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Magnetization precession by short-wavelength magnon excitations and spin-transfer torque
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The Bloch-Bloembergen equation is extended to study the magnetization precession in a spin-valve structure
by taking into account the short-wavelength magnon excitation and spin-transfer torque. A stable magnetization
precession is achieved when the transverse relaxation time T2 is longer than the longitudinal relaxation time
T1. A wide current-density window of stable magnetization precession is found for large T2 and it broadens
with increasing T2 for fixed T1. Our simulation results also reveal that short-wavelength magnon excitation can
reduce the amplitude of the magnetization precession, which is different from the prediction of the macro-spin
Landau-Lifshitz-Gilbert-Slonczewski equation.
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I. INTRODUCTION

Since the pioneering works of Berger and Slonczewski
[1,2], spin-transfer torque (STT) has been the subject of much
attention, owing to its high applicability in spintronic devices.
This effect has been realized in many structures with diverse
magnetization textures, such as domain walls, vortices, and
skyrmions [3–6].

When it comes to theoretical studies of the STT, generally,
the Slonczewski torque τ STT is added to the Landau-Lifshitz-
Gilbert (LLG) equation, leading to the Landau-Lifshitz-
Gilbert-Slonczewski (LLGS) equation [7–11]:

dM
dt

= γμ0 M × Heff + α

MS
M × dM

dt
+ τ STT. (1)

Here, M, γ , μ0, α, and MS are the magnetization vec-
tor, gyromagnetic ratio, permeability of free space, Gilbert
damping factor, and saturation magnetization, respectively.
The effective field Heff includes both external and internal
magnetic fields, and the Slonczewski torque τ STT is perpen-
dicular to M. The form of Eq. (1) makes it clear that in such
a macrospin approach to the STT magnetization dynamics,
the magnitude of M is assumed to stay unchanged, and the
excitation of short-wavelength magnons is neglected [12,13].
This approach is valid in sufficiently small devices comparing
with the dimension of domain-wall thickness, because the
excitation of magnons with wave vector k �= 0 would then
cost an excessive amount of exchange energy in such a small
dimension [14].

However, the macrospin LLGS model is limited when non-
linear magnon scatterings are considered. Nonlinear magnon
scatterings, generating short-wavelength magnons and redis-
tributing momentum and energy in a magnetic system, play
an important role in magnetic relaxation [15,16]. Common
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low-order nonlinear magnon scatterings include extrinsic two-
magnon scattering and intrinsic three- and four-magnon scat-
tering. In the process of two-magnon scattering, one k = 0
magnon is annihilated while a degenerate k �= 0 magnon is
created. Because the momentum is not conserved in this extrin-
sic process, defects are required [17–22]. In the ferromagnetic
resonance (FMR) experiment of Fe/V multilayer samples [18],
resonance linewidth is not a linear function of measuring
frequency when an applied magnetic field is parallel to the
film plane. This result cannot be explained by Gilbert damping
only, and the two-magnon scattering should be included.

In the three-magnon scattering process, one k = 0 magnon
is annihilated while two magnons with opposite wave vector (k
and −k) are created to conserve momentum, and ω0 = 2ωk is
required to conserve energy [23–25]. This requirement of spin-
wave dispersion relation cannot be fulfilled in ultrathin films,
and consequently three-magnon scattering is prohibited [26].
In the four-magnon scattering process, two k = 0 magnons are
annihilated, while two degenerate magnons with opposite wave
vector are created, where both momentum and energy are con-
served [26–28]. For the sake of simplicity, one four-magnon
scattering could be regarded as two conjugate two-magnon
scatterings (0→k and 0→−k) happening together mathe-
matically; hereafter, in this paper two-magnon scattering and
four-magnon scattering are no longer distinguished from each
other unless necessary, although they are physically different.

Short-wavelength magnon excitation is also inevitable in the
field of magnonics [29–31], which is a subfield of spintronics
concerning structures, devices, and circuits that use spin
currents carried by all kinds of magnons of both long and
short wavelengths. In this field, STT-based magnon injection
is an important technique, because it couples spin waves with
a spin-polarized direct electric current directly, and therefore
connects magnonics with conventional spintronics [32,33].

One way to deal with this dilemma is micromagnetic
simulation [34]. In this method, a magnet is subdivided into
many sufficiently small cells, which are about several to tens of
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nanometers. Within one such small cell, the excitation of k �= 0
magnons is prohibited for it would cost too much exchange
energy, and therefore the LLGS equation is applicable in
one cell. Many coupled LLGS equations are deployed to
characterize magnetizations of these small cells, and k �= 0
magnons would be excited to minimize the total free energy
in a much larger dimension comparing with cell size. Conse-
quently, this leads to drawbacks of surging of computational
complexity. What is more, nonlinear magnon scatterings are
rather obscure in this method, because there is only one
parameter Gilbert damping factor α to describe the relaxation
of k = 0 magnons in the LLGS equation. Thus, a more distinct
and convenient theoretical process is in high demand, which
is capable of describing short-wavelength magnon excitation
and spin-transfer torque.

Besides the LLG equation, other equations are also brought
up to study magnetic relaxation [35], among which the Bloch-
Bloembergen (BB) equation is widely applied in magnetic
dynamics studies [36–39]. The BB equation was introduced by
Bloch in order to study nuclear magnetic relaxation, and was
subsequently adopted by Bloembergen to study ferromagnetic
relaxation in nickel and supermalloys [40]. It can be written as

dM
dt

= γμ0 M × Heff − Mx

T2
ex − My

T2
ey − Mz − MS

T1
ez,

(2)

where T1 is the longitudinal relaxation time, T2 is the transverse
relaxation time, and ei (with i = x,y,z) are the Cartesian unit
vectors. Measuring susceptibility by FMR, Bloembergen gave
T1 and T2 of about 0.5 ns at room temperature for supermalloy
[40]. Klein et al. measured T1 and T2 of a single-crystal
disk of yttrium-iron garnet (YIG) by magnetic-resonance
force microscopy, giving T1 = 106 ns and T2 = 162 ns [41].
Considering the ultralow Gilbert damping factor α ∼ 10−5

of YIG [32], this high value of relaxation time is reasonable
comparing with α ∼ 10−3 of permalloy [42].

In comparison with the LLG equation, the BB equation
provides the magnetization vector M with greater freedom.
First, the magnitude of M need not be fixed, which means that
excitation of short-wavelength magnons can be naturally in-
cluded in Eq. (2). Second, the transverse components (Mx,My)
and longitudinal component (Mz) of the magnetization can
relax separately, in stark contrast to the relaxation behavior
described by the LLG equation.

Using Heisenberg Hamiltonian simulation in the atomic
scale, Hellsvik et al. found that spin-wave instability occurs
when there is a magnetic anisotropy in system at finite temper-
ature. Spin-wave instability leads to a Bloch-Bloembergen-
type relaxation of the magnetization, where the magnitude
of magnetization changes [38]. Spin-wave instability is also
reported in Ni83Fe17 thin film, where nonlinear effects become
important as soon as the magnetization precession angle
exceeds a couple of degrees [43]. The Bloch-Bloembergen
equation is also employed in newly developed spintronics. By
two alternative approaches, Rezende et al. [44] found that both
transverse relaxation and longitudinal relaxation used in the
Bloch-Bloembergen equation are essential to characterize the
spin-pumping damping in thick ferromagnetic films in contact
with a nonmagnetic metal layer, such as YIG/Pt.

However, up to now, the BB equation has not been em-
ployed to study the magnetic dynamics under spin-transfer
torque. Therefore, we add the Slonczewski torque τ STT to
the BB equation, leading to what may be called the Bloch-
Bloembergen-Slonczewski (BBS) equation:

dM
dt

= γμ0 M × Heff − Mx

T2
ex − My

T2
ey − Mz − MS

T1
ez

+ τ STT. (3)

In the following, we can see that a macrospin model based
on the BBS equation can be used to study the magnetic
dynamics under both short-wavelength magnon excitation and
spin-transfer torque. In this paper, a stable magnetization
precession can be achieved, and a wide current-density window
of stable magnetization precession is found for large T2,
which is favorable for a current-tuning spin-transfer torque
oscillator.

II. THEORETICAL MODEL

Here we apply the BBS equation in the form of Eq. (3)
to a simple trilayer spin-valve structure sketched in Fig. 1(a),
where a thin free magnetic layer and a thick fixed magnetic
layer are separated by a nonmagnetic metal layer. Without
loss of generality, the uniaxial anisotropy of the thin free
magnetic layer is along the z axis, the magnetization of the thick
fixed magnetic layer is pinned along the negative z direction,
and the applied magnetic field H0 is along the positive z

direction. In this case, when the magnetization vector of the
free magnetic layer M is pulled from its equilibrium along

FIG. 1. (a) A trilayer spin-valve structure used in our magnetic
dynamics study. (b) Three approaches of magnetization relaxation of
the free magnetic layer.
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the z axis, the effective field Heff in Eq. (3) acting upon the
free magnetic layer includes three components: the applied
magnetic field, the uniaxial anisotropy field along the z axis,
and the demagnetizing field along the x axis.

When electrons flow from the fixed magnetic layer to the
free magnetic layer, the Slonczewski torque τ STT in Eq. (3)
exerting on the free magnetic layer is μBjP m × (m × f )/de,
where μB, j , P, m, f , d, and e are the Bohr magneton, current
density, spin polarization, unit vector of the magnetization of
the free magnetic layer, unit vector of the magnetization of
the fixed magnetic layer, free magnetic layer thickness, and
electronic charge, respectively. Therefore, the Slonczewski
torque τ STT only changes the direction of M rather than the
magnitude. In other words, it only injects k = 0 magnons into
the free magnetic layer.

Now we turn to discuss the possible mechanisms of mag-
netization relaxation of the free magnetic layer in the trilayer
spin-valve structure, which may reveal the detailed origins of
T1 and T2 in Eq. (3). Following Suhl’s work [14], as shown in
Fig. 1(b), the magnetization relaxes through three approaches
[16,45–47].

First, magnons with k = 0 are scattered, and subsequently
turn into magnons with k �= 0. This process is known as
two-magnon scattering, and is characterized by the relaxation
time T3, which is inversely proportional to the square of
the matrix element of this scattering Hamiltonian [35]. This
relaxation process could be significant or even dominant
when the magnetization precession angle is sufficiently larger.
Through micromagnetic simulation, Dobin and Victora gave
the relaxation time of this magnon scattering process shorter
than 1.2 ns when the rotation angle is larger than 20° [26]. In
the FMR experiment of 1.0-nm epitaxial Fe on GaAs substrate,
two-magnon scattering has in-plane anisotropy, and the scat-
tering strength is ranging from 0.2 to 5.2 GHz depending on
azimuthal angle [21]. FMR measurement of Fe/V multilayers
gives similar results [18].

As the definition of magnon, the excitation of one magnon
reduces Mz by gμB, where g is the g factor [16]. Consequently,
in the first approach, the longitudinal component of magnetiza-
tion (Mz) stays unchanged, because the number of all magnons
is unchanged. The excitation of k �= 0 magnons reduces the
magnitude of magnetization, because magnetization at each
cell does not precess coherently due to k �= 0 magnons [16].
Therefore, the magnitude of magnetization M decreases for
the number of k �= 0 magnons is increased in this magnon
scattering process, and as a result, the transverse components
(Mx,My) decrease. This means that the relaxation time T3

contributes to T2, but it does not contribute to T1.
Second, the magnons with k = 0 are coupled to the lattice

system by a spin-lattice relaxation process characterized by re-
laxation time T4, which is about a few nanoseconds [48]. Spin-
lattice relaxation could be caused by magnon-electron scatter-
ing, magnon-phonon scattering, and Kambersky-Korenman-
Prange spin-orbit mediated scattering [26,49,50]. In the second
approach, the longitudinal component (Mz) increases, because
the number of all magnons is decreased in this process.
The number of k �= 0 magnons is not affected and the mag-
nitude of magnetization M stays unchanged, leading to the
decrease of transverse components (Mx,My). This means that
the relaxation time T4 contributes to both T1 and T2.

TABLE I. Default values of parameters used in our simulations.
MS,HK, d , P, j , T3, and T4 are the saturation magnetization, uniaxial
anisotropy field, thickness of the free magnetic layer, spin polariza-
tion, current density passing through device, two-magnon scattering
relaxation time, and spin-lattice relaxation time of k = 0 magnons,
respectively.

Parameter Value Parameter Value

MS 8 × 105 A/m j 2.3 × 1011 A/m2

HK 2.9 × 104 A/m T3 1 ns
d 2.5 nm T4 1 ns
P 0.3 T ∗

5 1 ns

Third, the magnons with k �= 0 are also coupled to the
lattice system by a spin-lattice relaxation process, and its
relaxation time T5 is on the order of 1 ns [26]. Because the total
magnons and the k �= 0 magnons are both decreasing in the
third approach, the longitudinal component (Mz) increases and
the magnitude of magnetization M also increases. However, the
magnons with k �= 0 do not affect the transverse components
(Mx,My) [45]. This means that the relaxation time T5 only
contributes to T1.

Considering the above three approaches, we have 1/T2 =
1/T3 + 1/T4 [16,45] in Eq. (3). On the other hand, we can
write the differential equation of relaxation of k = 0 magnons
as dnu/dt = ju/d − nu/T2, where nu is the density of k = 0
magnons, and ju is the injecting k = 0 magnon current density
due to STT. For the k �= 0 magnons, we have dnd/dt = nu/T3 −
nd/T5, where nd is the density of k �= 0 magnons. Adding
these two differential equations together, we have 1/T1 =
1/T4 + 1/T ∗

5 and 1/T ∗
5 = (1/T5 − 1/T4)nd/(nu + nd) [45,51]

in Eq. (3).
It is clear that the above three approaches are well included

in the macro-spin BBS model. However, the magnitude of
magnetization M always stays unchanged in the macrospin
LLGS model in the form of Eq. (1), so the first and the third
approaches cannot be described by the macrospin LLGS model
in spite of the second approach [35]. This further highlights
the main difference between the BBS equation and the LLGS
equation.

III. CALCULATION RESULTS AND DISCUSSION

The following simulations and discussions are based on
Eq. (3) and Fig. 1. Unless otherwise specified, the values of
the various parameters used in our simulations are listed in
Table I [8,40], where we assign 1 ns to T ∗

5 in order to fix the
T1 value. MS,HK, and P in Table I are based on the parameters
of Ni80Fe20 alloy.

In order to demonstrate the impacts of the two-magnon
scattering process (i.e., the excitation of short-wavelength
magnons) on magnetic precession under STT, we simulate
Eq. (3) with different relaxation time T3 = 0.6, 0.8, 1, and
1.2 ns, respectively, and the results of our simulations are
shown in Fig. 2. For the T3 = 0.6 ns case with relatively strong
two-magnon scattering, the amplitude of Mx (and that of My)
attenuates toward zero, as shown in Fig. 2(a). Meanwhile,
both Mz and M (the magnitude of magnetization M) relax
toward MS, as shown in Figs. 2(b) and 2(c). These variations
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FIG. 2. Magnetization dynamics of the free magnetic layer at
different values of T3: (a) Mx , (b) Mz, and (c) M = |M|. In (a) and (b),
lines at different T3 are stacked by vertical axis offset for clearness.

indicate that the magnetization of the free magnetic layer
tends to relax to its equilibrium along the z axis. The T3 =
0.8 ns case behaves similarly to the T3 = 0.6 ns one, but in
a more moderate way. However, in the T3 = 1 ns case with
relatively weak two-magnon scattering, Mx,Mz, and M all
oscillate steadily with invariant frequency and amplitude after
no more than 2 ns, and this case represents stable magnetization
precession. In the T3 = 1.2 ns case, the amplitudes of Mx,Mz,
and M all increase, while the envelopes of Mz and M quickly
decrease. This case represents magnetization switching. It is
worth noting that M varies significantly for all cases, as shown
in Fig. 2(c), which is different from macrospin LLGS model
prediction.

In Fig. 3(a) we show the stable magnetization precession
when T3 = 2 ns (T1 = 0.5 ns and T2 = 0.67 ns) at various
current densities from 1.81 × 1011 A/m2 to 2.1 × 1011 A/m2.
We can see that the envelopes of magnetization quickly
decrease in the initial stage and the magnetization gets to a

stable precession state very soon for the given current density.
Moreover, the stable magnetization precession is obtained with
a wide window of the current density, and the amplitude of
magnetization increases with the current density.

Figure 3(b) shows the dependence of jmax and jmin on
T2 with fixed T1 (T1 = 0.5 ns), where jmax and jmin are,
respectively, the maximum and minimum current densities
for stable precession. Although both jmax and jmin decrease
with T2, the current-density window (jmax − jmin) increases
with T2. A wide current-density window is desirable for
the STT oscillator community because oscillation frequency
can be easily tuned by the current. The inset of Fig. 3(b)
further indicates that the oscillation frequency decreases mono-
tonically with the current density, which is similar to the
LLGS case [8]. Similar experimental results are reported in
the Co90Fe10/Cu/Ni80Fe20 point-contact structure [52] and
Ni80Fe20/Cu/Ni80Fe20 nanopillar structure [53,54], where the
latter show frequency jumping at some low current points.
Rather different experimental results are also reported in
Fe/Ag/Fe pillar structure [55], where uniform precession state
and vortex precession state are found under high and low
applied field, respectively. The former’s frequency dependence
on current is weaker than the latter’s, and is nonmonotonic,
while in the latter scenario, the frequency is monotonic and
increasing with current. These experimental results indicate
that our macrospin model based on the BBS equation has
limitations.

Figure 3(c) shows minimum and maximum stable preces-
sion frequency (fmin and fmax) corresponding to jmax and
jmin in Fig. 3(b). Surprisingly, an increase in T2 shows little
influence on fmax, although it changes jmin obviously. On
the contrary, fmin increases evidently with the increasing of
T2. In other words, the stable precession frequency window
(fmax−fmin) shrinks with increasing T2, although the current-
density window broadens dramatically.

The inset of Fig. 3(c) shows the stability of the magneti-
zation precession when T3 = 2 ns for different initial magne-
tization vectors. Here we set the initial magnetization vectors

My(0) = 0, Mz(0) =
√

M2
S − M2

x (0), and Mx(0) = 20, 40, 60,
and 80 kA/m, respectively. It is clear that stable precessions
with the same frequency and amplitude are achieved after no
more than 15 ns in all cases.

Under the condition of T1 > T2 (such as T3 = 0.8 ns, i.e.,
T1 = 0.5 ns, and T2 = 0.44 ns), unstable precession is shown
in Fig. 3(d). As shown in Fig. 3(d), the amplitude of Mx

attenuates when the current density j = 2.5395 × 1011 A/m2

(red curve), whereas it increases when the current density j =
2.5409 × 1011 A/m2 (blue curve), despite the subtle change in
current density no more than 0.06%. This means that a stable
precession state cannot be achieved even with precise control of
the current density for the case of T3 = 0.8 ns, in stark contrast
to the T3 = 2 ns case.

Figure 4(a) shows the magnetization trajectories of stable
precession of the free magnetic layer in such STT oscillator
for different current densities when T3 = 2 ns. We can see
that the magnetization vector trajectories are not confined
to a spherical surface, which are different from spherical
trajectories predicted by the macrospin LLGS model. On the
other hand, the opening angle of the magnetization precession
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FIG. 3. (a) Stable magnetization precession represented by the evolution of M = |M| for different current densities when T3 = 2 ns (i.e.,
T1 = 0.5 ns and T2 = 0.67 ns). (b) Minimum and maximum current densities (jmin and jmax) for stable magnetization precession at various T2

with fixed T1 = 0.5 ns; the inset shows the dependence of stable precession frequency on the current density when T3 = 2 ns. (c) Minimum and
maximum stable precession frequency (fmin and fmax) corresponding to jmax and jmin in (b); the inset of (c) shows the stability of the precession
when T3 = 2 ns for different initial magnetization vectors Mx(0) = 20, 40, 60, and 80 kA/m, respectively. Lines are stacked by vertical axis
offset for clearness. (d) Instability of the precession when T3 = 0.8 ns (i.e., T1 = 0.5 ns and T2 = 0.44 ns) for different current densities. Lines
are stacked by vertical axis offset for clearness.

(defined as the maximum angle between the magnetization
vector and the z axis during the stable precession) increases
with the current density, as shown in Fig. 4(b), which is
similar to the prediction of the LLGS simulation [8]. The
opening angle is far larger than 20°, which means that the
nonlinear magnon-scattering effect is significant, and cannot
be neglected [26]. In contrast, the oscillation amplitude of My

first increases with the current density when the current density
is small, but then decreases when the current density is large, as
shown in Fig. 4(b), which is different from the LLGS prediction
[8]. This behavior is caused by two competing factors: the
increasing of the opening angle in Fig. 4(b) and the decreasing
of the magnetization magnitude in Fig. 3(a) with the current
density.

Besides the STT oscillator, STT magnetic random access
memory (STT-MRAM) is another important application of
STT, due to its nonvolatile, energy-saving, and short access
time features [56]. An interesting point to note is that our sim-
ulations and analyses elucidate the different features required
in the fabrication of these two kinds of devices. A STT-MRAM
device needs to operate in the switching region, so T2 < T1

is preferable. In contrast, T2 > T1 should be ensured in the
fabrication of the STT oscillator, for it operates in the stable
precession region.

Since 1/T1 = 1/T4 + 1/T ∗
5 and 1/T2 = 1/T3 + 1/T4, the

relation T2 > T1 means that the relation T3 > T ∗
5 should be

fulfilled to obtain stable precession of the STT oscillator.

As mentioned before, the relaxation time T3 describes two-
magnon scattering from magnons with k = 0 into magnons
with k �= 0, so it seems that large T3 (weak two-magnon
scattering) is preferable to achieve stable magnetization pre-
cession, which can be tuned by a suitable seed layer [57].
Speaking of the extrinsic two-magnon scattering, fluctuations
in the magnetic anisotropy field, small pores, or surface defects
can act as scattering centers [19]. In fact, these kinds of
scattering centers are common, since STT devices typically
feature thin films, fabricated with sophisticated microscale or
nanoscale technologies, such as magnetron sputtering, electron
beam lithography, and ion etching. Additionally, as an intrinsic
process, four-magnon scattering exists even if two-magnon
scattering is prohibited for the lack of defects.

However, according to 1/T ∗
5 = (1/T5 − 1/T4)nd/(nu + nd),

increasing T3 also leads to the increase of T ∗
5 . Consequently,

the effect of magnon scatterings on the stability of magneti-
zation precession needs further study. Unfortunately, further
processing goes beyond this macrospin BBS method, and may
need the help of micromagnetic simulation. Short-wavelength
magnon excitation related unstable magnetization precession
is reported in micromagnetic simulation studies. In nanopillar
structures with CoFe or Ni80Fe20 as the free magnetic layer,
chaotic behaviors in the free magnetic layer are found when a
large number of spin-wave modes are generated by excessive
spin current, which leads to the breakdown of stable magneti-
zation precession [58,59]. This behavior is markedly different
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FIG. 4. (a) Stable oscillating magnetization trajectories, and (b)
oscillation opening angle and amplitude of My for different current
densities.

from that predicted by the macrospin LLGS equation. This
magnon-scattering issue could be circumvented by shrinking
the size of the device to well below the domain-wall thickness
of the free magnetic layer, which unfortunately may cut
down the output power of the STT oscillator [60]. Under
such dimensional restriction, the resulting value of T3 is then
very large and suppresses the excitation of the energetically
inefficient k �= 0 magnons [14]. Then the LLGS equation is
applicable, and stable magnetization precession is achievable.

IV. CONCLUSIONS

In summary, the Bloch-Bloembergen-Slonczewski equa-
tion is established to study the magnetization dynamics of
free magnetic layer in a spin-valve structure by taking account
of the short-wavelength magnon excitation and spin-transfer
torque. The magnetic relaxation process in the free magnetic
layer is generalized into three approaches by considering both
k = 0 and k �= 0 magnons. A stable magnetization preces-
sion with wide current-density window can be obtained by
achieving T2 > T1, which is favorable for current-tuning spin-
transfer torque oscillator. Our simulation results also reveal
that the short-wavelength magnon excitation can reduce the
amplitude of the magnetization precession, which is different
from the prediction of the macro-spin Landau-Lifshitz-Gilbert-
Slonczewski model.
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