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Topological noncollinear magnetic phases of matter are at the heart of many proposals for future information
nanotechnology, with novel device concepts based on ultrathin films and nanowires. Their operation requires
understanding and control of the underlying dynamics, including excitations such as spin waves. So far, no
experimental technique has attempted to probe large wave-vector spin waves in noncollinear low-dimensional
systems. In this paper, we explain how inelastic electron scattering, being suitable for investigations of surfaces and
thin films, can detect the collective spin-excitation spectra of noncollinear magnets. To reveal the particularities
of spin waves in such noncollinear samples, we propose the usage of spin-polarized electron-energy-loss
spectroscopy augmented with a spin analyzer. With the spin analyzer detecting the polarization of the scattered
electrons, four spin-dependent scattering channels are defined, which allow us to filter and select specific
spin-wave modes. We take as examples a topological nontrivial skyrmion lattice, a spin-spiral phase, and the
conventional ferromagnet. Then we demonstrate that, counterintuitively and in contrast to the ferromagnetic
case, even non-spin-flip processes can generate spin waves in noncollinear substrates. The measured dispersion
and lifetime of the excitation modes permit us to fingerprint the magnetic nature of the substrate.
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I. INTRODUCTION

Recently, exquisite magnetic states related to chiral interac-
tions in noncentrosymmetric systems have been discovered and
intensively investigated. They are noncollinear magnetic struc-
tures such as skyrmions, antiskyrmions, magnetic bobbers, and
spin spirals [1–8]. These states arise from the delicate balance
of internal and external interactions, such as the magnetic
exchange, Dzyaloshinskii-Moriya and magnetic fields, which
can trigger topologically nontrivial properties [9–12]. Most
important for applications is their formation in ultrathin films,
given that they can be tailored by the structure and com-
position of heterogeneous multilayers [12–14]. Concurrently,
spin waves have been explored for their potential application
in spintronic and magnonic devices [15–19]. However, the
behavior of spin waves in these noncollinear systems is only
now beginning to be understood [20–30].

Do spin waves inherit special properties due to the topology
of the magnetic structure, leading to revolutionary appli-
cations? To explore this question we need to understand
the manifestation of spin waves in these novel magnetic
phases: how they may be excited, controlled, and detected.
Noncollinear magnetic structures intrinsically feature many
spin-wave bands (or modes) due to the breaking of translational
and rotational symmetries [26,31]. However, only a few of
them can be excited or detected by a given experimental setup.
Thus, a discussion of spin-wave excitations must go together
with the exciting/probing technique. On one hand, inelastic
neutron-scattering and microwave resonance have been used
to investigate collective spin excitations in bulk chiral heli-
magnets and two-dimensional skyrmion lattice [21,22,24,29].
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While the first lacks surface sensitivity, the second is restricted
to excitations near the � point. On the other hand, inelastic
electron scattering has been applied with great success to study
spin waves in ultrathin films [32–42], due to the large scattering
cross section of the electrons. However, to the best of our
knowledge, it has only been employed for ferromagnets. The
same is true from the theoretical side [43,44].

In this paper, we provide a quantum description of the
inelastic scattering of electrons by spin waves in noncollinear
systems. We illustrate these developments with two non-
collinear phases of a hexagonal monolayer, namely a cycloidal
spin-spiral and a skyrmion lattice, contrasting them with the
well-known ferromagnetic case. The spectra were calculated
as to be measured by spin-polarized electron-energy-loss
spectroscopy augmented with a spin analyzer, see Fig. 1. We
demonstrate that this spin-resolved spectroscopy enlightens the
existence of zero net angular momentum spin waves in non-
collinear substrates and that our proposed scheme permits us
to filter and select specific spin-wave modes. We also observe
the highly anisotropic dispersion-relation and localization of
spin waves in the helical sample.

II. THEORY

Let us consider an experimental setup based on
spin-polarized electron-energy-loss spectroscopy (SPEELS)
[32,33] augmented with a spin filter for the scattered elec-
trons [45], which we call spin-resolved electron-energy-loss
spectroscopy (SREELS), see Fig. 1. It consists in preparing
a spin-polarized monochromatic electron beam, which then
scatters from the first few layers of the sample surface.
Scattered electrons may exchange energy, angular, and linear
momentum due to creation or annihilation of spin waves.
By the conservation laws of these quantities, measuring their
exchanges informs upon spin-wave states of the magnetic
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FIG. 1. Schematic picture of spin-resolved electron-energy-loss
spectroscopy (SREELS). A monochromatic spin-polarized (SP) elec-
tron beam is aimed at the surface of a noncollinear magnetic sample.
The magnetic noncollinearity leads to a mixed spin state of the
outgoing electrons. These are then collected for spectroscopical
analysis, having both their energy and spin characterized.

system. An incoming beam with up or down spin polarization
generates outgoing electrons in a quantum superposition of
up and down states, due to atomic spin moments not aligned
with the beam polarization axis. Then, by filtering the spin of
the outgoing electrons, two non-spin-flip scattering channels,
up-up and down-down, and two spin-flip ones, up-down and
down-up, are defined. The meaning of these channels will be
discussed later with specific examples.

We consider an incoming (outgoing) beam with energy
Ein (Eout), wave vector kin (kout), and spin projection sin

(sout), which interacts with a sample held at zero temperature,
i.e., in its ground state. These variables define the energy
absorbed by the sample ω = Ein − Eout, and the linear and
angular momentum transferred, q = kin − kout and m = sin −
sout, respectively. There are thus four scattering channels, with
angular momentum m = 0,±1, according to the four possible
combinations of sin and sout.

We assume that the electrons couple with the atomic spins
via a local exchange interaction σ · Sμ, where μ labels the
basis atom in the unit cell, σ is the Pauli vector describing
the electron spin, and Sμ is the vector operator describing
the atomic spin. The details of the derivation can be found in
Appendix A, so here we just discuss the outcome. Starting from
the Schrödinger equation for the coupled system of electron
beam and magnetic sample, time-dependent perturbation
theory leads to Fermi’s golden rule for the transition rate
between initial and final electron states:

�m(q,ω) ∝
∑
αβ

σ α
sinsout

σβ
soutsin

∑
μν

eiq·RμνN αβ
μν (q,ω). (1)

Here α,β = +,−,z and σ± = (σx ± i σy)/2, with z being the
spin quantization axis of the beam polarization. The wave
nature of the electron beam leads to the Fourier factor con-
necting the basis atoms in the unit cell (Rμν = Rν − Rμ) and
is responsible for the unfolding of the spin-wave modes [41].
The information about the spin excitations of the sample is con-

tained in the imaginary part of the spin-spin correlation tensor

N αβ
μν (q,ω) =

∑
kr

δ(ω − ωr (k)) 〈0̃|Sα
μ(q)|kr〉 〈kr|Sβ

ν (q)|0̃〉,

(2)

where the sum runs over all possible excited states of wave
vector k and mode index r , and |0̃〉 is the ground state of the
magnetic system. We now outline our description of these
states, and the detailed derivations are given in Appendix B.

We take the generalized Heisenberg Hamiltonian to de-
scribe the magnetic system:

H = − 1

2

∑
ij

S†
i Jij Sj −

∑
i

Bi · Si ,

Jij =

⎛
⎜⎝

J x
ij Dz

ij −D
y

ij

−Dz
ij J

y

ij Dx
ij

D
y

ij −Dx
ij J z

ij + 2Kzδij

⎞
⎟⎠,

Bi = (
Bx

i B
y

i Bz
i

)
. (3)

J is the isotropic magnetic exchange coupling, which favors
collinear alignment for each pair of atomic spins. D is the
antisymmetric Dzyaloshinskii-Moriya interaction, originating
from the spin-orbit interaction, that favors a perpendicular
alignment. B is the external magnetic field and K is the uniaxial
anisotropy along z (i.e., normal to the lattice plane). The
sum in i and j runs over all magnetic sites of the sample.
The position of each magnetic site can be decomposed by
Ri = Rm + Rμ, where Rm and Rμ are a primitive and a basis
vectors, respectively.

The eigenstates of the generalized quantum Heisenberg
Hamiltonian are only known for a few special cases. Thus we
have to make some approximations to be able to describe the
inelastic scattering from an arbitrary magnetic system. First
we find the ground state of the classical Hamiltonian, e.g. by
numerical means. The spin operators Sμ are given in the global
spin frame of reference, with the z axis being normal to the
lattice plane. Then, for every basis atom in the unit cell, we
define S′

μ by a transformation to a local spin frame of reference,
where the z axis is given by the classical ground-state spin
orientation. This transformation is represented by a rotation
matrix Oμ: Sμ = OμS′

μ.
To access the excitation spectrum, we linearize the Holstein-

Primakoff representation [46] of the quantum spin operators
(in the local spin frame of reference): S ′x

μ − iS ′y
μ = √

2Sμa†
μ,

S ′x
μ + iS ′y

μ = √
2Sμaμ, and S ′z

μ = Sμ − a†
μaμ. We then trun-

cate the corresponding spin Hamiltonian, keeping only terms
up to second order in the Holstein-Primakoff bosons. The
zeroth-order contribution gives the classical ground-state en-
ergy, the terms linear in the boson operators vanish when
the classical ground state is used to define the local spin
frames, and the quadratic terms describe the spin excita-
tions. The lattice Fourier transformation is given by aμ(k) =

1√
N

∑
m e−ik·Rmamμ and N is the number of unit cells. Thus,

we are left with a Hamiltonian of the form

H2 = −1

2

∑
k

∑
μν

a†
μ(k)Hμν(k)aν(k), (4)
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where aμ(k) = ( aμ(k)
a
†
μ(−k)

), and so H(k) is a 2n × 2n matrix with n

being the number of atoms in the unit cell. H(k) is generally not
block diagonal for noncollinear systems, so the quadratic part
of the Hamiltonian contains ‘anomalous’ terms (in analogy
with the theory of superconductivity). These are eliminated
via a Bogoliubov transformation, which diagonalizes H2 by
introducing a new set of boson operators such that

b†r (k) |0̃〉 = |kr〉, br (k) |0̃〉 = 0, 〈kr|0̃〉 = 0, (5)

and

H2 |kr〉 = ωr (k)|kr〉. (6)

The new and old creation and annihilation operators are related
by

aα
μ(k) =

∑
β,r

Rαβ
μr (k)bβ

r (k). (7)

The basis transformation matrix Rαβ is given by the eigenvec-
tors of the dynamical matrix D = gH2, with g being a diagonal
matrix containing −1 on its first half and 1 on the second, see
Appendix B 3. This development allows us to determine the
action of the spin operators on the ground and excited states
of the system, with which, and after some algebra, allows us
to evaluate Eq. (2) and obtain

N αβ
μν (q,ω) = 2

√
SμSν

∑
r

δ(ω − ωr (q))

× [
Oα+

μ (R++
μr (q))∗ + Oα−

μ (R−+
μr (q))∗

]
× [

Oβ+
ν R−+

νr (q) + Oβ−
ν R++

νr (q)
]
. (8)

We have then written the spin-spin tensor in terms of the
eigenvectors and eigenvalues of the magnetic system. It is
the possibility of accessing different elements of this tensor
with a spin analyzer that provides unique information about
the spin excitations of complex noncollinear magnets, as will
be demonstrated in the following.

III. RESULTS

We illustrate the significance of this general result with
the spin model of Ref. [26], which was used to describe a
magnetic skyrmion lattice on a hexagonal monolayer. The
lattice constant is taken as the unit of length (a = 1). The
model consists of only nearest-neighbor interactions, with
Dzyaloshinskii-Moriya vectors orthogonal to both the bond
direction and the normal to the monolayer plane, n̂ij = ẑ ×
R̂ij . B is the external magnetic field and K is the uniaxial
anisotropy. The atomic spin is set to S = 1 and J is taken as
the unit of energy, defining the remaining model parameters
as D = J , B = 0.36 J , and K = 0.25 J . We now apply our
formalism to three different magnetic states.

A. Ferromagnet

With D = 0, the ground state of the spin model is ferromag-
netic and its total spin is maximal. With the polarization of the
beam parallel to the spin of the sample, we find only one active
inelastic scattering channel, the down-up (m = −1). This is in
agreement with the conventional wisdom that it takes a spin-flip
process to create a spin wave, which is the picture familiar from
(SP)EELS experiments [32,33,47], also found in our previous
work [41]. For this model, the spectrum features a single and
continuous spin-wave branch (Fig. 8 in Appendix B).

B. Spin spiral

Keeping now only J and D in the spin model, the ground
state becomes a spin spiral. We considered a cycloidal spin
spiral of wave vector Q = Q ŷ. Its energy is minimized by
Q = α/d, where α = arctan(

√
3D/2J ) and d = a

√
3/2 is the

distance between rows of parallel spins, see Appendix B 1 a.
For convenience, we set D = 2J/

√
3 leading to a spin-spiral

wavelength λ = 8d, as in Fig. 2(a). This magnetic state has
zero net magnetization.

Figures 2(c) and 2(d) show the spin-resolved inelastic
electron scattering spectra calculated from Eq. (1) on the path
of Fig. 2(b). We considered the electron beam polarization

FIG. 2. Spin waves for a spin-spiral structure, beam polarization along z. (a) Spin-spiral ground state and crystallographic axes. The red
and blue arrows correspond to the two considered spin polarizations of the electron beam. (b) Path in reciprocal space being considered for the
calculations of the SREELS spectra. These are shown in (c) for the spin-conserving channels and in (d) for the spin-flip channels. The arrow
pairs indicate the initial and final electron spin polarization for each channel. (e)–(g) Sketch of the low-frequency motion of the net atomic spin
for the three spin-wave modes with minima in −Q, +Q, and �, respectively. See also videos 1 to 3 in the Supplemental Material [48].
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FIG. 3. SREELS spectra for spin waves in a spin spiral as in
Fig. 2. Here, the beam polarization is along x, which is aligned with
the precession axis of the spin waves. Thus, each scattering channel
probes a single spin-wave mode.

along z—up and down are defined with respect to this axis. The
spin-conserving channels (m = 0) always present the same
response, because they measure excitations that have zero net
angular momentum and, therefore, are insensitive to the spin
of the probing electrons. Here, the spin-flip channels are equiv-
alent because of the symmetry of the magnetic structure with
respect to z. Three modes are clearly observed in the spin-
flip channels, Fig. 2(d), as sharp and well-defined dispersing
features through the M-�-M path. They have energy minima in
−Q, �, and +Q, which we will use to label them. These modes
are the three universal helimagnon modes [21], in contrast to
the single Goldstone mode in ferromagnets. For low frequency,
the −Q and +Q are excitations that yield a net atomic spin ro-
tating counterclockwise and clockwise, respectively, in the z-y
plane, see Figs. 2(e) and 2(f). For the � mode, however, the total
atomic spin does not rotate but oscillates linearly along the x

axis, as in Fig. 2(g). This shows that noncollinear magnetic
structures can host zero net angular momentum spin waves
and that they can be observed by SREELS. Note yet the highly
anisotropic dispersion relation around the � point. It is linear or
quadratic for spin waves propagating parallel or transversal to
Q, respectively, as seen in Fig. 2(d), paths M-�-M and K-�-D

[20,49]. Furthermore, Figs. 2(c) and 2(d) (path D-E) shows the
formation of one-dimensional spin waves, as indicated by the
dispersionless bands [21,50].

The dynamics of the spin-wave modes depicted in
Figs. 2(e)–2(g) indicates the x axis as the natural quantization
axis. It defines left and right spin projections. An incident
electron with up or down polarization corresponds to a su-
perposition of left and right spinors with respect to the x axis.
The −Q (+Q) mode can be excited by an electron with left
(right) polarization, which then undergoes a spin flip and goes
out with right (left) polarization. Therefore, −Q and +Q are
seen by the spin detector as a superposition of the up and down
polarizations, and this makes them be detected in all channels.
Due to quantum interference the � mode disappears from the
non-spin-flip channels, and it is intensified in the spin-flip ones,
see Figs. 2(c) and 2(d). Now, if we rotate the polarization of
the electron beam to be aligned with the x axis, each mode
will appear in a distinct scattering channel, as demonstrated in
Fig. 3. Also, overall the intensities are higher now with the po-
larization axis along the spin-wave precession axis. In practice,
controlling the polarization direction of the beam and of the
spin detector, which indeed are independent, allows SREELS
to select or render undetected certain spin-wave modes.

C. Skyrmion lattice

An increasing external magnetic field is responsible for
deforming the spin-spiral phase into a conical state, then into
the skyrmion lattice [14]. We concentrate on the skyrmion
lattice phase shown in Fig. 4(a), which was obtained via
a numerical energy minimization including all the model
parameters. The polarization of the electron beam is again
along z. Figures 4(c)–4(e) shows the SREELS spectra on the
path displayed in Fig. 4(b). Figure 4(c) demonstrates that
the spin-wave spectrum of a skyrmion lattice inherits the

FIG. 4. Spin waves in a skyrmion lattice. (a) Shows the ground state spin structure of the system. The colors represent the z component of
the spins. (b) Depicts the path on which all four SREELS spectra were calculated, (c)–(e). (f)–(h) snapshots of the z component of the local
atomic spins over time (as color maps), depicting the spin-wave motion at the hotspots of the spectra. Same color scale as in (a). (f) corresponds
to a breathing mode that is measured in the non-spin-flip channels. (g) and (h) are clockwise and counterclockwise rotational modes observed
in the down-up and up-down channels, respectively. See also videos 4 to 8 in the Supplemental Material [48].
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two-mode structure found for the spin spiral, see Fig. 2(c),
although both branches are now much broader. Contrary to
the usual spin-wave broadening due to coupling to phonons or
electrons [51–53], here it originates in the noncollinearity of
the magnetization. Note that the down-up spectrum in Fig. 4(d)
has overall a higher intensity than the up-down one in Fig. 4(e),
due to the upward total atomic spin of the system. Still in
Fig. 4(d), around � we observe that the gapless feature has a
quadratic dispersion, while the one with minimum at ω/J ∼ 3
disperses linearly.

Figures 4(f)–4(h) depicts the time evolution of the spin-
wave modes responsible for the high intensity spots at the �

point in the various channels. The color maps represent the z

component of the local atomic spins, and the arrows illustrate
the total atomic spin. The hotspot in the non-spin-flip channels,
Fig. 4(c), is due to a breathing mode, where the skyrmion
core shrinks and enlarges periodically. It has zero net angular
momentum, as seen by the dynamics of the total atomic spin
in Fig. 4(f). Two rotational modes identified in the down-up
channel near ω/J ∼ 3 and at zero are clockwise, and the
dynamics of their total atomic spin indicates that they possess
downward angular moments, Fig. 4(g). A counterclockwise
rotational mode is responsible for the faint hotspot in the
up-down channel, Fig. 4(h), therefore, with upward angular
momentum. This explains their appearance in their respective
scattering channels.

IV. DISCUSSION AND CONCLUSIONS

We showed that inelastic electron scattering can reveal vari-
ous spin-wave phenomena in noncollinear magnets throughout
the reciprocal space. We demonstrated that it can measure
anisotropies in the dispersion relation, and the localization
of spin waves along certain directions that yields to desired
spin-wave channeling for spintronics [20,21,49,50]. Further-
more, we discovered that the spin analysis of the scattered
electrons gives access to novel properties of the spin waves in
noncollinear substrates, such as zero net angular momentum
modes. Also, manipulating the polarization of the electron
beam allows us to select and filter spin-wave modes.

The realization of the SREELS may be applied to fingerprint
magnetic phases from their unique signatures on the spin-wave
spectra. It could, for example, help to distinguish between
a skyrmion tube and a magnetic bobber lattice in thin films
[8]. These phases may have similar magnetic profiles at the
very surface, but they differ deeper inside the film, which
impacts on the spin waves. Also, our theoretical approach can
be straightforward applied for material specific predictions, if
magnetic interaction parameters obtained from first-principles
calculations are supplied.

The presence of spin-orbit coupling in the magnetic sample
leads to an additional source of spin-dependent scattering,
besides the exchange scattering mechanism that lets us probe
spin excitations. An incoming electron can scatter on the spin-
orbit potential and have its spin flipped. Subsequently, it can
then further create or annihilate spin waves, which contributes
to the inelastic signal. For magnetic transition metals, spin-
orbit coupling is much weaker than the exchange scattering,
which is why such scattering processes can be ignored. On
heavy metals, spin-orbit coupling becomes important, e.g.,

allowing a full spin characterization of flying electrons by
surface skew scattering [54]. This could be used as a spin filter
in SREELS, but it might also require a high intensity electron
beam to compensate for the low efficiency of the spin detection.

A more efficient and intuitive way for spin filtering could
be a Stern-Gerlach apparatus for electrons. However, the
feasibility of such an experiment has been discussed since the
earliest years of quantum mechanics, and it is still a matter
of debate [55–60]. We hope that our work will encourage
investigations on such a spin splitter by providing an important
application, having in mind that similar challenges have been
overcome for neutron scattering experiment [61]. Despite the
enrichment that the spin analysis brings to the discussion,
spin waves in noncollinear systems can be measured with
the existing (SP)EELS setups. Their spectra would consist
of combinations of the different scattering channels we have
described for SREELS.
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APPENDIX A: INELASTIC ELECTRON
SCATTERING THEORY

Here we present the derivation of the transition rate for
inelastic electron scattering from spin waves of magnetic
systems, Eq. (1) of the main text. The complete theory of
electron diffraction from a surface is highly involved, due to
the strong interaction of the beam electrons with those of the
sample. However, as our interest is in the inelastic signal from
magnetic origin, we shall simplify the problem by treating the
surface as a lattice of atomic spins in their ground state, with
a local spin exchange interaction describing the coupling to
the beam electrons. In the next section, we will discuss the
particularity of applying this theory for noncollinear magnets.

1. General framework

The Hamiltonian of the problem has the following parts:

He = p2

2me
,

Hm = −1

2

∑
mn

∑
αβ

Sα
mJ αβ

mnS
β
n −

∑
n

∑
α

Bα
n Sα

n ,

Hem =
∑

n

∑
α

Un δ(r − Rn) σαSα
n . (A1)

The electron beam is described by the free-electron Hamil-
tonian He, with p the linear momentum operator and me the
electron mass. The magnetic lattice is described by Hm, with
Sα

n being the α component of the atomic spin operator for
site n, J

αβ
mn the elements of the tensor describing the pairwise

interactions between sites m and n, and Bα
n the α component of

the magnetic field acting on site n. The coupling between the
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atomic spins and the spin of the beam electrons is described by
Hem, with Un the interaction strength, r the position operator
for the electrons, Rn the position vector for site n, and σα the
Pauli matrix for the α component of the electron spin.

Next, we assume that the beam electrons and the magnetic
sample are decoupled for times t < 0. Then we can specify the
initial state of the electron beam as consisting of a plane wave
with well-defined energy Ei , wave vector ki , and spin si ,

〈r|ki si〉 = eiki ·r|si〉, Ei = k2
i

2m
,

|si〉〈si | = 1

2
(σ 0 + ni · σ ). (A2)

Henceforth h̄ = 1. The spinor |si〉 defines the spin polarization
of the electron to be along the direction ni . The eigenstates of
the spin model are assumed to be known,

Hm |λ〉 = Eλ |λ〉 , E0 � Eλ, (A3)

and the magnetic sample is in its ground state |0〉, with energy
E0. The state of the combined system at t = 0 is then the tensor
product of the two initial states

|i〉 ≡ |ki si0〉 = |ki si〉 ⊗ |0〉. (A4)

This state evolves in time under the action of the com-
plete Hamiltonian H = He + Hm + Hem, according to the
Schrödinger equation,

i
d

dt
|
(t)〉 = H|
(t)〉, |
(0)〉 = |i〉. (A5)

We introduce the time evolution operator, that connects the
state at a later time t to the initial state, in the form

|
(t)〉 = e−iH0t U (t) |i〉

=⇒ U (t) = 1 − i
∫ t

0
dt1 Hem(t1) U (t1),

Hem(t) = eiH0t Hem e−iH0t . (A6)

This integral equation follows directly from the Schrödinger
equation. The total Hamiltonian is split as H = H0 + Hem,
with H0 = He + Hm. Iterating the integral equation, we find

U (t) = 1 − i
∫ t

0
dt1 Hem(t1)

+ (−i)2
∫ t

0
dt1

∫ t1

0
dt2 Hem(t1) Hem(t2) + . . .

= 1 + U1(t) + U2(t) + . . . (A7)

This expansion corresponds to performing time-dependent
perturbation theory in Hem.

The probability of finding the system at a later time in some
final state |f 〉 = |kf sf λ〉 is

P (i →f,t) = |〈f |
(t)〉|2 = 〈i|U†(t)|f 〉〈f |U (t)|i〉
≈ |〈f |i〉 |2 (= P0(i →f,t))

+ (〈i|f 〉〈f |U1(t)|i〉 + 〈i|U†
1 (t)|f 〉〈f |i〉)

(= P1(i →f,t))

+ (〈i|U†
1 (t)|f 〉〈f |U1(t)|i〉+〈i|f 〉〈f |U2(t)|i〉

+ 〈i|U†
2 (t)|f 〉〈f |i〉) (= P2(i →f,t)), (A8)

up to second order in Hem. Conservation of probability leads
to ∑

f

P (i →f,t) = 1,
∑
f

P0(i →f,t) = 1

=⇒
∑
f

Pn(i →f,t) = 0, n > 0. (A9)

The transition amplitudes are (Eb − Ea ≡ Eba)

〈f |U1(t)|i〉 = −i
∫ t

0
dt1 〈f |eiH0t1 Hem e−iH0t1 |i〉

= 1 − eiEf i t

Ef i

〈f |Hem|i〉, (A10)

〈f |U2(t)|i〉 = −
∑

v

∫ t

0
dt1

∫ t1

0
dt2 〈f |eiH0t1 Hem|v〉

× 〈v|e−iH0(t1−t2) Hem e−iH0t2 |i〉

=
∑

v

(
eiEf i t − 1

Ef i Evi

− eiEf vt − 1

Ef v Evi

)
〈f |Hem|v〉

× 〈v|Hem|i〉. (A11)

A complete set of (virtual) states was introduced for the second-
order amplitude.

The zeroth-order contribution to the transition probability
is

P0(i →f,t) = |〈f |i〉|2. (A12)

The final state must have a finite overlap with the initial state for
a nonvanishing result. As |f 〉 = |kf sf λ〉, this requires kf = ki

and λ = 0. The spinors give, see Eq. (A2),

P0(i →f,t) = |〈sf |si〉|2

= 1

4
Tr (σ 0 + ni · σ ) (σ 0 + nf · σ )

= 1

2
(1 + ni · nf ). (A13)

Measuring the spin component of the outgoing electron with a
spin detector which is not aligned with the polarization of the
incident electron beam then leads to a cosine dependence on
the angle between them.

The first-order contribution to the transition probability is

P1(i →f,t) = 1 − eiEf i t

Ef i

〈i|f 〉〈f |Hem|i〉

+ 1 − e−iEf i t

Ef i

〈i|Hem|f 〉〈f |i〉, (A14)

and the respective scattering rate is (recall that 〈f |i〉 must be
finite, so Ef i → 0)

�1(i →f,t) = dP1

dt
(i →f,t)

= − i (〈si |sf 〉〈ki sf 0|Hem|ki si0〉
− 〈ki si0|Hem|ki sf 0〉〈sf |si〉)

=
∑

n

Un 〈0|Sn|0〉 · (ni × nf ). (A15)
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Its detection requires a crossed setup: The polarization of
the outgoing electron must be measured along a direction
perpendicular to the polarization of the incident beam, yielding
information about the component of the magnetization of the
sample perpendicular to those two axes.

The second-order contribution is the most interesting one,
as it describes inelastic scattering. The first contribution to the
transition probability is

P2,1(i →f,t) = 2
1 − cos(Ef it)

(Ef i)2
|〈f |Hem|i〉|2, (A16)

with the scattering rate

�2,1(i →f,t) = dP2,1

dt
(i →f,t) = 2

sin(Ef it)

Ef i

|〈f |Hem|i〉|2

=
t→∞ 2π δ(Ef i)|〈f |Hem|i〉|2. (A17)

This is the familiar Fermi’s golden rule. The delta function
imposes energy conservation:

0 = Ef i = Eλ + k2
f

2m
− E0 − k2

i

2m
= Eλ − E0 − ω, (A18)

with ω = Eλ − E0 the energy transferred from the electron
beam to the magnetic sample. Likewise, we can define q =
ki − kf as the momentum transferred to the magnetic sample.

There is another contribution in second order,

P2,2(i →f,t) =
∑

v

(
eiEf i t − 1

Ef i Evi

− eiEf vt − 1

Ef v Evi

)
〈i|f 〉

× 〈f |Hem|v〉〈v|Hem|i〉

+
∑

v

(
e−iEf i t − 1

Ef i Evi

− e−iEf vt − 1

Ef v Evi

)

× 〈i|Hem|v〉〈v|Hem|f 〉 〈f |i〉. (A19)

Due to the presence of the overlap 〈f |i〉, it contributes only to
ω = 0 and q = 0. As we are interested in inelastic scattering,
we will not analyze this term further.

2. Inelastic scattering rate

From the analysis in the previous section, we can define the
inelastic scattering rate as expected from Fermi’s golden rule:

�if (q,ω) = 2π
∑
λ �=0

δ(Eλ − E0 − ω) | 〈kf sf λ|Hem|ki si0〉 |2,

(A20)

with ω and q the energy and momentum transferred from the
electron beam to the magnetic sample.

We assume that the ground state of the magnetic sample
is commensurate with the atomic lattice and for simplicity
consider a single monolayer. Then we can separate the position
vector of every magnetic atom as Rnν = Rn + Rν , letting Rn

label the origin of the nth magnetic unit cell, and Rν the basis
vector inside the magnetic unit cell. The coupling Hamiltonian
is assumed to have the translational symmetry of the magnetic
unit cell, so

Hem =
∑
nν

Uν δ(r − Rnν) σ · Snν. (A21)

If the magnetic atoms are chemically distinct, their coupling
strength might be atom dependent, hence Uν . The matrix
elements are then

〈kf sf λ|Hem|ki si0〉 =
∑

β

〈sf |σβ |si〉
∑

ν

Uν eiq·Rν

× 〈λ|
∑

n

eiq·RnSβ
nν |0〉

=
√

Nl

∑
β

〈sf |σβ |si〉
∑

ν

Uν eiq·Rν

× 〈λ|Sβ
ν (q)|0〉, (A22)

〈ki si0|Hem|kf sf λ〉 =
∑

α

〈si |σα|sf 〉
∑

μ

Uμ e−iq·Rμ

× 〈0|
∑

n

e−iq·RmSα
mν |λ〉

=
√

Nl

∑
α

〈si |σα|sf 〉
∑

μ

Uμ e−iq·Rμ

× 〈0|Sα
μ(−q)|λ〉. (A23)

Nl is the number of unit cells under Born-von Karman periodic
boundary conditions. We define the spin-spin correlation tensor
as
N αβ

μν (q,ω) =
∑
λ �=0

δ(Eλ − E0 − ω) 〈0|Sα
μ(−q)|λ〉〈λ|Sβ

ν (q)|0〉.

(A24)

It has the periodicity of the magnetic lattice, with α,β =
x,y,z the components of the spin operators, and describes the
intrinsic spin excitations of the magnetic sample.

The inelastic scattering rate is then expressed using this
tensor as

�if (q,ω) = 2π Nl Nb

∑
αβ

〈si |σα|sf 〉〈sf |σβ |si〉

× 1

Nb

∑
μν

UμUν eiq·RμνN αβ
μν (q,ω), (A25)

with Rμν = Rν − Rμ. Nb is the number of basis atoms in each
unit cell, so NlNb is the total number of magnetic atoms. The
scattering rate combines the information about the intrinsic
spin excitations, contained in N αβ

μν (q,ω), with the information
about the spin polarization of the incoming and detected
electrons (Pauli matrices) and the wave nature of the electrons,
leading to interference between different contributions (the
Fourier phase factor).

We can find an explicit expression for the dependence on
the electron spin polarization:

Pαβ

if = 〈si |σα|sf 〉〈sf |σβ |si〉

= 1

4
Tr (σ 0 + ni · σ ) σα (σ 0 + nf · σ ) σβ

= 1

2

((
1 −

∑
γ

n
γ

i n
γ

f

)
δαβ + nα

i n
β

f + n
β

i nα
f

+ i
∑

γ

εαβγ

(
n

γ

i − n
γ

f

))
. (A26)
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Here δαβ is the usual Kronecker delta and εαβγ the Levi-Civita
symbol. To illustrate, consider the spin polarization of the
incoming electrons to be +z or −z, and the spin polarization
of the outgoing electrons also to be measured along +z or −z.
The four tensors selecting the spin components of the magnetic
sample that can be measured for each case are

P++ x y z

x 0 0 0
y 0 0 0
z 0 0 1

,

P−− x y z

x 0 0 0
y 0 0 0
z 0 0 1

,

P+− x y z

x 1 +i 0
y −i 1 0
z 0 0 0

,

P−+ x y z

x 1 −i 0
y +i 1 0
z 0 0 0

. (A27)

We see that P++ and P−− are the same and connect with
N zz

μν(q,ω). P+− connects with N−+
μν (q,ω), and P−+ connects

with N+−
μν (q,ω).

For a ferromagnetic sample with a ground state of total spin
along +z, only N+−

μν (q,ω) is finite. P−+ means that the spin
polarization of the incoming electron beam is −z, antiparallel
to the total spin of the sample. As the outgoing electron is
detected with +z spin polarization, the ferromagnetic sample
lost h̄ of angular momentum, corresponding to the lowering
of the spin associated with the creation of a spin wave. If
N−+

μν (q,ω) were finite, then the sample would gain h̄ of angular
momentum. More intriguingly, a finite N zz

μν(q,ω) describes
spin excitations with no net exchange of angular momentum
between electron beam and magnetic sample.

APPENDIX B: ADIABATIC APPROACH OF SPIN WAVES
FOR NONCOLLINEAR SYSTEMS

Our goal is to calculate the inelastic scattering rate when
an electron beam scatters from spin waves in a noncollinear
magnet. This rate is given by Eq. (A25), and therefore we need
to evaluate the spin-spin correlation tensor of Eq. (A24). For
that, we need to determine the ground state |0〉 of the system
and describe its excited states |λ〉. Also, we need to establish
how the spin operators act on these states. As example cases,
we are going to consider two magnetic phases of a monolayer
hexagonal crystal: a spin spiral and a skyrmion lattice. To
describe the magnetic system, we consider the generalized
Heisenberg Hamiltonian of Eq. (3). The first step consists of
determining the classical ground-state spin configuration.

1. The classical ground state

The classical ground state of a magnetic system is given
by the configuration of the classical spins that has the lowest
total energy. To find such a configuration, we replace the
spin operators Si by classical vectors in the Hamiltonian of
Eq. (3), then we search for the spin alignments with respect to
each other and to the fields that is energetic mostly favorable,
considering that the magnitude of Si is constant. This search
is not a trivial matter in general, and it can be attempted
analytically or numerically depending on the complexity of
the set of interactions. We want now to determine the classical
ground state of a spin spiral and a skyrmion lattice for a
hexagonal monolayer.

FIG. 5. Sketch of a portion of a hexagonal lattice hosting a
cycloidal spin spiral. The spins tilt in the y-z plane.

a. Spin spiral

Now let us consider a single layer of a hexagonal lattice of
primitive vectors a1 = ax̂ and a2 = a(x̂/2 + √

3ŷ/2), where
a is the lattice constant. We are assuming the classical ground
state is a cycloidal spin spiral given by spiral vector Q along
y, i.e., with the spins rotating in the y-z plane. We want to
determine which Q correspond to the lowest energy. Also,
we consider only nearest neighbors J and D (K = 0, B = 0,
Dij ∝ ẑ × r̂ij ). With the help of Fig. 5, we have:

H = − 1

2

∑
ij

[Jij Si · Sj + Dij · (Si × Sj )]

= − 1

2

∑
ij

[JijSiSj cos θij + Dx
ijSiSj sin θij ]

= − 1

2
S2

∑
i

[J (2 + 4 cos θ ) + 4Dx sin θ ]

= − S2N [J (1 + 2 cos(dQ)) + 2Dx sin(dQ)] (B1)

because θ = Qd, and we have that d = a
√

3/2. To find the
minimal energy, we need to find the zeros of the derivative of
this equation in respect to Q:

dH
dQ

= 2dS2N [J sin(dQ) − Dx cos(dQ)] = 0, (B2)

and therefore

J sin(dQ) − Dx cos(dQ) = 0

J√
J 2 + Dx2

sin(dQ) − Dx2√
J 2 + Dx2

cos(dQ) = 0

cos α sin(dQ) − sin α cos(dQ) = 0

sin(dQ − α) = 0, (B3)

where we defined

cos α = J/
√

J 2 + Dx2 and sin α = Dx/
√

J 2 + Dx2.

(B4)
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This gives that

α = arctan(Dx/J ). (B5)

For the sine function to be zero its argument has to equal nπ ,
where n = 0, ± 1, ± 2,..., which leads to

Q = nπ + α

d
. (B6)

The only two inequivalent solutions are for n = 0,1. For all
other n, a translation by a proper reciprocal lattice vector can
bring the solution back to one of these two cases. If one of the
solutions is a point of minimal energy the other one has to be
of maximal energy. To check this, we have to take the second
derivative of H:

d2H
dQ2

= 2d2S2N{J cos(dQ) + Dx sin(dQ)}, (B7)

which for the two cases reads (dropping the pre-factor that
doesn’t matter for the sign analysis):

n = 0
d2H
dQ2

∝ J cos α + Dx sin α,

n = 1
d2H
dQ2

∝ −(J cos α + Dx sin α). (B8)

This already proves that the two solutions have opposite
concavity, therefore one must be a minimum energy point and
the other a maximum point. By using Eq. (B4), we have:

n = 0
d2H
dQ2

∝ + J 2 + (Dx)2√
J 2 + (Dx)2

> 0,

(B9)

n = 1
d2H
dQ2

∝ − J 2 + (Dx)2√
J 2 + (Dx)2

< 0,

which shows that

Q = α/d (B10)

is the solution we were looking for. In the particular case where
J = 1 and D = 2/

√
3, such that Dx = 1, we obtain that Q =

π/4d, which corresponds to a spin-spiral pitch of λ = 8d.

b. Skyrmion lattice

In spherical coordinates Si is uniquely defined by (θi,φi)
which represent the polar and azimuthal angles, respectively.
We want to determine the ground state self-consistently. First,
a trial configuration of spins Si is used as a starting point. Then,
we compute the magnetic torques acting on each spin Si :

T θ
i = ∂H

∂θi

, and T φ

i = ∂H
∂φi

. (B11)

The torques {T θ
i ,T φ

i } are used to determine the set of angles
for the next iteration, using a linear mixing:

θn+1
i = θn

i + α T θ
i , and φn+1

i = φn
i + α T θ

i . (B12)

α is the mixing parameter, which is set to a small value to
ensure convergence. The output angles from Eq. (B12) are
inputted into the Hamiltonian. The torques are recalculated
using Eq. (B11). This process is repeated until self-consistency
is reached and the magnetic torques acting on each spin Si are
zero.

FIG. 6. The skyrmion lattice ground state. The Hamiltonian
parameter were set to J = 1, D = J , B = 0.36 J , and K = 0.25 J .
A numerical self-consistent minimization was used to obtain it, as
explained in the text.

We obtained the skyrmion lattice shown in Fig. 6 by
considering a hexagonal unit cell of 64 atoms. We chose J = 1,
D = J , B = 0.36 J , and K = 0.25 J as in Ref. [26]. The
direction of the Dzyaloshinskii-Moriya vector is n̂ij = ẑ × r̂ij .
We obtained the classical ground state via the numerical
minimization approach described above.

2. Holstein-Primakoff transformation

Our next step is to determine the excited states (spin waves)
of our magnetic sample. We are going to do so in the adiabatic
approach, also known as linear spin-wave approximation. First,
we change the frame of reference on each site, so that the z

axis of the new local frame corresponds to the classical spin
direction. Operators in the local frame are indicated by a prime.
This transformation is given by

Si = OiS′
i , (B13)

where the rotation matrix is

Oi = Oz(φi)Oy(θi)

=

⎛
⎜⎝

cos φi − sin φi 0

sin φi cos φi 0

0 0 1

⎞
⎟⎠

⎛
⎜⎝

cos θi 0 sin θi

0 1 0

− sin θi 0 cos θi

⎞
⎟⎠,

(B14)

φi is the polar and θi is the azimuthal angle of the classical
ground state orientation of Si . Now, we perform a Holstein-
Primakoff transformation [46,62,63], which will replace the
spin operator by creation and annihilation spin-wave operators:

S′
i = Miai , (B15)

where

Mi =
√

Si

2

⎛
⎜⎜⎝

1 1 0

−i i 0

0 0
√

2
Si

⎞
⎟⎟⎠ and ai =

⎛
⎜⎝

ai

a
†
i

Si − a
†
i ai

⎞
⎟⎠ .

(B16)
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Our transformed Hamiltonian is now written as:

H = − 1

2

∑
ij

a†
i J̃ij aj −

∑
i

B̃i · ai , (B17)

where

J̃ij = M†
i O

T
i Jij Oj Mj

=

⎛
⎜⎝

J̃++
ij J̃+−

ij J̃+z
ij

J̃−+
ij J̃−−

ij J̃−z
ij

J̃ z+
ij J̃ z−

ij J̃ zz
ij

⎞
⎟⎠ =

(
A2×2

ij C2×1
ij

C1×2
ij J̃ zz

ij

)
(B18)

and

B̃i = BiOiMi = (
B̃−

i B̃+
i B̃z

i

)
. (B19)

We now group terms of different order of the cre-
ation/annihilation operators keeping only up to the quadratic
order:

H = H0 + H1 + H2, (B20)

where

H2 = − 1

2

∑
ij

a†
i Hij aj and

H0 = − 1

2
J̃ zz

0

(∑
i

Si + N

)
−

∑
i

B̃z
i

(
Si + 1

2

)
, (B21)

with

Hij = A2×2
ij − (

B̃z
i + J̃ zz

0

)
I2×2δij =

(
H++

ij H+−
ij

H−+
ij H−−

ij

)
,

J̃ zz
0 =

∑
j

J̃ zz
ij Sj and now ai =

(
ai

a
†
i

)
. (B22)

The zero-order term H0 is a constant and corresponds to the
energy of the classical ground state. The first-orderH1 vanishes
if the correct classical ground state has been considered, so
we don’t list it explicitly. The second-order H2 describes the
excited states.

Considering that the system has periodicity given by the
translation vectors R, we can perform the following Fourier
transformation

ak = 1√
N

∑
i

e−ik·Ri ai , with ak =
(

ak

a
†
−k

)
. (B23)

We can then write:

H2 = −1

2

∑
k

a†
kHkak. (B24)

3. Diagonalization and Bogoliubov transformation

To find the spin-wave excitations, we consider the following
equation of motion [64,65]:

i
dai

dt
= [ai ,H2]. (B25)

By evaluating the commutator in the previous equation, we
obtain:

i
dai

dt
=

∑
j

Dij aj , (B26)

where the dynamical matrix is given by

Dij = −1

2

(
(H++

ij + H−−
ji ) (H+−

ij + H+−
ji )

−(H−+
ij + H−+

ji ) −(H++
ji + H−−

ij )

)
. (B27)

Because H2 is Hermitian, the following relations hold:

H++
ij = H−−

ji , H++
ij = (H−−

ij )∗,

H+−
ij = H+−

ji , H+−
ij = (H−+

ij )∗. (B28)

Therefore, the dynamical matrix in Eq. (B27) can be simplified
to

Dij =
(

−H++
ij −H+−

ij

H−+
ij H−−

ij

)
= gHij , (B29)

where

g =
(−1 0

0 1

)
. (B30)

The matrix g embodies the commutation relations of the
Holstein-Primakoff bosons. Note that gg = 1. Considering the
Fourier transformation of Eq. (B23) and assuming stationary
solutions of these operators ak, such that they depend on time
only via a global phase, as in

ak(t) = e−iωk tak, (B31)

we obtain for Eq. (B26) the following eigenvalue equation:

Dkak = ωkak. (B32)

For the general problem, we diagonalize Dk numerically,
but for some simple cases it can also be solved analytically.
We now show how diagonalizing Dk provides the eigenvalues
and eigenfunctions of Hk. For simplicity, we are going to drop
the k index. D is not Hermitian, therefore we need to define
left and right eigensolutions as follows:

DRr = ωrRr , LrD = ωrLr , (B33)

whereRr is a column eigenvector,Lr is a row eigenvector, and
r is the eigenvalue index. In matrix form this can be written as

DR = R�, LD = �L, (B34)

where L and R contain all left and right eigenvectors of D
as rows and columns, respectively. � is a diagonal matrix
containing the eigenvalues of D. In this way, we have that

LDR = LR�. (B35)

Because we want R to represent boson operators, it must
satisfy the proper commutation relations that can be expressed
as [31,64]:

R†gR = g, RgR† = g. (B36)

Based on Eq. (B36), we can show that knowing the right
eigenvectors we can construct the left ones via:

L = gR†g, (B37)
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which implicates in LR = RL = 1. Here comes the proof:

DR = R�

ggDR = R�

RgR†gDR = R�

gR†gDR = �

LDR = �

LDRL = �L
LD = �L. (B38)

Starting from Eq. (B35), we have:

LDR = �

gR†gDR = �

R†HR = g� = �

H = L†�L, (B39)

where � = g� is diagonal and positive. This equation reveals
that R generates a transformation into a basis where the
Hamiltonian is diagonal:

H2 = − 1

2

∑
k

a†
kHkak = −1

2

∑
k

a†
kL

†
k�kLkak

= − 1

2

∑
k

b†
k�kbk, (B40)

H2 = − 1

2

∑
k

b†
k�kbk = −1

2

∑
k

b†
kR

†
kHkRkbk

= − 1

2

∑
k

a†
kHkak, (B41)

where

bk = Lkak, b†
k = a†

kL
†
k,

ak = Rkbk, a†
k = b†

kR
†
k. (B42)

bk and b†
k are a new set of boson annihilation and creation

operators. This transformation is known as the Bogoliubov
transformation [31,62–65].

4. Spin waves modes in:
A ferromagnet, a spin spiral and a skyrmion lattice

Now, we would like to show the dispersion relation obtained
with the formalism of the previous sections for a ferromagnet,
a spin spiral, and a skyrmion lattice. The dispersion relation
consists of the eigenvalues of the Hamiltonian as a function of
the wave vector k, which evolves solving Eqs. (B32) and (B39).
We calculated all these three cases with the same hexagonal
Bravais lattice of primitive vectors a1 = ax̂ and a2 = a( 1

2 x̂ +√
3

2 ŷ), with a = 8; and with same unit cell containing 64 atoms.
The ground state spin configurations inputted were the ones
obtained in Appendix B 1. The same parameters as used for
the ground-state determination were used: ferromagnet {J =
1}; spin spiral {J = 1, D = 2J/

√
3}; and skyrmion lattice

{J = 1, D = J , K = 0.25J , B = 0.36J}.

FIG. 7. Spin-wave dispersion relations of noncollinear magnets.
The dispersion is composed by the eigenvalues given by Eq. (B39).
Panels (a), (b), and (c) correspond to a ferromagnet, a spin spiral, and
a skyrmion lattice in a hexagonal monolayer. Each of these phases
contained 64 atoms in the unit cell, and they shared the same primitive
lattice. The dispersions were calculated through the reciprocal path
shown in (d). We considered a polarization along z, e.g., normal to the
monolayer plane. Parameters: ferromagnet {J = 1}; spin spiral {J =
1, D = 2J/

√
3}; skyrmion lattice {J = 1, D = J , K = 0.25J , B =

0.36J}.

Figure 7(a) shows the dispersion curves for the ferromag-
netic case. Many bands appear because the Goldstone mode
of the ferromagnet gets folded due to the reduction of the
Brillouin zone when considering many atoms in the unit cell.
Figures 7(b) and 7(c) present the dispersion curves for the
spin spiral and the skyrmion lattice. We can observe that the
dispersion curves of the skyrmion lattice feature many gaps
and some dispersionless bands. The dispersion relations were
calculated through the reciprocal space path shown in Fig. 7(d).

The motion of the atomic spin moments corresponding
to the spin-wave modes can be seen on the videos in the
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Supplemental Material. Videos 1, 2, and 3 represent the lowest-
energy excitations of the spin-spiral sample at −Q, �, and +Q,
respectively. Meanwhile, videos 4 to 8 display the dynamics
of the five lowest-energy spin waves of the skyrmion lattice at
the � point. The central gray arrow represents the total atomic
spin. Also, the amplitude of the precession of the local spin
were rescaled to enhance the motion. We used the following
equations to describe the spin precession of every site in the
local reference frame:

S ′x,r

i (k) = A
x,r
i cos

(
ωrt + Ri · k + φ

x,r
i

)
,

S ′y,r

i (k) = A
x,r
i sin

(
ωrt + Ri · k + φ

y,r

i

)
, (B43)

S ′z,r
i (k) = 1,

where the phases and amplitudes were obtained from the
calculated right eigenvectors via:

R+,r
i = A

x,r
i eiφx,r

i and R−,r
i = A

y,r

i eiφy,r

i . (B44)

Here, i labels the atomic sites, r is the mode index, and k
the wave vector of the spin wave. Rr

i are the right-eigenvector
elements. Then, the precessing spin was brought into the global
reference frame via:

Sr
i = OiS′r

i . (B45)

5. Spin-spin correlation tensor for noncollinear magnets

To understand what out of the many spin-wave bands from
Fig. 7 can be actually excited and detected with inelastic
electron scattering, we need to calculate the scattering rate
given by Eq. (A25). We start by defining a spin excitation |kr〉
of wave vector k and mode index r as created by the action of
a new boson operator on a new ground state |0̃〉:

b†r (k) |0̃〉 = |kr〉, br (k) |0̃〉 = 0 and 〈kr|0̃〉 = 0, (B46)

such that

H2 |kr〉 = ωr (k)|kr〉. (B47)

Also, the relation between the new and the old boson
operators from Eq. (B42) can be rewritten as:

aα
μ(k) =

∑
β,r

Rαβ
μr (k)bβ

r (k), (B48)

where α,β = ± to represent the creation or annihilation oper-
ators (a+ = a† and a− = a); and μ,ν are site indexes within a
unit cell. We can now see that the classical ground state |0〉 is
not annihilated by br (k), because it is a combination of aμ(k)
and a†

μ(k). This leads to the definition of a modified ground
state in Eq. (B46).

For the scattering rate, we need to evaluate the spin-spin
correlation tensor of Eq. (A24):

N αβ
μν (q,ω) =

∑
kr

δ(ω − ωr (k)) 〈0̃|Sα
μ(q)|kr〉

× 〈kr|Sβ
ν (q)|0̃〉, (B49)

where

Sβ
ν (q) = 1√

Nl

∑
n

eiq·RnSβ
nν. (B50)

We can rewrite the spin operator as:

Sβ
nν = Oβ+

ν S ′+
nν + Oβ−

ν S ′−
nν + Oβz

ν S ′z
nν

= Oβ+
ν

√
2Sνanν + Oβ−

ν

√
2Sνa

†
nν + Oβz

ν (Snν − a†
nνanν),

(B51)

where S ′α is the spin operator in the local reference frame
related to the global representation via the rotation matrix Oαβ

ν .
We obtain that the left matrix element in Eq. (B49) reads

〈0̃|Sα
μ(q)|k,r〉 = 1√

Nl

∑
n

eiq·Rn
(
Oα+

μ

√
2Sμ 〈0̃|anμ|k,r〉

+ Oα−
μ

√
2Sμ 〈0̃|a†

nμ|k,r〉
+ Oαz

μ 〈0̃|a†
nμanμ|k,r〉 )

. (B52)

Using Eqs. (B46) and (B48), and the boson commutation
relations, the RHS terms of the previous equation are then
given by

〈0̃|anμ|k,r〉 = 1√
Nl

eik·RnR−−
μr

〈0̃|a†
nμ|k,r〉 = 1√

Nl

eik·RnR+−
μr

〈0̃|a†
nμanμ|k,r〉 = 0. (B53)

Then, Eq. (B52) becomes:

〈0̃|Sα
μ(q)|k,r〉

= √
2Sμδ(q + k)

(
Oα+

μ R−−
μr (k) + Oα−

μ R+−
μr (k)

)
, (B54)

where we used 1
Nl

∑
n ei(q−k)·Rn = δ(q − k). In a similar way,

we obtain the right matrix element in Eq. (B49):

〈k,r|Sβ
ν (q)|0̃〉

=
√

2Sνδ(q − k)
(
Oβ+

ν R−+
νr (k) + Oβ−

ν R++
νr (k)

)
. (B55)

Plugging back to Eq. (B49), we have our final expression:

N αβ
μν (q,ω) = 2

√
SμSν

∑
r

δ(ω − ωr (q))

× [
Oα+

μ (R++
μr (q))∗ + Oα−

μ (R−+
μr (q))∗

]
× [

Oβ+
ν R−+

νr (q) + Oβ−
ν R++

νr (q)
]
. (B56)

Also, we need to be able to transform the rotation ma-
trix from the xyz representation into the + − z. This is
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given by

O+ = M′OM′−1, (B57)

where

M′ =

⎛
⎜⎝

1 i 0

1 −i 0

0 0 1

⎞
⎟⎠. (B58)

a. Spin-resolved spectra (SREELS): Ferromagnet

Figure 8 shows the SREELS spectra for different spin
channels of a ferromagnet hexagonal monolayer, with mag-
netization along z, discussed in Appendix B 4. The dispersion
curves are shown by gray lines. The polarization was taken
along the precession axis of the spin waves. Only one channel
responds, revealing the Goldstone mode of ferromagnet.

FIG. 8. Spin-resolved spin-wave spectra in a ferromagnet. The
system consists of a hexagonal ferromagnetic monolayer with 64
atoms in the unit cell, as in Appendix B 4. The inelastic spectra are
given by the color maps, and they were obtained from Eq. (A25)
with the help of Eq. (B56). Meanwhile, the gray lines represent the
many dispersion-relation curves of the spin-waves, see Fig. 7(a). The
electron beam polarization is aligned along z. On the model, only a
uniform nearest neighbor J was considered.
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