermodynamic functions, as they only exhibit nonanalytic
behavior (at criticality) in the thermodynamic limit; compare
Fig. 2 with Fig. 6. Moreover, the inset in Fig. 6 shows that the
derivative of global entanglement dEg/dλ for an infinite chain
diverges as

dEg

dλ
≈ κ2 ln |λ − 1|, (30)

where κ2 = −0.9789. Based on the scaling ansatz for logarith-
mic divergence [34], the ratio of |κ1/κ2| is the correlation length
exponent, ν. In our case, this ratio is given by |κ1/κ2| = 0.994
which is very close to the exact result ν = 1 as well as our
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FIG. 8. Contour plot of global entanglement versus the external
field and anisotropic parameter.
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result in Sec. III A. We also note similar results are obtained
using concurrence in Ref. [6] and geometric phase in Ref. [35].

V. ANISOTROPIC QUANTUM PHASE TRANSITION

Another quantum phase transition occurs over the line r = 0
for 0 < h < 1, the anisotropic transition, which has received
less attention in the literature [9,37,38]. The anisotropic phase
transition separates two ferromagnetic phases with orderings
in the x (r > 0) and y (r < 0) directions and belongs to a
different universality class than the Ising class. Figure 9 shows
global entanglement as one crosses such a transition for the
fixed value of h = 0.5.

As can be seen in this figure, there is a distinct change
in the global entanglement around r = 0, which is the lo-
cal extremum. However, it may be minimum or maximum,
depending on the system size. We have observed that when
one is close but below (above) the level crossing point, Eg

is convex (concave), slowly changing shape as one crosses a
given step for a fixed N . Therefore, the picture that emerges
is that for a finite chain, the first derivative of Eg is zero at
the anisotropic transition, indicating a local maximum or a
minimum depending on whether the given values of h and N

places us near the left or right edge of the step. This pattern
continues to hold across the anisotropic transition until one gets
to the multicritical point (h = 1,r = 0), where Eg displays a
local minimum approaching zero in the thermodynamic limit;
see, for example, Fig. 5. This type of behavior continues to hold
for h > 1. Note that Eg does not approach zero with increasing
N as one crosses the anisotropic transition. Therefore, one
can conclude that the finite-size behavior of Eg distinguishes
the critical anisotropic transition. However, one would like to
know if Eg exhibits any nonanalytic behavior associated with
(critical) quantum phase transitions. To investigate this, we
need to calculate global entanglement across the anisotropic
transition in the thermodynamics limit.

In order to calculate global entanglement for r < 0 in
the thermodynamic limit, we need to make the following
observations. In the regime of positive anisotropic parameter,
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FIG. 9. Global entanglement versus r for the fixed magnetic field
(h = 0.5) and different system sizes. As N changes, the step structure
of the finite XX model changes, leading to the behavior observed.
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FIG. 10. Global entanglement in terms of r for a fixed value of
h = 0.5 in thermodynamic limit.

magnetization in the y direction is zero and ρi is a function
of σx and σz as shown in Sec. IV, i.e., Eqs. (27), (28), and
(29). Therefore, Eg is given by Eq. (15). It is evident from
the Hamiltonian that transformation r → −r interchanges σx

with σy , which leads to the zero value of 〈σx〉 for r < 0
[19]. Therefore, since the y component of magnetization does
not contribute to Eg , due to the reality of Hamiltonian, a
single-particle density matrix is given by ρi = 1

2 (I + 〈σz〉σz),
andEg is given by Eq. (16) in this regime. Therefore, the picture
that emerges is that for h > 1 where one is in the paramagnetic
phase and no phase transition occurs at r = 0, Eg is symmetric
about this minimum point for a given value of h. However, one
expects that the broken symmetry due to 〈σx〉 at r = 0 and
h < 1 leads to a broken symmetry of Eg about the transition
point. This is indeed the case, as can be seen from Fig. 10, which
shows Eg for h = 0.5 across the anisotropic transition. Clearly
one can see the nonanalytic behavior is similar to thermody-
namic quantities at a critical point. We conclude that Eg can
distinguish the critical anisotropic transition in the XY model.

VI. CONCLUSIONS

In this paper, we have used the MW measure of global en-
tanglement in order to study various quantum phase transitions
occurring in the transverse XY Heisenberg chain. Our main
motivation has been the observation that a multipartite measure
of entanglement is much better suited for studying QPT than
the standard bibipartite measures. However, most multipartite
measures are difficult to calculate. We have been able to calcu-
late global entanglement both in the finite-size limit as well as
the thermodynamic limit analytically. The finite-size study was
shown to be very useful for extracting the critical exponents
for the Ising transition, via the derivative of entanglement. In
the thermodynamic limit, Eg was shown to exhibit nonanalytic
behavior at the Ising transition, while having maximal value.
The thermodynamic limit of global entanglement was also used
to extract critical exponent for the multicritical point of the XX
model. For the finite-size system, the step structure of level
crossings was exactly reproduced by global entanglement.
Also, while the finite-size measure of global entanglement
did not show any particular behavior across the classical
oscillating transition, the thermodynamic limit of the measure
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was able to signal such a transition as it took on vanishing value
across this classical transition. Furthermore, we studied the
anisotropic transition where global entanglement was shown
to exhibit a nonanalytic behavior across such a transition
in the thermodynamic limit, while showing an interesting,
N -dependent behavior for the finite size case. Therefore, the
cusp singularity at both quantum transitions, nonanalyticity at
the multicritical point, and vanishing value on the classical
curve is the general behavior of global entanglement in the
thermodynamic limit. This type of behavior is what one would
expect from a genuine (quantum) thermodynamic variable.
We therefore conclude that global entanglement, despite its
simplicity, can produce much of the rich behavior of the
XY model in various parameter regimes, identifying all the
transition points. Such a multipartite measure of entanglement
seems to be a good candidate for studying the thermodynamic
behavior of many-body quantum systems.

We end by making the following observation. We have seen
that while finite-size study of entanglement can produce inter-
esting behavior including scaling properties, it was the thermo-
dynamic limit of entanglement which was able to fully bring
to light the various transitions in the XY model. In particular,
the thermodynamic limit exhibit properties which one would
have never seen for finite N , even for very large values of N .
This is particularly alarming, as many studies of entanglement
and quantum phase transitions are limited by finite-size studies
with the belief that numerically exact finite-size solutions can
be extrapolated to find the thermodynamic limit.
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