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Ab initio calculation of spin fluctuation spectra using time-dependent density functional
perturbation theory, plane waves, and pseudopotentials
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We present an implementation of time-dependent density functional perturbation theory for spin fluctuations,
based on plane waves and pseudopotentials. We compute the dynamic spin susceptibility self-consistently by
solving the time-dependent Sternheimer equation, within the adiabatic local density approximation to the exchange
and correlation kernel. We demonstrate our implementation by calculating the spin susceptibility of representative
elemental transition metals, namely bcc Fe, fcc Ni, and bcc Cr. The calculated magnon dispersion relations of Fe
and Ni are in agreement with previous work. The calculated spin susceptibility of Cr exhibits a soft-paramagnon
instability, indicating the tendency of the Cr spins to condense in an incommensurate spin density wave phase, in
agreement with experiment.
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I. INTRODUCTION

Spin fluctuations play a central role in magnetic systems
[1]. For example they underpin fundamental thermodynamic
properties of magnets, such as the Curie temperature and the
heat capacity; they have long been discussed as a potential
source of pairing in high-temperature superconductivity [2,3];
and they offer new opportunities in the development of spin-
tronics [4–6] and multiferroics [7].

In ordered magnets, spin fluctuations manifest themselves
in two forms, magnons and Stoner excitations [1,8]. In standard
textbooks, magnons or ‘spin waves’ are typically illustrated as
a collective, wavelike rotation of spins around their direction
in the ground state [9]; Stoner or ‘spin flip’ excitations corre-
spond instead to electronic transitions from occupied to empty
states, whereby the electron spin is reversed; this process can
alternatively be described as the creation of an electron-hole
singlet pair of spins. When spin waves and spin flip excitations
are degenerate, the spin wave is attenuated and sharp magnon
excitations cease to exist. This phenomenon is referred to as
Landau damping [10], and a clear discussion for the simplified
case of the uniform electron gas can be found in Refs. [1,11].
Landau damping is usually important in metallic systems [12],
while it is generally weak in insulators, owing to the large
energy needed to excite Stoner pairs across the band gap.

The majority of studies on spin waves are currently based
on the adiabatic approximation, whereby spin and electronic
excitations are decoupled [13,14]. In this approach one maps
the magnetic degrees of freedom into an array of local spins
and determines the coupling parameters from total energy
calculations based on density functional theory (DFT), or
from experiments. This approach proved to work well for
insulating magnets, but carries some limitations. For example
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the adiabatic approximation does not admit Stoner excitations,
therefore Landau damping is not captured, and the magnon
energy renormalization resulting from Stoner excitations is
absent [11,12,15]. In addition this approach is sensitive to the
choice of the discrete spin model and the determination of its
parameters. It is clear that a more general approach is desirable
in this context, thus motivating the need for a fully ab initio
approach to spin waves.

The central quantity to describe spin fluctuations is the
wave-vector- (q) and energy- (ω) dependent spin suscepti-
bility, χ (q,ω) (in the following Hartree atomic units will
be assumed). Magnon excitations correspond to the poles of
χ (q,ω) [1]. A promising approach for calculating χ (q,ω) from
first principles is given by time-dependent density functional
perturbation theory (TD-DFPT) [16]. The main appeal of this
method is that it allows one to describe spin waves and Stoner
excitations on the same footing, without invoking materials-
specific approximations. TD-DFPT for spin fluctuations has
already been demonstrated using either all-electron [15,17]
or pseudopotential [18] implementations. Using the adiabatic
local density approximation (ALDA) to the exchange and cor-
relation kernel [16,19–21], it was shown that the formalism can
capture the experimental magnon spectra of typical transition
metals (Fe, Co, Ni, Cr) with reasonable accuracy [15,17,18],
provided the underlying DFT calculations could reproduce
measured Stoner splittings.

Given these encouraging results on the use of TD-DFPT
for calculating spin fluctuations, it would be desirable to have
these techniques available in the context of popular DFT
implementations based on plane waves and pseudopotentials.
The first implementation of this type was reported not long
ago [18]. In this implementation the authors calculated the
spin susceptibility using the sum-over-states approach, and
dealt with Brillouin zone sampling using maximally-localized
Wannier functions [22].

In this work we present a plane waves/pseudopotential
implementation of TD-DFPT for spin fluctuations which does
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not rely on unoccupied electronic states. Our implementation
employs the time-dependent Sternheimer equation, in the spirit
of related work in the area of GW calculations [23–29]. The
implementation is based on the linear-response modules of the
QUANTUM ESPRESSO materials simulation suite [30] and is cur-
rently hosted on our GitHub repository [31]. We demonstrate
this development by calculating the spin fluctuations spectra of
bcc iron, fcc nickel, and bcc chromium. Our results are in good
agreement with previous calculations. The calculated spectra
of Fe and Cr are in agreement with experiment, while our
results for Ni deviate from experiments owing to the incorrect
Stoner splitting in the underlying DFT calculation.

The paper is organized as follows. In Sec. II we present
the TD-DFPT formalism for the spin susceptibility and the
time-dependent Sternheimer equation. We also discuss how
to treat fractional occupations in metals and how to perform
the symmetry-reduction of the Brillouin zone. At the end
of this section we provide some technical details of the
implementation. In Sec. III we present calculation results on the
elemental transition metals Fe, Ni, and Cr. Here we compare
our results to previous calculations as well as experiments. We
offer our conclusions in Sec. IV, together with an outlook on
future work.

II. SPIN SUSCEPTIBILITY IN TIME-DEPENDENT
DENSITY FUNCTIONAL PERTURBATION THEORY

A. General theory

In this section we summarize the generalization of the
TD-DFPT formalism [16] to noncollinear spins, as already
discussed in Refs. [15,17,18,32,33]. In the following we do
not consider spin-orbit coupling, and we use the spin g factor
g = 2. The DFT Kohn-Sham equations for a noncollinear spin
system read:[

−∇2

2
Î + V̂scf (r)

]−→
ψ nk(r) = εnk

−→
ψ nk(r), (1)

where Î is the 2 × 2 identity matrix, and V̂scf is the Kohn-Sham
potential, expressed as the following 2 × 2 matrix:

V̂scf (r) = Vscf (r)Î + σ · Bscf (r). (2)

In this expression Vscf is the scalar part of the self-consistent
potential, and Bscf is the effective magnetic field arising from
external potential as well as exchange and correlation [34].
The Pauli matrix is given by σ = σ 1ux + σ 2uy + σ 3uz, with
σ i the usual 2 × 2 Pauli matrices, and the unit vectors such as
ux denoting Cartesian directions.

−→
ψ nk is a Kohn-Sham two-

spinor eigenfunction with wave vector k, band index n, and
energy εnk, and corresponds to two scalar functions dependent
on the space coordinate r, as follows:

−→
ψ nk(r) =

[
ψ1

nk(r)

ψ2
nk(r)

]
. (3)

Using this notation, the 2 × 2 density matrix becomes:

ραβ (r) = 1

Nk

∑
k,n∈occ

ψ
α,∗
nk (r) ψ

β

nk(r), α,β = 1,2, (4)

where Nk is the number of k points used to discretize the
first Brillouin zone (we assume a uniform sampling), and the

asterisk denotes complex conjugation. Using the Pauli matrix
σ , the density matrix can be decomposed as in Eq. (2):

ρ̂(r) = 1
2 [n(r)Î + σ · m(r)], (5)

where n(r) is the standard electron charge density, and m(r) is
the electron spin density.

In order to facilitate the algebra it is convenient to introduce
an alternative expression for the density matrix, using vector
notation:

ρ0 = n, ρ1 = mx, ρ2 = my, ρ3 = mz. (6)

Using these definitions, together with σ 0 = Î we can rewrite
Eq. (4) as follows:

ρi(r) = 1

Nk

∑
k,n∈occ

−→
ψ nk(r)† σ i −→ψ nk(r), i = 0, . . . 3, (7)

where the dagger indicates the Hermitian conjugate.
We now consider a time-dependent external perturbation,

which can be either an electric potential or a magnetic field,
δV i

ext(rt), with:

δV 0
ext(rt) = Vext(rt), δV 1

ext(rt) = Bx
ext(rt), (8)

and similarly for j = 2,3. We neglect diamagnetic effects, so
that the magnetic field Bext only couples to the spin degrees of
freedom. In linear-response theory the variation of the density
matrix in response to the external perturbation is written as:

δρi(rt) =
∑

j

∫
d(r′t ′) χij (rt,r′t ′) δV

j
ext(r

′t ′), (9)

where the sum runs over the components of the four vector, and
χij (rt,r′t ′) is the generalized susceptibility. In TD-DFPT the
generalized susceptibility is formally obtained via a Dyson’s
equation [16]:

χij (rt,r′t ′)

= χ
ij

KS(rt,r′t ′) +
∑
kl

∫
d(r1t1)d(r2t2)

×χik
KS(rt,r1t1)

[
f kl

xc (r1t1,r2t2) + 2δk0δl0δ(t1 − t2)

|r1 − r2|
]

×χlj (r2t2,r′t ′), (10)

where f kl
xc is the exchange and correlation kernel, and χ

ij

KS is
the noninteracting Kohn-Sham susceptibility.

The exchange-correlation kernel is usually written within
the adiabatic local spin-density approximation (ALSDA) to
time-dependent DFT, meaning that one uses the static LSDA
kernel at equal times [15,16,20,21]:

f ij
xc(rt,r′t ′) = δ2Exc

δρi(r)ρj (r′)
δ(r − r′)δ(t − t ′). (11)

We note that this choice carries the additional implicit approx-
imation that the ALSDA kernel is derived by considering an
electron gas with collinear spins.

The Kohn-Sham susceptibility appearing in Eq. (10) is
defined so as to yield the density-matrix response to a variation
of the self-consistent potential, in analogy with Eq. (9):

δρi(rt) =
∑

j

∫
d(r′t ′) χ

ij

KS(rt,r′t ′) δV
j

scf (r
′t ′). (12)
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In view of practical calculations it is more convenient to
work in the frequency domain rather than in the time domain.
Since the unperturbed Hamiltonian is time independent, the
susceptibility depends only on the time difference t − t ′. As
a result, the last equation can be rewritten in the frequency
domain as follows:

δρi(r,ω) =
∑

j

∫
dr′ χij

KS(r,r′,ω) δV
j

scf (r
′,ω), (13)

having defined:

δρi(r,ω) =
∫

dt δρi(rt) e−iωt , (14)

and similarly for δV i
scf (r,ω) and χ

ij

KS(r,r′,ω). Equations
(9)–(11) are transformed into the frequency domain along the
same lines. Using standard perturbation theory, the Kohn-Sham
susceptibility in the frequency domain can now be written
explicitly in terms of unperturbed Kohn-Sham spinors [16]:

χ
ij

KS(r,r′,ω) = 1

N2
k

∑
nm,k,q

fnk − fmk+q

εnk − εmk+q + ω

×−→
ψ

†
nk(r) σ i −→ψ mk+q(r)

−→
ψ

†
mk+q(r′) σ j −→

ψ nk(r′),

(15)

where fnk and fmk+q are occupation numbers.
This formulation provides a two-step procedure for cal-

culating the generalized susceptibility. First, the Kohn-Sham
susceptibility is calculated via Eq. (15), starting from the
unperturbed Kohn-Sham spinor wave functions. The computed
χ

ij

KS is then used inside Eq. (10) (after transforming to the
frequency domain), so as as to evaluate χij and obtain spin
fluctuation spectra.

The main disadvantage of this procedure is that the evalua-
tion of χKS via Eq. (15) relies on the calculation of unoccupied
Kohn-Sham states, and the convergence of the results with
respect to the number of empty bands is slow. In order to
circumvent this bottleneck, here we employ an alternative
approach which is based on the Sternheimer equation [35]
and which requires one to compute only occupied Kohn-Sham
states.

B. Calculation of the spin susceptibility using
the Sternheimer equation

The Sternheimer equation in time-dependent perturbation
theory reads [17]:(

Ĥ − i
∂

∂t
Î

)
δ
−→
ψ nk(r,t) = −(1 − P̂occ) δV̂scf (r,t)

−→
ψ nk(r),

(16)

where Ĥ is the unperturbed Kohn-Sham Hamiltonian, corre-
sponding to the term in square brackets in Eq. (1), δ

−→
ψ nk is

the first-order change of the spinor wave function, and δV̂scf

is the first-order variation of the Kohn-Sham potential from
Eq. (2). The operator P̂occ is the projector on the manifold of
unoccupied Kohn-Sham states.

Equation (16) is naturally found as an intermediate step of
the perturbation theory approach; by expressing δ

−→
ψ nk in the

frequency domain and expanding on a basis of (occupied and

empty) Kohn-Sham states, this expression leads immediately
to Eq. (15). In order to avoid the computation of unoccupied
states, Eq. (16) must be solved directly as a nonhomogeneous
linear system.

The Sternheimer equation was originally introduced for
calculating the static dielectric polarizability of atoms [35]
and found widespread use in the DFT community to compute
phonon dispersion relations using DFPT [36–38]. The time-
dependent version of the Sternheimer equation was used to
calculate spin susceptibilities [17], dynamic molecular polar-
izabilities [39], and the screened Coulomb interaction in GW
calculations [25–29,40].

We now consider an external perturbation given by a
monochromatic plane wave:

δV
j

ext(rt) = δV
j

ext(q,ω)[ei(q·r+ωt)−ηt + c.c.], (17)

with η being a positive infinitesimal. This perturbation induces
a variation of the density matrix that can be evaluated using
Eq. (16). After some lengthy but otherwise straightforward
algebra one finds:

δρi
q(r,ω) = 1

Nk

∑
n∈occ,k

−→
u

†
nk(r) σ i δ

−→
u nk+q(r,ω)

+ 1

Nk

∑
n∈occ,k

δ
−→
u

†
nk−q(r, − ω) σ i −→u nk(r), (18)

where −→
u nk is the Bloch-periodic part of the Kohn-Sham

wave function, i.e.,
−→
ψ nk(r) = eik·r−→u nk(r), and similarly for

δ
−→
u nk+q(r,ω) and δρi

q(r,ω). The variation of the Kohn-Sham
wave functions appearing in the last expression can be found
from Eq. (16), following the usual decoupling procedure
employed in DFPT for phonons [36]:

(Ĥk+q − εnk + ω + iη) δ
−→
u nk+q(r, + ω)

= −
(

1 − P̂ k+q
occ

)
δV̂

+q
scf (r, + ω)−→u nk(r), (19)

(Ĥk−q − εnk − ω + iη) δ
−→
u nk−q(r, − ω)

= −(
1 − P̂ k−q

occ

)
δV̂

−q
scf (r, − ω)−→u nk(r). (20)

Here Ĥk denotes the k-projected unperturbed Kohn-Sham
Hamiltonian. Similarly P̂ k

occ indicates the component of the
projector operator on the occupied states with wave-vector
k. δV̂

+q
scf (r,ω) is the Bloch-periodic component of the self-

consistent variation of the Kohn-Sham potential, for the wave
vector +q.

The variation of the self-consistent potential is related to
the variation of the charge density as follows:

δV̂
q

scf (r,ω) = σ j δV
j

ext(q,ω)

+ σ 0
∫

δρ0
q(r′,ω)

|r − r′| e−iq·(r−r′)dr′

+
∑
ij

σ i f ij
xc[ρ(r),r] δρj

q(r,ω), (21)

where the integration in the second line is in the unit cell, and
the exchange-correlation kernel in the third line is evaluated for
the unperturbed density. From Eq. (20) we see that, in addition

024420-3



CAO, LAMBERT, RADAELLI, AND GIUSTINO PHYSICAL REVIEW B 97, 024420 (2018)

to δV̂
q

scf (r,ω), we also need δV̂
−q

scf (r, − ω). In order to evaluate
this term via Eq. (21) we simply change the signs of q and ω

and observe that δρi
−q(r, − ω) = δρi∗

q (r,ω).
Equations (18)–(21) are to be solved self-consistently. The

procedure starts from Eq. (21), by setting the initial variation
of the Kohn-Sham potential equal to the external perturbation
(i.e., by retaining only the first line). Then Eqs. (19) and (20) are
solved, and the solutions are used in Eq. (18) to obtain δρi

q(r,ω).
We emphasize that the presence of an external magnetic field
breaks time reversal symmetry, therefore Eqs. (19) and (20)
have to be solved separately. This is in contrast to what
happens in DFPT for phonons, whereby these two equations
become equivalent after taking into account time-reversal
symmetry [36].

The self-consistent solution of Eqs. (18)–(21) yields the
variation δρ

j
q(r,ω) of the density matrix in response to the

external perturbation of Eq. (17). By taking the unit-cell
average of the density variation, δρi(q,ω) = ∫

dr δρ
j
q(r,ω), we

can finally calculate the susceptibility as:

χij (q,ω) = δρi(q,ω)

δV
j

ext(q,ω)
. (22)

Furthermore, this quantity can directly be compared with ex-
periments. For example, in a ferromagnet with the spin density
polarized along the z direction, the transverse component of
spin susceptibility, defined as χ+− = χ11 − iχ12, yields the
inelastic neutron scattering cross section according to the
equation [41]:

∂2

∂�∂ω
∝ Im χ+−(q,ω), (23)

where q and ω have the meaning of momentum and energy
transfer, respectively, and ∂� is the element of solid angle
spanned by q. Sharp peaks of Imχ+− in the (q,ω) plane
correspond to magnon excitations [1].

Magnon excitation are expected to be damped in the pres-
ence of resonant Stoner spin-flip excitations. The region in the
(q,ω) plane where Stoner excitations are allowed corresponds
to energy and momenta for which the noninteracting suscep-
tibility, Im χ+−

KS (q,ω), is nonzero [1]. In fact, by performing a
Fourier transform of Eq. (15), we find immediately:

Im χ+−
KS (q,ω) = π

2

1

Nk

∑
nm,k

(fnk − fmk+q)

× |〈−→u mk+q|σ−|−→u nk〉|2δ(εnk − εmk+q + ω),

(24)

where σ− = σ 1 − iσ 2. The r.h.s. of this expression corre-
sponds to the standard transition rate as given by the Fermi
golden rule, with respect to an operator which lowers the
spin quantum number in a ferromagnet. We note that our
approach avoids storage of the whole susceptibility matrix,
which requires a memory of size proportional to the square of
the number of plane waves.

C. Fractional occupations

The formalism described in the previous section is appli-
cable to insulators and semiconductors, where the occupied

and unoccupied states are separated by a finite energy gap.
In principle, the formalism also applies for metals at zero
temperature. However, in the case of metals, a very dense
sampling of the Brillouin zone would be required to correctly
describe the Fermi surface. To avoid this complication in
the case of metals, it is common to perform Brillouin zone
integrals using the tetrahedron method [37,42,43] or to employ
smearing techniques [36,44]. In this work we opted for the use
of electronic smearing, and in the following we discuss how
the formalism introduced in Ref. [44] needs to be adapted to
deal with frequency-dependent perturbations and spinor wave
functions.

In the scheme of Ref. [44] each Kohn-Sham energy level
is broadened by a smearing function defined by δγ (ε) =
δ̃(ε/γ )/γ . Here δ̃(x) is a normalized function such that δγ (x)
tends to the Dirac δ function when the smearing width γ tends
to zero. The simplest smearing function is a Gaussian but there
are many practical alternatives [30]. From the definition of
δγ one naturally obtains a smooth approximation to the step
function, ˜θ (x) = ∫ x

−∞ δ̃(x ′)dx ′. The convergence of our results
with respect to γ is discussed in Appendix A.

Following Ref. [44] we define θ̃n,m = θ̃ [(εn − εm)/γ ], and
θ̃F,m = θ̃ [(εF − εm)/γ ], with εF the Fermi energy. Using these
definitions the smeared density matrix reads:

ρi(r) = 1

Nk

∑
nk

θ̃F,nk
−→
u

†
nk(r) σ i −→

u nk(r), (25)

where the sum is over all states n. Since θ̃ is a smeared step
function, it is sufficient to only calculate all occupied states
and a handful of unoccupied states, up to the energy ∼εF +
10γ . The linear density response to an external monochromatic
perturbation as in Eq. (17) reads:

δρi
q(r,ω) = 1

Nk

∑
nk

θ̃F,nk
−→
u

†
nk(r) σ i δ

−→
unk+q(r,ω)

+ 1

Nk

∑
nk

θ̃F,nk δ
−→
u

†
nk−q(r, − ω) σ i −→

unk(r). (26)

In this expression we are neglecting the contribution to the
density variation arising from a change in the Fermi level,
which corresponds formally to the variation of the prefactor
θ̃F,nk. This contribution is only important for q = 0, and it
vanishes for the perturbations considered in this paper.

The linear variation of the spinor wave function can be
formally written using perturbation theory:

δ
−→
u nk+q(r,ω) =

∑
m

−→
u mk+q〈−→u mk+q|δV̂ q

scf (r,ω)|−→u nk〉
εnk − εmk+q + ω − iη

,

(27)

and similarly for δ
−→
u nk−q(r, − ω). After replacing this expres-

sion in Eq. (26) one obtains:

δρi
q(r,ω) = 1

Nk

∑
nm,k

(θ̃F,nk − θ̃F,mk+q)

×
−→
u

†
nkσ

i−→u mk+q〈−→u mk+q|δV̂ q
scf (r,ω)|−→u nk〉

εnk − εmk+q + ω − iη
.

(28)
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To obtain a more compact expression, in the second line of
Eq. (26) we replaced k by k + q and m by n, and we used the
identity δV̂

−q
scf (r, − ω)† = δV̂

q
scf (r,ω).

Equation (28) contains a summation over all states, oc-
cupied and empty. In order to recast this expression into a
sum over occupied states only, we observe that the prefactor

θ̃F,nk − θ̃F,mk+q vanishes when the states nk and mk + q are
both occupied or both unoccupied. This observation can be
used to bring Eq. (28) into a form similar to Eq. (26), but
without the θ̃ prefactors. To this aim we note that θ̃ (x) +
θ̃ (−x) = 1, therefore Eq. (28) can be rewritten as:

δρi
q(r,ω) = 1

Nk

∑
nm,k

(θ̃F,nk − θ̃F,mk+q)θ̃mk+q,nk

−→
u

†
nkσ

i−→u mk+q〈−→u mk+q|δV̂ q
scf (r, ω)|−→u nk〉

εnk − εmk+q + ω − iη

+ 1

Nk

∑
nm,k

[
(θ̃F,nk − θ̃F,mk−q)θ̃mk−q,nk

−→
u

†
nkσ

i−→u mk−q〈−→u mk−q|δV̂ −q
scf (r, − ω)|−→u nk〉

εnk − εmk−q − ω − iη

]†

. (29)

Also in this case the second line has been rewritten by
exchanging k and k − q, n and m, and using δV̂

−q
scf (r, − ω)† =

δV̂
q

scf (r,ω). By inspecting the terms (θ̃F,nk − θ̃F,mk+q)θ̃mk+q,nk
we can see that now the summation over n effectively runs over
occupied states, and that over m runs over unoccupied states.
At this point it is a matter of algebra to show that the density
matrix variation can be written compactly as follows:

δρi
q(r,ω) = 1

Nk

∑
nk

−→
u

†
nk(r) σ i δ−→vnk+q(r,ω)

+ 1

Nk

∑
nk

δ−→v †
nk−q(r, − ω) σ i −→unk(r), (30)

where δ−→vnk+q(r,ω) is the solution of the modified Sternheimer
equation:

(Ĥk+q + αQ̂k+q − εnk − ω + iη) δ−→v nk+q(r, + ω)

= −(θ̃F,nk − P̂ +ω
n,k+q) δV̂

+q
scf (r, + ω)−→u nk(r). (31)

In this equation α is a real parameter to be discussed below,
and the projector operators are defined as:

Q̂k+q =
∑

m
|−→u mk+q〉〈−→u mk+q|, (32)

P̂ +ω
n,k+q =

∑
m
β+ω

nm,k+q|−→u mk+q〉〈−→u mk+q|, (33)

with the summation running over the occupied states plus a
few empty states, as discussed for Eq. (25). The parameters
β+

nm,k+q are given by:

β+ω
nm,k+q = θ̃F,nk θ̃nk,mk+q + θ̃F,mk+q θ̃mk+q,nk

+α
(θ̃F,nk − θ̃F,mk+q) θ̃mk+q,nk

εnk − εmk+q + ω − iη
. (34)

An equation analogous to Eq. (31) is obtained for the function
δ−→vnk−q(r, − ω) needed in Eq. (30). In practice one only
needs to change the signs of q and ω in Eqs. (31)–(34). In
order to derive Eqs. (30)–(34) starting from Eq. (29) it is
sufficient to act on the first line of the r.h.s. with the operator
εnk − (Ĥk+q + αQ̂k+q) + ω − iη. These equations constitute
a straightforward generalization of the treatment of fractional
occupations in standard DFPT for phonons [36,44].

As in the case of phonon calculations, the parameter α

appearing in Eq. (31) is chosen so as to make the linear

operator on the l.h.s. nonsingular. When choosing η = 0, the
system can become singular if εmk+q is in resonance with
εnk + ω, where n belongs to the manifold of occupied states.
To avoid a singularity it therefore suffices to choose α =
εF − εmin + ωmax + 10γ , where εmin is the smallest eigenvalue
of the occupied manifold, and ωmax is the highest frequency
considered in the calculations. If we set instead η > 0, the
calculation is effectively performed for a complex frequency,
and strictly speaking the linear system cannot become singular.
However, the use of the projector αQ̂k+q is still important in
order to reduce the condition number of the linear system.

D. Symmetry reduction

The summation over k points in the Brillouin zone in
Eq. (30) can effectively be performed by exploiting crystal
symmetry operations. In standard DFPT symmetry is used to
reduce the set of k points to a symmetry-irreducible wedge of
the Brillouin zone [30].

In the present work we are dealing with DFPT in the
presence of spinor wave functions, therefore we also need to
take into account the effect of symmetry operations on the
electron spins. To this aim we make use of spin-space groups
(SSG) [45]. The action of an element S of the SSG on a spinor
wave funtion can be described as:

S : {Rs |R|f }−→ψ (r) = Rs

−→
ψ (R−1r − f), (35)

where R is the spacial rotation, f is the possible fractional
translation, and Rs is the matrix that rotates the spins.

Generally speaking one could also consider time-reversal
symmetry in order to perform further reductions of the number
of required k points. Time reversal can be combined with
operations in the SSG [45]. However, since in our present work
we are focusing on perturbations corresponding to magnetic
fields, time-reversal symmetry is broken. As a result we can
only consider symmetry operations in the SSG which do
not involve time reversal. In practice we perform symmetry
reduction by considering all the symmetry operations S which
do not contain time reversal and which belong to the small
group of q, where q is the wave vector of the perturbation
(the small group is the subgroup of elements which leave q
unchanged, Sq = q).
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FIG. 1. (a) Calculated Imχ+−(q,ω) of Fe along the �N and �H directions. The susceptibility is given in atomic units, 1/(Ry bohr3).
(b) Calculated Imχ+−

KS (q,ω) along the �N and �H directions. We also show the magnon dispersion curves superimposed as dots. (c) Magnon
bands of Fe along the �N and �H directions. We compare our results to the experimental data of Loong et al. [55], and the calculations of
Rousseau et al. [18], and Buczek et al. [15]. (d) Calculated Imχ+−(q,ω) of Fe, for selected wave vectors along the �N direction. All peaks are
normalized to their maximum for clarity, and the wave vectors are given as q = 2π/a(1,1,0)q.

E. Implementation details

The method described in the preceding sections was im-
plemented using plane-waves basis sets and pseudopotentials,
starting from the linear response modules of the QUANTUM

ESPRESSO suite, and in particular from the PHONON code [30].
The development version of this code is hosted on our GitHub
repository [31]. We have support for both norm-conserving
[46] and ultrasoft [47] pseudopotentials. Since we only con-
sider the coupling between magnetic field and the spin degree
of freedom, our implementation is expected not to suffer from
gauge invariance issues, which are known to be present when
orbital magnetism is taken into account in magnetic response
calculations [48,49].

In our implementation the Sternheimer equation, Eq. (30),
is solved separately for each frequency ω using the complex
biconjugate gradient method, as described in Ref. [50]. The
implementation was adapted from related work within the
context of GW calculations from Refs. [25,29].

In order to minimize fluctuations of the density matrix
during the self-consistent iterations, we employed a general-
ization of the modified Broyden method for charge-density
mixing [51], following Ref. [25]. We found that typically
five iterations are enough to reach convergence in the self-
consistent calculation.

In this method we need to solve Eq. (30) both for the (+q, +
ω) channel and the (−q, − ω) channel. The solutions for
each channel are evaluated separately and independently. The
parallelization of the algorithm is on the k points within each
channel. In all the calculations reported below we employed

a parameter α = 500 meV in Eq. (30), which lies above the
highest magnon energy calculated in the three examples.

III. RESULTS

In order to test our implementation we performed calcu-
lations on three representative elemental transition metals,
namely bcc iron, fcc nickel, and bcc chromium. Ground-state
DFT calculations were performed using QUANTUM ESPRESSO,
within the local density approximation for the exchange and
correlation [52], and using pseudopotentials from the reposi-
tory ‘PSlibrary 0.3.1’ [53].

When performing calculations of spin fluctuations, the
ground state calculation and the solution of the Sternheimer
equation must be carried out using the same sampling of the
Brillouin zone. This is necessary in order to avoid spurious
symmetry breaking leading to the so-called gap error, that is
the presence of long-wavelength magnons with finite excitation
energy [15,18,54]. This aspect is discussed in more details in
Appendix B. In all the following calculations we employed a
50 × 50 × 50 grid of k points for calculating both the ground
state and the spin fluctuation spectra.

Below, when comparing with previous work, we only
include the most recent theoretical studies. A more detailed
comparison between earlier theoretical results can be found in
Refs. [18,32].

A. BCC iron

We performed calculations using a norm conserving pseu-
dopotential [46], using a plane-waves kinetic energy cutoff of
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FIG. 2. (a) Calculated Imχ+−(q,ω) of Ni along the �X direction. (b) Calculated Imχ+−
KS (q,ω), with the magnon band superimposed as dots.

(c) Calculated magnon dispersion curve of Ni along the �X direction. Our results are compared with experimental data of Mook et al. [56,57],
and with the calculations of Rousseau et al. [18], Buczek et al. [15], using TD-DFPT, and Şaşıoğlu et al. [33] using many body perturbation
theory (MBPT). (d) Calculated Imχ+−(q,ω) of Ni for selected wave vectors along the �X direction. The peaks are normalized to their maximum
value, and the wave vector is given as q = 2π/a(1,0,0)q.

60 Ry. To deal with fractional occupations we used a Gaussian
smearing with a width of 10 mRy. We employed the experimen-
tal lattice parameter a = 5.406 bohr. Our calculations yield
a ground-state magnetization of 2.16 μB per atom, and the
mean Stoner splitting is 2.5 eV. We evaluated the transverse
spin susceptibility χ+−(q,ω) for wave vectors q along the �N
and the �H high-symmetry lines [N = (1/2,1/2,0)2π/a, H
= (0,0,1)2π/a]. We sampled the frequency axis in the range
0 to 400 meV, with a spacing of 2 meV between consecutive
grid points. The broadening parameter was set to η = 0.1 ω;
this choice was motivated by the observation that a larger
broadening is required to obtain converged spectra at higher
frequencies.

The calculations are shown in Fig. 1. In particular, Fig. 1(a)
shows a two-dimensional plot of Imχ+− in the (q,ω) plane. For
clarity we also report some cuts for a few selected wave vectors
in Fig. 1(d). The maxima of the map in Fig. 1(a) are reported
in the form of magnon frequency-wave-vector dispersion
relations in Fig. 1(c). The map of Fig. 1(a) shows a significant
attenuation of the magnon resonances beyond |q| ∼ 0.38 �N,
nevertheless we can clearly recognize the magnon excitations
all the way up to the Brillouin zone edge. Along the �H line

instead, magnon excitations are so strongly damped beyond
|q| ∼ 0.35 �H that no clear curve can be identified in this
region. The difference in the magnon damping patterns along
the two directions is a direct consequence of the anisotropic
nature of the Stoner continuum, as is seen in Fig. 1(b). Here we
see that along �H Stoner excitations become possible already
around 100 meV, causing the complete suppression of magnons
with energies above this threshold.

In Fig. 1(c) we also compare our results with previous
experimental and theoretical work. Along the �N direction
our magnon dispersion curve is in excellent agreement with
the results of Ref. [18]. This level of agreement was to be
expected since also the implementation of Ref. [18] is based on
the QUANTUM ESPRESSO package, although these authors used
the method described in Sec. II A instead of the Sternheimer
equation. As pointed out in Ref. [18], theoretical results tend
to differ significantly beyond |q| ∼ 0.4�N.

We note that a double-peak structure is observed in the
calculated spectra at |q| = 0.5�N in Ref. [32] and at |q| =
0.4375�N in Ref. [18], yielding a gap in the corresponding
magnon dispersion. In agreement with Refs. [15,17], here we
do not observe double-peak structures. However, our magnon
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FIG. 3. (a) Calculated Imχ (q,ω) of Cr along the �H direction. (b) Calculated ReχKS(q,ω) of Cr along the �H direction. To highlight the
effect of Fermi-surface nesting, we plot ReχKS(q,ω) − 0.2 and only show the positive values.

spectra around |q| = 0.5�N is significantly broadened, and
this is consistent with the fact that the double-peak structure
in Ref. [32] is not as prominent as that found in typical
two-branch magnon spectra. More notably, our calculations
yield a plateau around |q| ∼ 0.5�N, while Refs. [15,17] report
a monotonic curve. We also observe that the discrepancies lie
in the region where Stoner excitations kick in. It is likely that
these differences between the various approaches arise from
the difference in the underlying ground-state DFT calculations.
Along the �H direction our results are in agreement with those
of Ref. [15], which also find a strong suppression of spin waves
in the same range of wave vectors. Our calculations are in
reasonable agreement with the low-temperature experimental
data of Ref. [55] (taken at 10 K). One aspect which complicates
the comparison between theory and experiment is that the
measurements were not taken exactly along the �N or �H
lines. Having more information on the precise wave-vector
path probed in the experiments would be useful to perform a
more detailed comparison.

B. FCC nickel

In this case we performed calculations using an ultrasoft
pseudopotential [47], using a plane-waves kinetic energy cutoff
of 42 Ry for the wave function and a cutoff of 236 Ry for
the charge density. We employed Marzari-Vanderbilt smearing
[58] with a broadening parameter of 10 mRy. We used the
experimental lattice parameter a = 6.65 bohr. We obtained a
ground-state magnetization of 0.61 μB per atom and the mean
Stoner splitting of 0.66 eV. We computed χ+−(q,ω) along the
�X direction [X = (0,0,1)2π/a]. We sampled frequencies up
to 600 meV with a grid spacing of 2 meV and a broadening
parameter η = 0.1 ω.

The calculated susceptibility is shown as a two-dimensional
(q,ω) map in Fig. 2(a). Also in this case we show representative
cuts at selected wave vectors in Fig. 2(d). From the map we
recognize a well-defined magnon band along the �X line. The
excitation spectrum is sharp up to |q| ∼ 0.3�X and becomes
broadened upon entering the Stoner continuum beyond this
point. This effect is clearly seen in Fig. 2(b), where we
superimpose the spin wave dispersion curve to the Stoner

spectrum. Our calculated magnon band, as extracted from the
maxima of Imχ+−(q,ω), is compared to previous calculations
and experiments in Fig. 2(c). Here we observe that theoretical
data agree well for small wave vectors, but start deviating
significantly from each other near the zone boundary, which
is also observed in Ref. [18]. We tentatively assign these
deviations to the different choices employed to describe the
ground-state electronic structure.

In Fig. 2(a), two magnon branches are observed in a narrow
area around |q| = 0.15�X. Similar observations were reported
in Refs. [15,18] as well as in Refs. [17,32,33] where the
two branches exist in a wider area. This is consistent with
experimental observations where so called optical magnons
are detected [56,57]. The optical magnons are a manifestation
of itinerant magnetism effect since in the localized moment
picture there is only one spin degree of freedom in monoatomic
Ni. However, the two branches show similar magnetization
profiles, in contrast to optical magnons in diatomic systems,
such as hexagonal Co [15].

In further comparison with experiment we see that our
calculations, as well as previous theoretical data, consistently
overestimate the experiments by up to a factor of two. This
phenomenon is well understood and is related to the fact that
the Stoner splitting of fcc Ni in standard DFT is approximately
twice as large as in experiment (0.66 eV vs 0.3 eV, respectively)
[33,59,60]. It was shown that the experimental magnon spectra
can be reasonably reproduced by manually reducing the LSDA
exchange splitting by one half [32,33].

C. BCC chromium

For chromium we used a norm-conserving pseudopotential
with a cutoff of 60 Ry and a Gaussian smearing of 10 mRy.
We set the lattice parameter to the experimental value a = 5.5
bohr. We evaluated the susceptibility along the �H line, and
we sampled frequencies using a grid spacing of 20 meV, up
to a maximum value of 2 eV. In this case we used a constant
broadening parameter η = 100 meV.

Experiments indicate that the ground-state electronic struc-
ture of Cr is a spin-density wave (SDW), with an incommen-
surate wave vector qSDW � (0,0,0.95)2π/a [61]. This SDW
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was attributed to the presence of pronounced Fermi-surface
nesting in paramagnetic Cr [62–64], a scenario which was later
confirmed by explicit DFT calculations [65].

The calculated spin susceptibility of paramagnetic Cr is
shown in Fig. 3(a). Here we see a clear peak for wave vectors
around (0,0,0.86)2π/a, extending down to zero excitation
energy. The presence of zero-energy excitations at finite wave
vector is the signature of a SDW, i.e., a frozen spin wave,
analogous to charge-density waves observed in the presence of
soft phonons. The role of Fermi-surface nesting can be inves-
tigated by inspecting the nesting function, that is ReχKS(q,ω),
as shown in Fig. 3(b). For ω = 0 the nesting function reaches
a maximum at qnest ∼ (0,0,0.92)2π/a, which is close to our
calculated SDW vector. This result confirms that nesting is at
the origin of the SDW in chromium.

Our present results are in good agreement with previous
calculations [17], although we obtain a slightly shorter SDW
vector (0.86 · 2π/a vs. 0.92 · 2π/a). We assign this difference
to the fact that we used the LDA functional, while in Ref. [17]
the PBE functional was employed [66].

IV. CONCLUSIONS

In conclusion, we described an implementation of time-
dependent density-functional perturbation theory for spin fluc-
tuations, based on plane waves and pseudopotentials, built
around the linear response modules of the QUANTUM ESPRESSO

package. In the present approach we calculate the macroscopic
spin susceptibility χ (q,ω) via a self-consistent solution of the
time-dependent Sternheimer equation. The main advantage
of this formulation is that it avoids altogether the need for
evaluating unoccupied Kohn-Sham states.

We demonstrated the methodology by calculating spin wave
spectra of bcc Fe, fcc Ni, and bcc Cr along several high-
symmetry directions in the Brillouin zone, and we rationalized
the suppression of magnon excitations in terms of Landau
damping when the magnon energy resonates with the Stoner
continuum. In the case of Fe and Ni, our calculated magnon
dispersions relations are in good agreement with previous
theoretical results near the zone center, but we see some
significant deviations closer to the zone boundaries. These
deviations likely result from the underlying DFT description
of the ground-state electronic structure. In the case of Fe,
our calculations are in reasonable agreement with experiment,
while in the case of Ni the calculated magnon energies are too
large by a factor of two. This discrepancy is consistent with
previous ab initio calculations and is attributed to the fact that
standard DFT yields too large a Stoner splitting for this metal
as compared to experiment. In the case of Cr, we demonstrated
that the calculation of spin wave spectra can be a very powerful
tool to identify SDW phases, and we obtained good agreement
with previous theory and with experiment.

Looking forward, we see two main avenues for future
development. Firstly, it would be desirable to extend the present
formalism and implementation to Hubbard-corrected DFT.
The capability of calculating the spin susceptibility within
DFT+U would make it possible to explore many interesting
correlated electron systems, including for example the copper
oxides high-temperature superconductors. Secondly, it would
be important to incorporate support for spin-orbit coupling

FIG. 4. (a) Calculated magnon energies of Ni together with full
width at half maximum of corresponding magnon peaks. Wave vectors
are given in units of 2π/a(1,0,0)q. (b) Calculated magnon energies of
Ni at q = (0,0,0) with respect to k-points meshes used in the ground
state calculations. The k-points meshes are given in Nk × Nk × Nk .
Linear response calculations are all performed with 50 × 50 × 50 k-
points mesh.

in the methodology. This further development will enable
calculations of spin wave spectra on systems with strong
magnetic anisotropy, for example multiferroic oxides. Apart
from these desirable improvements, we believe that our current
implementation provides an important addition to state-of-
the-art techniques for investigating spin fluctuations, magnon
dispersions, and spin density waves in several important
problems of condensed matter physics, and will serve as a
starting point to explore incommensurate magnetic excitations
systematically, without performing supercell calculations.

Note added. We are aware of a closely related work, where
the authors used TD-DFPT to calculate magnon dispersion
relations [67]. The present results are consistent with those of
Ref. [67].
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APPENDIX A: CONVERGENCE WITH RESPECT TO γ

Our results shown in the main body of this paper are all
well converged with respect to the parameter γ used to deal
with fractional occupations in Sec. II. Here we illustrate the
convergence with respect to γ using Ni as a representative
example. In Fig. 4(a), we can see that magnon dispersion at
q = (0.1,0,0)2π/a and q = (0.4,0,0)2π/a are well converged
with γ = 10 mRy.

APPENDIX B: GOLDSTONE MODE

In a ferromagnet in the absence of spin-orbit coupling,
excitation energy of the Goldstone mode (acoustic magnon at
� point) should vanish. In our formalism, nonzero Goldstone
mode (the so called “gap error”) can arise if there is inconsis-
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tency between the density from the ground state calculations
and that from the response calculations, e.g., two different
k-points meshes are used in these two calculations. This is
illustrated in Fig. 4(b) using Ni as a representative example.
We can see that the “gap” closes as the ground state k-points
mesh approaches the one used in the response calculations. The

“gap error” is avoided if the same set of parameters (k-points,
smearing) is used for both ground state and response calcu-
lations. This scheme is employed throughout our calculations
in the main body of this paper. In practice, the energy of the
Goldstone mode is below the smallest energy for which we
have performed our calculations, e.g., 0.1 meV in Fig. 4(b).
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