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We analyze scaling behaviors of simulated annealing carried out on various classical systems with topological
order, obtained as appropriate limits of the toric code in two and three dimensions. We first consider the three-
dimensional Z2 (Ising) lattice gauge model, which exhibits a continuous topological phase transition at finite
temperature. We show that a generalized Kibble-Zurek scaling ansatz applies to this transition, in spite of the
absence of a local order parameter. We find perimeter-law scaling of the magnitude of a nonlocal order parameter
(defined using Wilson loops) and a dynamic exponent z = 2.70 ± 0.03, the latter in good agreement with previous
results for the equilibrium dynamics (autocorrelations). We then study systems where (topological) order forms
only at zero temperature—the Ising chain, the two-dimensional Z2 gauge model, and a three-dimensional star
model (another variant of the Z2 gauge model). In these systems the correlation length diverges exponentially,
in a way that is nonsmooth as a finite-size system approaches the zero temperature state. We show that the
Kibble-Zurek theory does not apply in any of these systems. Instead, the dynamics can be understood in terms of
diffusion and annihilation of topological defects, which we use to formulate a scaling theory in good agreement
with our simulation results. We also discuss the effect of open boundaries where defect annihilation competes
with a faster process of evaporation at the surface.
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I. INTRODUCTION

Topological order (TO) cannot be characterized by any
local order parameter and cannot be destroyed through local
fluctuations [1–3]. Based on these unique characteristics,
systems with topological order have been proposed for use
in memory devices in quantum-information applications [4,5].
Many paradigms for quantum memories and quantum comput-
ing are based on Kitaev’s toric code [6], which can be regarded
as a quantum generalization of the classicalZ2 (or Ising) gauge
model [7–9]. Whereas most of the focus to date has been on
quantum systems at zero temperature, TO can also be present
in classical systems coupled to a heat bath [10–12].

Here we study the topological ordering dynamics, using
protocols inspired by the Kibble-Zurek (KZ) theory. The KZ
mechanism was originally proposed to describe the formation
of defects in the early expanding universe [13]. Later, it was
applied to classical phase transitions [14,15], and in recent
years it has been widely used in describing out-of-equilibrium
dynamics near continuous phase transitions in both classical
and quantum systems [16–24]. The basic idea underlying
the KZ mechanism is that a change in some parameter of a
many-body system leads to changes in its relaxation time τ .
Near a critical point τ has a simple scaling relationship to
the spatial correlation length ξ , namely, τ ∼ ξz, which defines
the exponent z associated with the dynamics (stochastic or
Hamiltonian). By combining this dynamical scaling with the
standard critical form of the correlation length at distance
δ from a critical point ξ ∼ δ−ν , it is possible not only to
obtain results for the density of defects, on which the early

studies focused, but also to derive generic scaling forms for
all quantities that exhibit critical scaling in classical and
quantum systems [23–26]. A central result is that the maximum
correlation length a system can reach in a linear change of a
parameter, at velocity v, upon approaching a critical point with
correlation-length exponent ν is

ξv ∼ v−1/(z+1/ν). (1)

For a finite system of linear size L, this translates into a so-
called KZ velocity [24–26]

vKZ ∼ L−(z+1/ν), (2)

separating the scaling regimes where the correlation length is
velocity limited (ξv < L) and where it is system size limited
(ξv > L).

Recently, the KZ mechanism has been realized in ex-
periments of cold atom systems [27,28], and proposed to
be within reach of state of the art experiments on spin ice
materials [20]. The dynamical scaling functions derived from
the KZ mechanism have also found applications in simulated
annealing (SA) studies of various two-dimensional (2D) and
three-dimensional (3D) systems with continuous phase tran-
sitions [18,19,24–26,29]. Procedures based on the KZ ansatz
have been developed to extract critical exponents and critical
points [30]. For systems that have continuous phase transition
at exactly Tc = 0, such as 2D Ising spin glasses, the KZ ansatz
also works, but with a new dynamic relaxation exponent that
is different from the T → 0 divergent equilibrium (autocorre-
lation) exponent (reflecting nonergodic Monte Carlo sampling
exactly at T = 0) [31,32]. However, as far as we are aware, the
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KZ scaling ansatz has never been applied to classical systems
that exhibit topological phase transitions where there is no
local order parameter (in contrast to the 2D XY model [19],
where the transition is of topological nature but there is also a
local order parameter). Such transitions can take place either
at T > 0 or exactly at T = 0.

In this paper we demonstrate that KZ scaling applies to finite
temperature topological transitions devoid of a local order
parameter. We study the 3D Z2 gauge model and determine
the dynamical exponent to be z = 2.70(3), which is consistent
with a previous result based on autocorrelation functions [33]
but with higher statistical precision (the number within paren-
theses above and henceforth denotes the statistical error—
one standard deviation of the mean value—in the preceding
digit). In contrast, when topological order only appears at zero
temperature, the conventional KZ mechanism does not apply.
We are nonetheless able to obtain the dynamical scaling form
of the nonlocal order parameter by modeling the relaxation
dynamics of topological defects. We further investigate the
effects of open boundary conditions, where evaporation of
defects at the surface ought to be taken into account. In all
cases, our theoretical arguments are in good agreement with
our extensive numerical SA results.

The paper is organized as follows. In Sec. II we briefly
review the 2D and 3D toric codes and their classical limits;
the Z2 gauge models and the so-called 3D star model (an-
other version of the Z2 gauge model). In Sec. III we study
the KZ dynamical scaling behavior at the finite temperature
transition of the 3D Z2 gauge model. In Sec. IV we study
the models that exhibit only zero-temperature order—the 1D
Ising chain, the 2D Z2 gauge model, and the 3D star model—
under periodic boundary conditions (PBCs). The case of open
boundary conditions (OBCs) is considered in Sec. V. Finally, in
Sec. VI we summarize the main results of this study and discuss
their implications.

II. CLASSICAL LIMITS OF THE TORIC CODE

The topological classical models studied in this paper are
obtained as appropriate classical limits of the 2D and 3D
quantum toric code, which we review here for completeness.

The 2D toric code is a system of spin-1/2 degrees of free-
dom living on the bonds of a square lattice with Hamiltonian

H = −JA

∑
s

As − JB

∑
p

Bp, (3)

where

As =
∏
i∈s

σ x
i , Bp =

∏
j∈p

σ z
j .

As stands for the star operators, namely the product of σx

components of the spins around the bonds forming a + (star)
at site s, and Bp denotes the plaquette operators, namely the
product of σ z components of the spins around the edges of
plaquette p. These interactions are illustrated in Fig. 1, where
an example of the star operator As is marked as red and the
plaquette operator Bp is colored with blue. In 3D, the system
is defined on a cubic lattice, with similar four-spin plaquette

FIG. 1. The toric code on a square lattice: The star operator As ,
shown in red, is the product of σ x components of the spins on the
four sites connected to the bonds forming a + (star) centered on site
s. The plaquette operator Bp , shown in blue, takes the products of σ z

components of the spins on the four sites at the edges of a plaquette
(labeled by p). The operators px and px′ are defined as the product
of spins σ z along the green lines. With PBCs, the Wilson loop order
parameter γ (L) is 〈px px′ 〉, where, in our work here, the distance
between the two green lines should be the largest possible in the
system. For a 2D square lattice of even size, this distance is L/2,
while for a 3D simple cubic lattice it is

√
2L/2. With OBCs we

have to include also the products of boundary spins (along the blue
lines), defined as py and py′ , and the order parameter γ (L) becomes
〈px px′ py py′ 〉.

operators but the star operators are upgraded to the product of
the six spins on the bonds stemming from a given site.

All star and plaquette operators commute with one another
(and therefore with the Hamiltonian), and the ground states of
the system have As = +1 and Bp = +1. Excitations above
the ground state take the form of negative stars/plaquettes,
with energy penalty 2JA and 2JB , respectively. These defects
are referred to as “electric” and “magnetic,” and behave like
quasiparticles that can only be created and annihilated in pairs,
under periodic boundary conditions. They are static under the
application of the Hamiltonian, but can otherwise move freely
without energy cost through the action of σ z or σx operators
(for a review, see for instance Ref. [34]). In presence of open
boundaries, one can easily see that single defects can nucleate
or evaporate at the surface.

In this paper we shall focus on the following classical limits
of the toric code:

(1) In 2D, if one takes either JA → 0 or JB → 0, one
obtains the classical Z2 lattice gauge model [7,8]. This model
has no finite temperature transition, and only orders at T = 0.

(2) In 3D, the limit JA → 0 yields the classical Z2 gauge
model [7,8]. This model has a finite temperature phase transi-
tion.

(3) In 3D, the limit JB → 0 yields the version of the Z2

gauge model that we here refer to as the 3D star model [35].
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This model has no finite temperature transition but orders
topologically at T = 0.

The ordered phases in these models are topological in
nature, as reflected, for instance, by a nonzero topological
entanglement entropy [10,35]. Here we will characterize the
dynamic topological ordering using the Wilson loops, illus-
trated in Fig. 1 for 2D systems. For the 3D star model we will
use a higher-dimensional generalization of the Wilson loop.

III. 3D Z2 GAUGE MODEL AT T = Tc

The 3D Z2 lattice gauge model exhibits a topological phase
transition at Tc/JB = 1.313346 [7,8,35] (where we set JB = 1
hereafter). The transition is in the same universality class as
the standard 3D Ising model, and yet it has no local order
parameter in the original spin degrees of freedom. The mapping
between the two models is a duality between low- and high-
temperature partition functions; therefore the thermodynamic
behavior of the two models is the same, but there is no obvious
relation between their stochastic (Monte Carlo) dynamics.
The order parameter for the 3D Z2 lattice gauge theory is a
product of spins across the entire system, namely a system-
spanning Wilson loop. For T < Tc, the order parameter decays
exponentially with the perimeter of the contour 〈W 〉 ∼ e−αL,
known as the “perimeter law,” in contrast to the “area law” for
T > Tc, where the order parameter decays exponentially with
the area of the contour 〈W 〉 ∼ e−βL2

[8].
In our simulations we define a specific Wilson loop as our

order parameter:

γ (L) = 〈px px ′ 〉, px =
∏
i∈Lx

σ z
i , (4)

where px and px ′ are the products of σ z spins along two lattice
linesLx andLx ′ which are farthest away from each other within
the system, as demonstrated in Fig. 1 for a 2D system. In 3D,
the largest possible distance is

√
2L/2. Exploiting translation

invariance, γ (L) is averaged over x and x ′ respecting the
maximum distance condition.

A. Simulated annealing

Here and in the rest of the work we use SA simulations.
We first prepare the system in equilibrium at a relatively high
initial temperature Tini (where a small number of Monte Carlo
sweeps is enough to reach equilibrium when starting from a
random configuration), and then we decrease the temperature
to the final value Tf via the protocol

T (t) = Tf + (Tini − Tf ) (1 − t/tq)r , (5)

where r = 1 stands for the standard SA where temperature
decreases linearly. In general, one can vary the value of r in
order to disentangle the exponents (z and ν) shown in the KZ
scaling [26,31]. In this study we only consider the standard
r = 1 protocol, since the value of ν is the same as the one in
the 3D Ising model, which is known to high accuracy, ν =
0.62999(5) [36]. We consider Tini = 1.1Tc and Tf = Tc. The
total number of Monte Carlo steps during the SA process is
denoted by tq , and one step (the unit of time) corresponds to
a total of N = L3 Metropolis single spin flip attempts. The

1.32 1.33 1.34 1.35
T

0

0.1

0.2

0.3

0.4

γ(
L)

tq=1024
tq=2048
tq=4096
tq=8192
tq=10240
tq=20480

Tc

FIG. 2. The topological order parameter γ (L) for a system with
N = 163 spins as a function of the temperature, computed at various
total times tq for annealing from T = 1.1Tc to Tc. The error bars are
smaller than the symbol sizes.

annealing rate (or velocity) v is then defined as

v = (Tini − Tf )/tq . (6)

We simulate systems with sizes L = 8, 10, 12, 16, 24,
and 32. For each system size, we perform SA runs at various
sweeping rates v. The range of velocities varies for different
system sizes between about 10−6 and 10−2. We measure
the order parameter γ (L) as defined in Eq. (4) at various
temperatures during each SA process, averaging over around
104 repeats. Note here that each SA process is independent,
with different initial configurations as well as distinct random
numbers during the MC updates.

Figure 2 shows examples of the order parameter γ (L) for
system size L = 16 at various quenching rates. The slower
we perform SA, the closer the system gets to its equilibrium
state, i.e., the more ordered it becomes. The vertical dashed
line indicates the last step taken in our SA runs, ending when
T = Tc. Since the simplest one-parameter KZ scaling function
(discussed below) involves only the measurement at Tc, in the
following we only focus on the last data point of the SA process
at T = Tc for each annealing velocity.

B. Dynamic scaling

In the generalized KZ nonequilibrium finite-size scaling
form for a physical observable A, the dynamic finite-size
scaling of A as a function of annealing velocity is

A(L,v) ∼ Aeq(L)f (v/vKZ), (7)

where Aeq(L) denotes the equilibrium finite-size value at Tc.
Normally this value is a power law in the linear size of the
system L. However, we propose that a simple generalization
of the KZ form applies straightforwardly to other functions of
L, as relevant to this work.

For linear SA, the KZ velocity has the form given in Eq. (2),
vKZ ∼ L−z−1/ν . Considering the “perimeter law” associated
with the Wilson loop order parameter γ (L) at Tc, we expect
γ (L) measured at the critical point to take the form

γ (L,v) ∼ e−αLf (vLz+ 1
ν ), (8)

where ν is the critical correlation-length exponent and z is the
dynamic critical exponent.
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FIG. 3. (a) Behavior of the topological order parameter γ (L)
measured at Tc, shown on a log-log plot under various quenching
rates for system sizes L = 8, 10, 12, 16, 24, and 32 (with the curves
decreasing as L increases, as expected for perimeter law behavior). (b)
Scaling collapse of γ (L) as a function of velocity, based on Eq. (8)
and shown on a semi-log plot. The optimal value of z for the data
collapse is z ≈ 2.70(3).

Figure 3(a) shows the behavior of γ (L) for various anneal-
ing rates and system sizes from L = 8 to L = 32. Figure 3(b)
shows the velocity scaling of γ (L) based on the KZ scaling
function. We vary the values of exponents z + 1/ν and α to
collapse the data according to Eq. (8). The best fit yields the op-
timal values z + 1/ν = 4.29(3), α = 0.052(1). As ν ≈ 0.63,
we obtain z = 2.70(3). The statistical errors were determined
by a bootstrap analysis. For further details on the data-collapse
procedures we refer to Refs. [26,31].

Previous Monte Carlo studies of the equilibrium relaxation
(autocorrelation) time at Tc gave z = 2.5(2) [33]. Thus, our
result for z agrees with the previous value within error bars, but
we improve the statistical precision by one digit. The general
expectation is that the dynamic exponent appearing within the
out-of-equilibrium KZ framework should indeed be the same
as the one at equilibrium when Tc > 0 (while for systems with
Tc = 0 this is not the case [31,32]). The good collapse of the
data reveals that, as with other continuous phase transitions
described by local order parameters [18,24,26,29], KZ scaling
also works for topological phase transitions devoid of a local
order parameter. We stress again that the standard KZ scaling
form in this case is also modified by the exponential form of
the equilibrium size dependence in Eq. (8).

Recall that the mapping between the 3D Z2 lattice gauge
model and the 3D Ising model is a duality between the partition
functions, and thus has no dynamical implications. Moreover,
the dynamic exponent is not an intrinsic property of a model,
as it also depends on the specific update algorithm. While
they share the same thermodynamic critical properties, it is
not surprising that they have different dynamical exponents,
z ≈ 2.7 and z ≈ 2.0 [37,38], for the gauge model and standard
3D Ising model, respectively. There may exist an update
algorithm for the 3D Z2 lattice gauge model that matches
exactly with the local update of the 3D Ising model. However,
as the duality mapping between the two models is highly
nontrivial, we expect the algorithm to be highly nontrivial as
well.

Note also that the out-of-equilibrium SA approach with KZ
scaling circumvents the need to ensure that the system is in
equilibrium when using autocorrelation functions to estimate
the equilibrium dynamic exponent. Each repetition of the SA
procedure represents a statistically independent contribution to
the estimated mean values. Thus, the only potential source of
systematic errors is corrections to scaling in the analysis. Based
on the good data collapse for large systems at the known value
of Tc, we judge that the impact of scaling corrections should be
small in the above results for the 3D Z2 lattice gauge model.

IV. T = 0 TOPOLOGICAL ORDER WITH PERIODIC
BOUNDARY CONDITIONS

In this section we study models that have no finite-
temperature phase transition and topological order only forms
at T = 0, when the defect density vanishes identically at
equilibrium. Namely, we consider the 3D star model [35] and
the 2D Z2 lattice gauge model. In addition, we also consider
their natural reduction down to 1D; the standard ferromagnetic
Ising chain.

A. Failure of the Kibble-Zurek mechanism

For systems that order only at T = 0, we cannot apply
directly the standard KZ scaling forms, because when T → 0
the correlation length diverges exponentially, ξ ∼ exp(c/T ),
instead of following the power-law behavior expected at finite-
T continuous phase transitions. In principle the exponential
form is not an issue in itself, as apparent in the detailed
derivation of the KZ scaling forms in Ref. [26] (see also
Ref. [24]). As long as there is a known relationship between
the correlation length and the relaxation time, a criterion for
quasistatic equilibrium—giving a critical velocity separating
slow and fast processes, equivalent to Eq. (2)—can be obtained.
For example, in the 1D Ising model the correlation length
has exactly the form ξ ∼ exp(c/T ). If one assumes that the
relaxation time is a power of this length τ ∼ ξz, as expected
with z = 2 based on the fact that the domain walls perform
1D random walks, one finds that the critical KZ velocity is
vcrit ∼ L−z ln−2(L).

However, this result is incorrect, differing by a factor
of ln(L) from the known rigorous expression obtained by
Krapivsky for this model [39]. The reason for the failure of
this simplistic approach is that the correlation length is not
changing smoothly in a given realization of the annealing
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process in a finite system at the last stages of equilibration.
When the number of domain walls (defects) is small, the
(kink-antikink) annihilation of a defect pair leads to large
jumps in the correlation length. For instance, the very last
annihilation process in a 1D Ising model of finite size L

produces a jump in the correlation length from ξ = L/2 to
ξ = L. On the contrary, a continuous (in the large L limit)
growth of the correlation length all the way to ξ = L is a key
assumption in the derivation of the KZ scaling expressions
[26].

B. Scaling theory for defect annihilation

We are nonetheless able to obtain a finite-size scaling form
for the order parameter in these systems, as they are ramped
down to zero temperature, by looking more closely at the nature
of their defects and how order emerges as the defect density
vanishes. As in the 1D Ising model, the excitations at low T

in the 2D Z2 gauge model and the 3D star model also take
the form of stochastically itinerant noninteracting pointlike
quasiparticles. The pointlike nature of the excitations is closely
related to the absence of a phase transition. Indeed, the energy-
free (diffusive) motion of these quasiparticles is able to change
the value of the (topological) order parameter. Therefore,
whenever excitations are present in the system, the order
parameter remains vanishingly small. This is clearly the case
at all T > 0 in the thermodynamic limit. A nonvanishing order
parameter can, however, appear as a finite-size effect when the
temperature becomes so low that on average less than one pair
of defects is left in the system. This behavior is controlled by
the very final stage of relaxation into the topologically ordered
state, namely the disappearance of the last excitations. With
periodic boundary conditions, this corresponds to the process
where the last pair of defects meet and annihilate.

Considering SA with linear sweeps down to Tf = 0, to
quantify the longest time scale we can assume that the system
remains in equilibrium (with vanishingly small order parame-
ter) down to a threshold temperature Tth where the number of
defects left in the (finite) system is of order 1,

exp

(
− 


Tth

)
∼ L−d . (9)

Here 
 is the bare cost of a defect (e.g., the cost of a single
domain wall in the 1D Ising model), and d = 1,2,3 is the
dimensionality of the system. Only if the sweep continues for
a sufficiently long time from Tth down to T = 0 is the order
parameter finally able to acquire a finite expectation value via
the annihilation of the last two remaining defects. Therefore,
the scaling behavior of the order parameter at the end of the
sweep (T = 0) is controlled by this regime.

Taking Tf = 0 and r = 1 in Eq. (5), the time dependence of
the temperature in a SA sweep in t ∈ (0,tq) takes the form

T (t) = Tini

(
1 − t

tq

)
, (10)

where Tini is the initial temperature and tq is the number of
total quench steps. The sweep velocity is thus v = Tini/tq and
the time it takes from Tth to T = 0 is


t = tq − tth = Tth

v
. (11)

101 102 103

L

102

104

106

τ

1D, τ(L) ~ L2

2D, τ(L) ~ L2lnL
3D, τ(L) ~ L3

FIG. 4. Behavior of the mean time τ required for annihilation of
the last pair of defects through random walks vs the system size L

in 1D (black), 2D (red), and 3D (blue) lattices with PBCs. The solid
curves are fits based on the expected scaling forms in Eq. (13).

Inserting the expression for Tth from Eq. (9) into the above
expression, we get


t ∼ 


v ln(L)
, (12)

which we can now relate to the time scale of defect annihilation.
The system develops a nonvanishing order parameter in the
span of time 
t only if the last quasiparticles in the system
meet and annihilate.

As the quasiparticles are noninteracting, their motion is
diffusive and the time scale for annihilation τannihilation should
depend on dimensionality and system size [40]:

τannihilation ∼
⎧⎨
⎩

L2, d = 1,

L2 ln(L), d = 2,

L3, d = 3.

(13)

We numerically tested these scaling laws by considering the
case of two defects (with random initial conditions) performing
random walks on 1D, 2D, and 3D lattices with PBCs. We
measured the average relaxation time τ , which is the number
of total steps the defects take before they meet and annihilate
(one step corresponding to one lattice move of each defect).
Our results are presented in Fig. 4. The excellent agreement
with the scaling form in Eq. (13) demonstrates the lack of
significant finite-size corrections even for the smallest system
sizes considered in this work—an important benchmark for the
interpretation of our results on topological systems below.

The probability that the system develops a nonvanishing
order parameter in an SA run is controlled by the ratio

t/τannihilation. Combining Eqs. (12) and (13), this ratio can
be expressed in a KZ-like scaling form as

τannihilation


t
= v

vcrit
, (14)

where

vcrit ∼
⎧⎨
⎩

L−2 ln−1(L), d = 1,

L−2 ln−2(L), d = 2,

L−3 ln−1(L), d = 3.

(15)

We thus expect that the dynamic finite-size scaling function
of an appropriate order parameter M in each of the systems
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considered here takes the form

M ∼ f (v/vcrit), (16)

which is formally similar to the KZ scaling ansatz but with
critical velocities that cannot be derived within that formalism.

We note that the case of the 1D Ising chain was previously
studied analytically in a somewhat different way in Ref. [39],
and the domain wall density there indeed shows a scaling form
consistent with our Eqs. (15) and (16). Another study related
to our work is Ref. [12], where the finite-size scaling of the 2D
toric code was considered using an effective classical model
in contact with a thermal reservoir. There the focus was on the
time scale on which topological order is destroyed at fixed
temperature through topological point defects undergoing
nontrivial random walks; this is different from the case studied
here where we consider the opposite process of topological
ordering under SA down to T = 0. The time scales in our
work and in Ref. [12] are therefore not the same.

C. Simulated annealing results

We performed SA runs (setting Tini = 2) with various
annealing velocities for the 1D Ising model, the 2D Z2 lattice
gauge model, and the 3D star model, using several system
lengths L in each case. For the Ising chain, we choose
the commonly used squared magnetization m2 as our order
parameter,

m2 =
〈

1

L

L∑
i=1

σi

〉2

. (17)

For the 2D Z2 gauge model, we use a Wilson loop order
parameter similar to that introduced for the 3D case in Sec. III
and illustrated in Fig. 1. The only difference from the 3D case
is that now the farthest distance between the lines Lx and Lx ′

is L/2 instead of
√

2L/2.
For the 3D star model, the topological state has a different

nature with respect to a Z2 gauge model, and the role of
Wilson loops is played by products of spins around (dual)
closed surfaces that are locally perpendicular to and bisect the
bonds of the original lattice. The simplest such surface is a unit
dual cube surrounding a single vertex on the original lattice,
and the six spins on the bonds stemming from that vertex live
respectively at the centers of the six faces of the cube. In the
ground state, the product of the six spins is 1 (namely, the
product of the six spins on the faces of the dual cubic surface).
For a detailed discussion of these topological structures we
refer the reader to Ref. [35]. Here we follow that reference and
introduce the corresponding order parameter as the product of
all the spins on two parallel (dual) lattice planes, Px and Px ′ ,
at, say, fixed x and x ′ values on the lattice (see Fig. 5).

For a system with periodic boundary conditions, the product
of the spins on the two planes equals the product of all dual unit
cubes around the vertices in between the two planes. Therefore,
in the ground state the product takes value 1. This product acts
as a topological order parameter, similar to the Wilson loop
used for the Ising gauge models with plaquette interactions.

For convenience, we denote as sx and sx ′ the products of all
the spins on each of the two planes Px and Px ′ , separately, and

FIG. 5. Illustration of the topological order parameter of the 3D
star model with periodic and open boundary conditions. For PBCs the
order parameter π (L) is the average of surface-surface correlations,
indicated in blue. For OBCs the order parameter should include also
the product of spins on the boundaries between these two surfaces,
shown in orange, so as to form a closed surface.

we define

π (L) = 〈sx sx ′ 〉, sx =
∏
i∈Px

σ z
i , (18)

as a closed-surface analog of the Wilson loop. Here the distance
between the two surfaces Px and Px ′ is taken to be maximal,
namely L/2.

The behavior of the three order parameters after rescaling
according to Eqs. (15) and (16) is presented in Fig. 6.

We find good scaling collapse of the data, and the trend is
a clear improvement with increasing system size, suggesting
that the scaling functions we propose are indeed correct. In
principle, a scale factor L0 inside the logarithms of the scaling
arguments could also be included, ln(L/L0), but we find that
the optimum value of this factor is close to 1 and the data
collapse is not significantly improved. We therefore did not
include such a scale factor in the figure and further below.

One can notice that the data collapse gets worse when
v 
 vcrit , which is expected as the scaling form was derived
under the assumption that the system remains at equilibrium
down to Tth. This assumption breaks down at high velocity,
in such a way that the scaled data peel off from the common
scaling form at a point that moves to the right as the system
size increases. This is similar to what happens in KZ scaling, as
discussed in Ref. [26]. We conclude that the low-T dynamics of
these systems is indeed controlled by defect-defect annihilation
processes of free random walking quasiparticles.

V. T = 0 TOPOLOGICAL ORDER WITH OPEN
BOUNDARY CONDITIONS

In this section we discuss how OBCs affect the dynamics
of the topological order parameters for the systems studied
in Sec. IV. With PBCs, the only way for defects to vanish is
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FIG. 6. Scaling behavior on semi-log plots of the order parameters
in (a) the 1D Ising chain, (b) the 2D Z2 gauge model, and (c) the 3D
star model with PBCs.

through defect pair annihilation. With OBCs, however, defects
can diffuse to and disappear through the open boundaries—
thus single defects can “evaporate.”

A. Scaling of boundary evaporation

Whereas the time for pair annihilation scales as L2, L2 ln L,
and L3 in d = 1, 2, and 3 [see Eq. (13)], defects can reach the
boundary within a typical time scale

τboundary ∼ L2, (19)

irrespective of dimensionality [41]. Clearly, when comparing
the two kinds of dynamics, boundary evaporation takes either
equal (1D) or shorter (2D and 3D) time. Therefore, the
low-temperature dynamics should be dominated by boundary
processes, leading to a different critical velocity in the dynamic
scaling function f (v/vcrit). Following the discussion in the
previous section, upon replacing τannihilation by τboundary, we
obtain a form for vcrit that is universal for 1D, 2D, and 3D
lattices with OBCs:

vcrit ∼ L−2 ln−1(L). (20)
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FIG. 7. Scaling of the order parameters for OBC systems for (a)
the 1D Ising model, (b) the 2D Z2 gauge model, and (c) the 3D
star model. In all cases we have used the universal scaling form
f (v L2 ln L).

Notice that the order parameters for the 2D Z2 lattice gauge
model γ (L) and the 3D star model π (L) have to be redefined
after switching to OBCs (while for the 1D Ising chain it remains
the same). For the 2D Z2 gauge model, as illustrated in Fig. 1,
in addition to the two line operators px and px ′ , we also need
to include the spins on the boundaries between the two lines,
i.e., py and py ′ , in order to form a closed loop. Therefore, the
order parameter becomes

γ (L) = 〈px px ′ py py ′ 〉. (21)

For the 3D star model, as illustrated in Fig. 5, in addition to
the two surface operators sx and sx ′ , we need to include the
product of spins on the boundary surfaces in between, to form
a closed surface.

Figure 7 shows the scaling behavior of the order parameters
with OBCs. The data are plotted according to the new universal
scaling form f (v/vcrit), where v/vcrit ∼ v L2 ln L, due to the
(faster) dynamical process, whereby defects reach the open
boundaries by random walking and evaporate. The excellent
collapse in Fig. 7(a) is expected due to the fact that the
two relaxation processes lead to the same scaling form in
1D. The scaling collapse in Figs. 7(b) and 7(c), 2D and 3D,
respectively, is far less satisfactory. The data points for small
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system sizes show a substantial deviation from the predicted
behavior. As system size increases, the data collapse gradually
improves, suggesting that the scaling form is correct in the
thermodynamic limit but finite-size effects are far stronger with
OBCs than PBCs. This is likely due to the contributions from
the two dynamical processes with time scales that diverge from
one another for L 
 1, but are in fact quite close for small
systems [indeed τannihilation/τboundary = ln(L) in 2D, which is
just � 4.6 for L = 100; and τannihilation/τboundary = L in 3D,
where we can only access relatively small system sizes overall].

B. Combining evaporation and annihilation

In order to account for the two different defect removal
processes, we consider a modified scaling approach for the 2D
and 3D systems. The rate of defect depletion is the sum of
those for the two separate channels (defect annihilation and
evaporation at the boundary), yielding the effective rate

τ−1
eff = τ−1

boundary + τ−1
annihilation. (22)

From this total rate, we obtain the effective critical velocity
scale, which is the sum of the critical velocities for the two
separate processes.

Recall that, for the 2D case, the critical velocities for
the process of defect annihilation and boundary evaporation
are given by vcrit,a ∼ L−2 ln−2(L) and vcrit,e ∼ L−2 ln−1(L),
respectively. We therefore propose a combined critical velocity
of the form

vcrit ∼ L−2 ln−1(L) + aL−2 ln−2(L)

∼ L−2 ln−1(L)

(
1 + a

ln(L)

)
, (23)

where a is a fitting parameter that accounts for O(1) prefactors
in the L dependence of the velocities. The modified argument
of the scaling function in 2D should then take the form

(v/vcrit)2D ∼ v L2 ln(L)

(
1 + a

ln(L)

)−1

. (24)

Given that the two processes contribute additively to the overall
rate in Eq. (22) we expect a > 0.

Analogously, for the 3D star model, the improved scaling
argument should take the form

(v/vcrit)3D ∼ v L2 ln(L)

(
1 + b

L

)−1

, (25)

where b again is a fitting parameter that is expected to be
positive. Figure 8 shows the analysis for both cases based on the
new scaling functions, which indeed improve the data collapse
considerably (especially in the 2D case). The best data collapse
yields a = 2.4(2) and b = 2.2(3), both positive as expected.

VI. DISCUSSION

In this paper we studied the dynamical scaling behavior of
several classical topological systems using SA with varying
sweeping rates. For the 3D Z2 lattice gauge model, which
undergoes a topological phase transition at finite temperature,
the dynamical scaling of its order parameter can be understood
as a simple generalization of the KZ mechanism to an order
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FIG. 8. Modified velocity scaling of the order parameter for the
2D and 3D OBC systems, combining effectively both relaxation
processes (pair annihilation and boundary/surface evaporation). (a)
Results for the 2D Z2 lattice gauge model, with the velocity scaled as
v L2 ln(L)[1 + a/ ln(L)]−1 with a = 2.4(2), and (b) for the 3D star
model with rescaling ∼ v L2 ln(L)(1 + b/L)−1 with b = 2.2(3). In
(a) the smallest system was excluded from the data-collapse analysis,
while in (b) all sizes were used.

parameter with exponential size dependence at Tc (instead of
the power law applying at standard continuous phase transi-
tions). To our knowledge, this is the first time that KZ theory
has been applied and tested numerically on a classical system
with a continuous topological phase transition devoid of a local
order parameter. Our result for the dynamical exponent of the
system, z = 2.70(3), is consistent within error bars (which are
an order of magnitude smaller in our work) with a previously
published value based on equilibrium autocorrelations [33],
thus supporting the notion of a common exponent describing
the equilibrium and the out-of-equilibrium relaxation.

In contrast to systems with continuous phase transitions
with Tc > 0, we point out that finite-size scaling functions
based on the generalized KZ ansatz do not apply to transitions
into topological phases that only exist at zero temperature.
In these systems the correlation length diverges exponentially
in temperature as T → 0, and at the last stage of ordering
the finite-size correlation length jumps when topological de-
fects (the endpoints of strings) finally disappear. We studied
examples of such systems, namely, the 2D Z2 lattice gauge
model and the 3D star model. For completeness we also
studied a simpler but analogous system in 1D: the standard
Ising chain that was also previously investigated by Krapivsky
[39]. The stochastic dynamics of ordering in these systems is
dominated by the diffusion of the endpoints of open strings,
and we proposed scaling functions that are obtained from

024432-8



DYNAMIC SCALING OF TOPOLOGICAL ORDERING IN … PHYSICAL REVIEW B 97, 024432 (2018)

dynamical modeling of the annihilation processes of these
topological point defects through random walks. We find
excellent agreement between the proposed scaling laws and
numerical SA simulations, suggesting that we have correctly
identified and modeled the relevant relaxation processes in
these systems. Note also that while the numerical analysis
cannot strictly distinguish between the KZ and the defect-
annihilation forms, because they differ only logarithmically,
our physical arguments against the standard KZ scaling mech-
anism are unambiguous.

We also studied the effect of open boundaries, where indi-
vidual defects can evaporate. We find that defect evaporation
dominates over pair annihilation for large enough systems. For
system sizes that are numerically accessible, a scaling approach
combining the different time scales of the two processes is
needed to fit the data.

It is important to contrast our results for the T = 0 ordering
models with the KZ scenario. A naive application of the KZ
mechanism according to the derivation in Appendix A of
Ref. [26] gives vcrit ∼ L−2 ln−2(L) if we assume forms of the
correlation length and relaxation time scale appropriate for the
Tc = 0 systems considered here: ξ ∼ exp(c/T ) and τ ∼ ξz

with z = 2. Interestingly, comparing with the forms we have
obtained based on the defect annihilation scenario, Eq. (15), the
results are exactly the same in 2D, while they differ by a factor
ln(L) and L ln(L) in 1D and 3D, respectively. For OBCs, the
above KZ result (which is insensitive to boundary conditions)
differs by ln(L) from the correct form in all dimensions.

Our results demonstrate that a scaling collapse in the
ordering behavior of a many-body system is not per se evidence
of KZ scaling. On the contrary, scaling can arise from the
dynamical behavior of the excitations as the system relaxes
into its ordered state. By an appropriate effective modeling
of these excitations, it is possible to infer the dynamical

scaling form of the order parameter. A tell tale sign of the
difference between KZ-driven and defect-driven scaling may
be observable when we compare the behavior of open and
closed boundary conditions, as we illustrate using examples in
d = 1,2,3.

Finally, our work also provides analytical estimates (and
corresponding numerical verification) of the time scales rele-
vant for the onset of topological order as T → 0 (following
linear ramps in temperature). We remark that these time scales
are indeed the ones required to prepare the toric code in 2D
and 3D in a topologically ordered ground state devoid of any
excitations. Even though the toric code is but a toy model for
topological quantum computing, modeling of excitations in
a manner similar to the one presented in our work may be
relevant to preparing quantum topological states in a potential
experimental setting for quantum information processing.
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