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Origin of the net magnetic moment in LaCoO3
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We use polarized neutron scattering to characterize the Bragg scattering intensity below TC = 89.5 K at the
(1,0,0) pseudocubic nuclear Bragg point of LaCoO3. Upon cooling in a field (FC), a net magnetic moment is
apparent in Bragg scattering intensity, just as it was in previous magnetization measurements. Critical behavior
associated with the net moment near TC upon cooling in small applied fields rapidly rounds with increasing field
strength. We show, using a mean-field calculation, that this net moment can develop in a metastable state that
forms upon FC, even when all the interactions in the system are antiferromagnetic.
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I. INTRODUCTION

The unusual magnetic behavior of bulk LaCoO3 (LCO)
below T = 100 K is well known but has not been well under-
stood microscopically. Magnetization measurements clearly
show that the dominant interaction between spins is antiferro-
magnetic for T > 100 K, but the system does not attain long-
range order at low T [1–3]. The antiferromagnetic short-range
correlations grow as T decreases until To ≈ 37 K, below which
antiferromagnetic correlations rapidly decrease [1,3,4]. Each
Co ion is surrounded by an octahedron of six oxygen atoms,
with each oxygen being shared with an adjacent octahedron
that is rotated by the Co-O-Co bond angle γ . In the bulk,
far from surfaces and defects, γ decreases as T decreases,
reaching γC ≈ 163◦ at To. For γ < γC , the bonds between
adjacent Co are nonmagnetic, whereas bonds for which γ is
a few degrees larger than γC are strongly antiferromagnetic
[1,5]. Despite the collapse of antiferromagnetic interactions, in
small applied fields, H < 100 Oe, a small net moment exhibits
sharp, critical-like behavior near Tc = 89.5 K; the rounding
of the transition is unusually rapid as the field is increased
[1,2,6]. Near surfaces and defects [2,7], the average γ remains
larger than γC . What has not been well understood microscop-
ically is how a dominantly antiferromagnetic system that does
not achieve antiferromagnetic long-range order nevertheless
generates a net moment that persists to low T and why the
critical-like behavior associated with it rounds rapidly with
increasing applied fields.

In an earlier paper, Yan et al. [6] studied the net moment
in bulk LCO crystals. Although the precise mechanism gener-
ating the net moment could not be established, it was shown
that it increased with increasing crystal surface area. In other
studies [7], particles with diameters of 30 to 1000 nm diameter
were grown and it was shown that impurity phases greatly
enhance the net moment over that observed in bulk crystals.
Surprisingly, high quality bulk crystals, which have negligible
impurity phase defects and a relatively small surface area per
volume, nevertheless exhibit a small net magnetic moment in

magnetization measurements done while cooling in an applied
field (FC) [1,3,6]. A different state is entered when cooled to
low temperature, the field is applied, and the temperature is
raised (ZFC). In the magnetization measurements, only when
the applied field is extremely small, H < 3 Oe, the net moment
is largely suppressed. It is not clear from the experiments
whether the FC or ZFC procedure results in a state closer to
the ground state.

The oxygen octahedral rotations provide a basis for mod-
eling the magnetic ordering that produces a net moment near
TC for small H . As shown below, polarized neutron scattering
measurements in large, high-quality LCO crystals indicate a
magnetic transition at TC with scattering at the pseudocubic
(1 0 0), indicating the same periodicity as the underlying
lattice. The number of spins near the crystal surfaces in
this case should be negligible; clearly, neither the surface
nor impurity defects are plausible sources of the observed
moment. LCO is generally accepted to have R3̄c symmetry
with a nuclear reflection at hexagonal (1 0 −2), though one
early study [8] suggested a lower I2/a symmetry, perhaps
being indicative of small strains in the system. Twinning
is ubiquitous in this structure, so in experiments it is more
convenient to use the pseudocubic notation where, for example,
(1 0 0) corresponds to the hexagonal (1 0 −2) reflection.
We will use the pseudocubic notation in our discussions.
The scattering appears at four points around the (1 0 0)
Bragg point corresponding to the four orientations of the
twin domains, but the measurements integrate over two peaks
in the vertical direction, which has a wide resolution. We
argue below that much of the net moment could originate at
twin interfaces. Both (1 0 0) and (1 1 0) pseudocubic twin
planes tend to occur, but (1 0 0) twins are predominant [9,10].
Modeling γ for bonds across the interface indicates a pattern
where half the bonds are greater than γC and, hence, strongly
antiferromagnetic, and alternate with nonmagnetic bonds with
γ < γC . This alternating pattern breaks the symmetry between
the antiferromagnetic sublattices. We use a mean-field model
incorporating that asymmetry to show how antiferromagnetic
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FIG. 1. Polarized neutron intensity of the (1 0 0) pseudocubic
Bragg scattering vs T for both the spin-flip (SF) and non-spin-
flip (NSF) configurations after subtracting the background (BG)
determined from fits for 145 < T < 200 K, as described in the main
text. The counting times for the SF and NSF data were 45 and 5
minutes, respectively.

ordering at (1 0 0) twin interfaces can generate net metastable
moments that mimic the behaviors observed in experiments.

II. NEUTRON SCATTERING RESULTS

Polarized neutron scattering experiments were performed
on two LCO single crystals using the triple axis spectrometer
HB1 at the High Flux Isotope Reactor. For the results shown in
Figs. 1 and 2, obtained with crystal A that has the approximate
dimensions of 4 mm in diameter and 8 mm in length, the
neutron energy was 13.5 meV and the energy resolution was
1.3 meV using a collimation configuration of 48’, 80’, 80’,
and 240’. Heusler crystals were used for the monochromator
and analyzer and a flipping ratio, the ratio of up spins to down
spins in the polarized beam, of 9.8 was achieved [11]. The
polarized neutron experiment has a spin-flip (SF) configuration
to determine the intensity of magnetically scattered neutrons
and a non-spin-flip (NSF) for neutrons scattered from the
coherent nuclear scattering, where the polarization direction is
aligned with the scattering vector �Q. The spin flipping ratio is
a measure of the mixing of these resulting due to the imperfect
beam polarization. For the measurements using crystal A, the
SF and NSF intensities were measured with the neutron spin
aligned along �Q. A closed-cycle refrigerator was employed in
measuring the T dependence of the SF and NSF intensities for
4 < T < 300 K. Because the field at the sample was 16 to 18
Oe throughout the experiment, all data were taken under FC
conditions. The LaCoO3 single crystals for these results was
grown by the floating zone technique using an optical image
furnace as reported elsewhere [12].

The polarized neutron technique discriminates against nu-
clear Bragg scattering, which would otherwise obscure the
small magnetic contribution [11]. Figure 1 shows data col-
lected in both the SF and NSF configurations using crystal
A. The NSF intensity is divided by the flipping ratio. A
background contribution (BG), determined by averaging the
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FIG. 2. The difference between the SF and NSF intensities vs T ,
The NSF intensity is normalized by the spin-flip ratio of 9.8 and both
the SF and NSF intensities had backgrounds subtracted as described
in Fig. 1. The curve represents Eq. 1 with TC = 89.5 K, A = 59.0,
β = 0.88, B = 0, and C = 0.

data for 145 < T < 200 K, is subtracted from each data set.
The SF configuration clearly shows a small, but significant
magnetic Bragg scattering contribution. The difference of the
two sets of data is plotted in Fig. 2. Using the difference, we
can characterize the critical behavior associated with the phase
transition to long-range order by fitting to

I = At2β + B + Ct, (1)

where t = (TC − T )/TC and A is nonzero only for t > 0. TC is
set to 89.5 K, the value obtained in magnetization experiments
[2]. A fit with B = 0 and C = 0 yields A = 59.0 ± 4.8 and
β = 0.82 ± 0.11, where the error estimates reflect only the
statistical error of the fit. The critical exponent β obtained from
magnetization measurements [1,2] on bulk LCO particles is
β = 0.63 ± 0.02. Including a linear background term in the fit
yields A = 58.6 ± 4.9, β = 0.97 ± 0.14, and C = 2.9 ± 1.2.
If, instead, a T -dependent term BT is included, we obtain A =
60.3 ± 5.2, β = 0.80 ± 0.11, and B = −1.5 ± 2.1. Neither of
the latter two fits improves the quality of the fit significantly
over the one with B = 0 and C = 0. The error estimates are
statistical fit errors; they do not reflect systematic errors. The
transition temperature is taken from magnetometry measure-
ments and its value is one source of systematic error. The value
of β is not determined as accurately as in the magnetometry
experiments, but both experiments are consistent with β >

1/2. Normally, one expects β � 1/3 for 2D or 3D transitions,
but β > 1/2 is consistent with bulk-assisted surface critical
behavior [2,13,14] and is consistent with ordering taking
place at twinning interfaces. The bulk-assisted surface ordering
exponent β ≈ 0.75 [2,14] results from the surface ordering
with different critical behavior from the bulk. Two apparent
differences between LCO and the surface-ordering models are
that bulk LCO does not order sufficiently far from surfaces and
we observe a net moment, which might seem inconsistent with
the antiferromagnetic order parameter of the bulk. However,
antiferromagnetic moments away from the surfaces are close
to ordering while those near the surface do order [7], and we
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FIG. 3. The (h 0 0) magnetic scattering intensity at T = 4 and 50
K for crystal B, obtained by subtracting the intensity with the neutron
polarization perpendicular to �Q (IVF-SF), which is in the vertical to
the scattering plane, from the intensity with the polarization parallel
to �Q (IHF-SF). The curves are fits with the background set to zero and
with A = 248 and 186 counts per 90 minutes for T = 4 and 50 K,
respectively, using the HWHM of 0.0075 r.l.u. determined from the
(1 0 0) nuclear scattering peak.

will argue that, despite the net moment being generated, the
ordering is essentially antiferromagnetic. With the ordering of
the bulk and surface being antiferromagnetic, the situation in
LCO is analogous to the surface-ordering model.

Depolarization of the beam in ordered ferromagnets can
contribute to the temperature dependence of the SF signal if
they have internally well-ordered domains that are misaligned
with respect to each other. This should not be an issue for this
antiferromagnetic system because the scattering is only from
the weak net moment at twin interfaces. We can verify that
depolarization effects are not important in these measurements
by determining that the flipping ratio at the nuclear peak (2 0 0)
is nearly T independent. We used crystal B, grown in the same
manner as crystal A, but with dimension 0.5 cm in diameter and
2.5 cm in length. The flipping ratio is 10.56+0.09

−0.08 at T = 295 K
and 10.41+0.08

−0.09 at T = 4 K, indicating no significant change
with T .

The neutron scattering from the net moment is only from
components perpendicular to �Q. To isolate the magnetic
contribution in a way that is independent of all nonmagnetic
influences, we measured the SF intensity with the neutron
spin polarization parallel to �Q and perpendicular to it [11].
For the polarization parallel to �Q, the SF intensity picks
up all contributions perpendicular to �Q. For the polarization
perpendicular to �Q, only magnetic contributions perpendicular
to both �Q and the polarization direction are observed. The
nonmagnetic background should be essentially identical in the
two geometries and the difference should only be magnetic
scattering.

Figure 3 shows the resulting magnetic scattering intensity in
a (h 0 0) scan obtained from the subtraction of the intensities of
the two geometries at T = 4 and 50 K. Because the magnetic
scattering is weak, long counting times between 60 and 120
minutes were used for each point. The resolution widths,

determined from Gaussian fits to the (1 0 0) nuclear scattering
peaks, are 0.0075(2) r.l.u. in the longitudinal direction and
0.0035(3) r.l.u. in the transverse direction. Fitting the longitu-
dinal magnetic peak with a Gaussian line shape plus a constant
background using the HWHM of 0.0075 r.l.u. and setting
the backgrounds to zero, we obtain the Gaussian amplitude
367 ± 104 and 203 ± 117 at 4 and 50 K, respectively. If we let
the background vary, we obtain the amplitude 323 ± 113 and
background 34 ± 35 atT = 4 K and the amplitude 90 ± 46 and
background 93 ± 47 at T = 50 K. For T = 4 K, the intensity
at h = 1 is clearly dominated by a near-resolution magnetic
Bragg component. At T = 50 K, the intensity at h = 1 could
be partly from a very small Bragg component and partly
from a broad paramagnetic scattering component; the relative
importance is not clear from the data. Similar measurements
in the transverse direction were inconclusive for both T = 4
and 50 K. The lack of a resolution-limited peak evident in the
transverse scan possibly indicates that there is a small spread
in the orientation angle of the twin planes. In experiments
with larger energies (41 meV) to enhance scattering from
fluctuations [15], it was observed that paramagnetic scattering
decreases rapidly with decreasing temperature near T = 50 K.
It was shown that paramagnetic scattering is relatively small
at for lower energies such as the energy 13.5 meV used in our
experiments. However, with small scattering intensities from
the net moment, there could be a small effect. Excitations in
LCO have been observed [16,17] in LCO near 50 K and could
contribute to a small �Q-independent background. If a small
broad paramagnetic background does play a role in the results
shown in Fig. 2, it is to add to the intensity measured at the
Bragg point, particularly at T = 50 K, and the effect would be
to decrease the effective value determined for β; it would not
change the conclusion that β > 1/2.

Although the magnetometry and neutron scattering results
yielding β > 1/2 indicate critical behavior from 2D interfaces,
the Bragg scattering is expected to be at 3D Bragg scattering
points. For a case where the net moment on parallel interfaces
is uncorrelated, the 2D behavior caused by the restriction of
the growth of the fluctuation correlation length in the direction
perpendicular to the interfaces would result in scattering rods,
also perpendicular to the interfaces. This can be seen, for
example, in 2D layered antiferromagnets that have extremely
small interactions between planes [18]. In the case of LCO, the
net moments on the parallel interfaces are highly correlated; the
net moment on each plane is in the same direction determined
by the applied field, and the planes are spaced an integer
number of lattice spacings from all similar planes. The planes
interfere constructively to create scattering at 3D points. The
critical behavior is 2D, but the scattering structure is 3D.

Because the scattering from the net moment appears at the
3D pseudocubic scattering point, we know that the spatial
periodicity of the net moment matches the underlying Co
ion lattice. Using this result, we introduce in the following
sections a model to explain how a net moment can form
in LCO at the twin interfaces even in the case where all
interactions are antiferromagnetic. The model is for one twin
interface, but can be applied to LCO where there are many
such interfaces with various orientations resulting from the
twinning. Although the field is chosen to be along one of the
octahedral axes (or average octahedral axis direction in the case
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FIG. 4. The primitive rhombohedral LCO cell showing La ions
(green) at the center and corners and two Co ions (blue) along with
their oxygen octahedra. The rhombohedron is elongated along the
line containing the two Co ions. The red lines connecting four La ions
represents one of three possible twinning planes in the pseudocubic
representation, each one containing four La ions at the rhombohedron
corners and the central La ion, but no Co ions.

of tilted octahedra) to simplify the calculations, the field at any
particular interface can be treated as having components along
each octahedral axis and the model can be applied to each.
A specific direction of neutron spin polarization is not a part
of the model, but for each interface it will have components
along the different octahedral axes. The various components
of field and polarization directions in an LCO experiment can
be modeled and superposition of the results allows the model
to be applied to the scattering and magnetometry experimental
results without loss of generality.

III. GEOMETRIC INTERFACE MODEL

The behavior of LCO magnetism well away from twin
interfaces and other defects has been fairly well character-
ized. Experiments [1–3,7] and calculations [5] indicate that
antiferromagnetic correlations are supported only for γ greater
than the critical value γC ≈ 163◦. The uniqueness of bulk LCO
magnetism derives from the average value of γ decreasing with
T to γC at To. The magnetic structure at twin boundaries is more
complicated than that of the bulk far from the interface and can
lead to antiferromagnetic ordering with a net moment along
Hz. We first show how the interface can lead to a magnetic
bond structure that is asymmetric with respect to the two
antiferromagnetic sublattices.

The most common LCO twin interface in LCO is at a (1 0 0)
pseudocubic plane [9,19]. Although other twin representations
are possible, they are relatively uncommon, so we use the
(1 0 0) one to model the possible consequences of a twin
plane in LCO. A (1 0 0) plane can be visualized in the
unit cell shown in Fig. 4 as a plane containing the central
La ion, four other La ions, and no Co ions. There are four
unique crystallite orientations possible associated with mirror
reflections about the three (1 0 0) planes. Although the oxygen
atomic positions are not distorted on the twin plane itself, the
crystalline planes on either side are slightly misaligned with
respect to each other. In our model, we locate the twin interface
on an oxygen plane because that allows the oxygen octahedra
to remain undistorted; only the angles between them change.
The misalignment of crystal structures on either side of a twin
plane is illustrated in Fig. 5, where, in the upper figure, a chain
of Co ions in each of the crystals is shown nearly perpendicular
to the twin interface located at the center where the bicolored

FIG. 5. A chain of Co ions crossing a twin interface, represented
by the vertical line at the center. The upper figure shows blue ions
representing a chain of Co ions that is nearly perpendicular to the
twin plane in a crystallite to the right of the twin plane. Each Co is in
the center of an oxygen octahedron (red). The gold-colored Co ions,
surrounded by their oxygen octahedra (white), are from the crystallite
to the left of the twin interface. The bi-colored oxygen is on the twin
interface and is shared by both chains. The lower figure is the same
as the upper one except that the chain from the left is extended into
the right crystallite to emphasize the small misalignment of the two
chains. The Co-O-Co angles are near 163◦ except across the twin
interface, where half the bond angles are near 165◦ and half near
161◦, in an alternating pattern.

oxygen is shared by both chains. In the lower figure, the chain
of crystal on the left is extended into the crystal on the right
to illustrate the misalignment. An important consequence of
the misalignment is that the Co-O-Co bonds across the twin
plane deviate from angles near the critical angle γC ≈ 163◦
that exist for all other bonds. Half the bonds spanning the twin
interface have γ ≈ 165◦ and are adjacent to the other half that
have γ ≈ 161◦.

Based on studies of LCO nanoparticles [7] and thin films
[19–23], bond angles with γ ≈ 165◦ should be strongly
magnetic, much more so than in bulk LCO, whereas γ ≈
161◦ would result in essentially nonmagnetic bonds [1,3,5].
First-principles generalized gradient approximation (GGA)
and local density approximation (LDA) [5] suggest the same
dependence of the magnetization on γ ; greater rhombohedral
distortions corresponds to smaller values for γ and that
suppresses the magnetic moment. The alternating pattern of
strongly magnetic and nonmagnetic bonds across the twin
interface is depicted in Fig. 6, which shows the Co and O ions in
one plane adjacent to the twin interface and Fig. 7, which shows
the bonds across the interface. The alternating configuration of
bond strengths will affect the two antiferromagnetic sublattices
asymmetrically. All Co-O-Co bonds not spanning the twin
interface remain near the normal bulk angles close to 163◦,
with correspondingly weak antiferromagnetic interactions that
are insufficient to cause long-range order on their own. In the
actual LCO system, the distortions could propagate further than
one Co plane from the twin interface, but that would likely not
alter the physical behavior qualitatively.

The neutron scattering experiment has established that the
ordering of the net moment has the spatial periodicity of
the underlying lattice. The scattering is likely associated with
the ordering of moments at the twinning interfaces and we will
model below the consequences of the bond angle modifications
across the interfaces. The modeling will assume that the only
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FIG. 6. The pattern of ions in one plane adjacent to the twin
interface with strongly antiferromagnetic bonds across the interface
(dark) alternating ions with nonmagnetic bonds (light) across the
interface. The angles associated with the bonds across the interface
(perpendicular to the page, but not shown) are next to the associated
Co ions. All bond angles in the plane shown are 163◦, as are all other
angles for bonds that do not traverse the twin interface. Note that in
the LCO crystal, multiple orientations of the interface exist because
of the possible twins throughout the crystal.

anisotropy is the cubic anisotropy introduced by the oxygen
octahedra. In that approximation, the orientation of the field
to the interface is not important. The model calculation is for
a field along any of the octahedral axes, except in the case of
tilted octahedra. For a field along a general direction, we can
apply the model to the components of the field along each of
the octahedral axes.

FIG. 7. A side view of the twin interface where only the strong
antiferromagnetic bonds are shown spanning the interface (shown in
the shaded region). The nonmagnetic bonds are not shown. The La
ions are also not shown for clarity, including those that lie on the
twin boundary. The two planes of Co ions are parallel. The bicolored
oxygens are on the twin interface and are shared by oxygen octahedra
from each of the two twin domains. Because of the twinning in LCO,
such interfaces will be oriented in various directions and any field
applied to the LCO crystal will, in general, have varying components
along different octahedral axes.
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FIG. 8. Mean-field exchange interactions. Sa and Sm are on one

side of the twin interface and Sb and Sn are on the other. The Sa and
Sm each have four neighbors, each with interaction strength j . Sa and
Sb interact with strength J and Sm and Sn do not directly interact with
each other.

IV. GROUND-STATE CALCULATION

To explore the magnetic consequences of the pattern of al-
ternating strongly antiferromagnetic and nonmagnetic bonds,
we approximate the system by interacting classical local
moments located at each Co ion site in the two planes adjacent
to the twin interface. The strong magnetic interactions of
strength J across the interface alternate with bonds of zero
strength, as shown in Figs. 6 and 7. The moments away from
the interface, which do not order in LCO but still contribute to
the ordering at the twin interface, are represented in the model
by an effective interaction j between all Co ions within each
Co plane. Note that J > j in our model because a stronger
magnetic interaction is expected for the larger Co-O-Co bond
angle [1,5]. In the ground-state calculations, each of the four
kinds of spin, Sa , Sb, Sm, and Sn, behave like the others of the
same kind. Hence the magnetic exchange interaction structure
of this simple model is shown in Fig. 8 and is represented by a
simplified magnetic model Hamiltonian with a magnetic field
of strength Hz in the z direction,

H = 4j
−→
Sa · −→

Sm + 4j
−→
Sb · −→

Sn + J
−→
Sa · −→

Sb

−Hz(Saz + Sbz + Smz + Snz)

+F

⎛
⎝ ∑

i∈x,y,z

[
S4

a,i + S4
b,i + S4

m,i + S4
n,i

]⎞⎠. (2)

Because the interactions between spins are isotropic, no
particular octahedral axis is favored with respect to the ori-
entation of the twin interface. The field is applied in the z

direction, along one octahedral axis, without loss of generality.
In an experiment on LCO, the orientation of twin interfaces
varies throughout the crystal, but the model can be applied
to each component along the different octahedral axes and
the solutions can be superimposed. The magnitude of each
moment is constrained by |Si | = 1 for i ∈ a,b,m,n. The Sa

and Sb spins interact with magnitude J across the interface,
and there are four interactions of strength j between Sa and
Sm in the plane on one side of the interface and, likewise,
four between Sb and Sn in the plane on the other side of the
interface, as shown in Fig. 8. There are no direct interactions
between Sm and Sn or between spins in the two planes and spins
further from the interface. Local moments on each cobalt site
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FIG. 9. The ground-state maps for J = 0, with � = 0.8 (left) and
1.0 (right). The case� = 0.8 agrees well with previous studies [24,25]
and the case � = 1.0 is isotropic, as in the model developed for the
LCO twin interface. For � = 0.8, both the antiferromagnetic (AF)
state with moments along H and the biconical states (BC1 and BC2)
are clearly visible, as is the paramagnetic (PM) state that appears at
high fields. For � = 1.0, the antiferromagnetic state is absent, as is
expected.

also interact with the oxygens in the corners of the octahedra.
To model this behavior, we introduce a cubic anisotropy into
the model of strength F . Moments are attracted to the corners
of the octahedra for F < 0 and repelled for F > 0. Similar
models with quartic terms in the Hamiltonian were investigated
previously by other groups [24–26].

We investigate the ground state by minimizing the energy
represented by the Hamiltonian. Details of the procedure are
described in Appendix. We tested it on a simple Heisenberg
model with uniaxial exchange anisotropy and cubic anisotropy
represented by

H = 4j [�(Sa,xSm,x + Sa,ySm,y) + Sa,zSm,z]

−Hz(Saz + Smz) + F
∑

i∈x,y,z

[
S4

a,i + S4
m,i

]
, (3)

where � < 1 represents uniaxial anisotropy. The left panel of
Fig. 9 shows our simulation results with � = 0.8 for the net
moment along Hz as a function of Hz and F . Such a model has
been studied previously [24,25], and the results are essentially
the same as ours; the only significant difference is that the
boundary between the biconical BC2 and paramagnetic (PM)
phases is flatter in the previous simulations. The antiferromag-
netic state is visible for low H and F < 0. Higher fields result
in the formation of a biconical state, BC1 [24,25], in which
one spin points towards the corner of the oxygen octahedron
in the direction of Hz, and the other spin remains near the
x−y plane, pointing towards one of octahedral corners. The
angle between the spins is close to 90◦. As the magnitude of
Hz increases, the system becomes paramagnetic. For F > 0
and small Hz, a biconical BC2 state occurs as spins avoid
the octahedral corners and instead tend to point towards the
octahedral diagonals.

The right panel of Fig. 9 shows results for � = 1, which
represents isotropic exchange interactions and corresponds to
the model in Eq. (2) for J = 0, which creates two identical
noninteracting planes, only one of which is shown in the
figure. For F < 0 and small Hz, the ground state is a spin-
flop configuration (SF) with the moments aligned mostly
perpendicular to the applied field with a small component

induced along the field. For larger fields, the system becomes
paramagnetic with a significant moment along Hz. For F > 0,
the low field biconical BC2 state is observed. It gives way to a
spin-flop state (SF) at higher fields.

The mean-field calculations ignore fluctuations. However,
for � = 1, density matrix renormalization group (DMRG)
calculations in 1D [26], for which fluctuations are maximized,
yield results qualitatively similar to those of the analogous
mean-field calculations.

Simulations with J �= 0 were done as well. Figure 10
shows the ground-state diagram for Eq. (2) with j = 15 and
J/(4j ) = 2/3. We use the value J/(4j ) = 2/3 throughout
this discussion, but the results were found to be qualitatively
similar for simulations with J/(4j ) = 1/3 and 4/3. For F � 0,
the ground state is a SF configuration with the moments
predominantly perpendicular to Hz with small components
along Hz. This can be seen in Fig. 10, which shows cuts of
the grounds state diagram at F/(4j ) = −0.67, 0, 0.67. In the
lower part of Fig. 10, the moments on the left are along the
field and those on the right are perpendicular to the field;
for example, the label Saxy signifies the total perpendicular
moment

√
S2

ax + S2
ay . (The same notation is used for Figs. 11

and 12.) For F > 0, a biconical BC2 state is observed at small
H , as shown in Fig. 10. As Hz increases, the system evolves
towards SF, with an intermediate phase separating the two.
The nature of BC1 and BC2 state can be seen from the cuts at
F/(4j ) = −0.67, 0 and 0.67. The BC1 state visible for F < 0
and the BC2 state is visible for F > 0.

Although there is no compelling model where γ = 165◦
corresponds to a dominant ferromagnetic interaction between
Sa and Sb, we investigated the consequences of J < 0 in the
mean-field approximation. Figure 11 shows the ground-state
diagram for J/(4j ) = −2/3 and cuts at F/(4j ) = −0.67,
F = 0, and F = 0.67. For F � 0, the ground state is a SF
configuration with the moments predominantly perpendicular
with a small component along the field. The main difference
between this case and that of J/(4j ) = 2/3 is the orientation of
Sa and Sb spins, which now always align in the same direction.
For F < 0, the BC1 state is absent and the SF state transitions
directly into the PM state with increasing H . This is expected
because the interaction between Sa and Sb is ferromagnetic.
For F > 0 a biconical BC2 state remains. It differs from the
case for J < 0 in that the two moments Sa and Sb are aligned
in the same direction, as are the two moments Sm and Sn.

Finally, we introduce the tilt of the octahedron into the
simulation. As shown in Figs. 5–7, each Co-O-Co bond
angle is 165◦, so each oxygen octahedron is tilted relative to
its neighbors, in an alternating pattern. The ground state is
calculated using the modified equation

H = 4j
−→
Sa · −→

Sm + 4j
−→
Sb · −→

Sn + J
−→
Sa · −→

Sb

−Hz(Saz + Sbz + Smz + Snz)

+F
∑

i∈x,y,z

( ∑
k∈a,n

[M1
−→
Sk ]4

i

)
+ F

∑
i∈x,y,z

( ∑
k∈b,m

[M2
−→
Sk ]4

i

)
,

(4)

where M1 and M2 are matrices that rotate spins into the
coordinate systems of respective octahedra tilted 7.5◦ and
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BC

BC BC

BC

BC BC

BC BC

SF

SF SF

SF

FIG. 10. The ground-state configuration for J/(4j ) = 2/3 for the
moments along H applied in the z direction for the four types of spin
as a function of H and F (top) calculated by minimizing the energy
in Eq. (2) and the moments of each component parallel (left) and
perpendicular (right) of the spins as a function of H along cuts at
F/(4j ) = −0.67, 0, and 0.67 (bottom). Biconical states (BC) similar
to those in Fig. 9 are observed as well as an intermediate state between
the biconical state and the paramagnetic state for F > 0.

−7.5◦ with respect to z. The direction of z is only important
when considering the case of tilt and we set it perpendicular to
the twin interface.

Some differences are seen in the ground state as a result of
the octahedron tilt, as shown in Fig. 12. For F < 0, the SF state
for low fields and the BC1 state at intermediate fields appear

PM

PM PM

PM

SF

SF SF

SF

BCBC

BC BC

FIG. 11. The ground-state configuration for J/(4j ) = −2/3 for
the moments along H applied in the z direction for the four types
of spin as a function of H and F (top) calculated by minimizing the
energy in Eq. (2) and the moments of each component parallel (left)
and perpendicular (right) of the spins as a function of H along cuts
at F/(4j ) = −0.67, 0 and −0.67 (bottom). A biconical state (BC) is
observed for F > 0.

qualitatively similar to the case of no tilt in Fig. 10, except that,
for high H values, instead of a transition from the SF state to the
PM state seen in Fig. 10, a new BC1-like state exists between
the SF and PM states with Sa and Sb nearly perpendicular to
each other and with Sm and Sn nearly parallel. For F > 0, the
tilt and no tilt ground states appear superficially similar, but
the transition between PM and BC2 states are separated by an
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BC

BC BC

BC

SF

SF SF

SF

BC

BC

BC

BC

FIG. 12. The ground-state configuration withJ = J/(4j ) = 2/3,
similar to that shown in Fig. 10 except that the oxygen octahedra are
tilted with respect to z in an alternating pattern as described in the text.
A biconical-like (BC) state is observed for both F > 0 and F < 0.

intermediate state as F increases. The transitions become less
sharp as F decreases towards zero.

V. MEAN-FIELD APPROXIMATION

To study the model for T > 0, we employed the mean-field
approximation

H =
∑

k∈a,b,m,n

−→
Sk · −→

H MF,k, (5)

with the effective mean fields
−→
H MF,a = 4j

−−→〈Sm〉 + J
−−→〈Sb〉 + −→

H + F
−→
C a,

−→
H MF,b = 4j

−−→〈Sn〉 + J
−−→〈Sa〉 + −→

H + F
−→
C b,

−→
H MF,m = 4j

−−→〈Sm〉 + −→
H + F

−→
C m,

−→
H MF,n = 4j

−−→〈Sb〉 + −→
H + F

−→
C n, (6)

with the four terms−→
C p = −−→〈Sp〉 � −−→〈Sp〉 � −−→〈Sp〉, (7)

where p = a, b, m, or n in each term. The exchange parameters
j and J are those introduced earlier and summarized in Fig. 8.
The symbol � represents the Hadamard vector product; it is
a piecewise multiplication of x, y, and z components yielding
components such as (Sax)3, (Say)3, (Saz)3 in the x, y, and z

directions, respectively.
To calculate the total magnetization of each spin, we

used the Helmholtz free energy F = −T ln ZT , with ZT =
ZaZbZmZn, where

Zk =
∫

exp[−β
−→
Sk · −→

H MF,k] d�, (8)

with k = a, b, m, or n. The average moment for each spin is
calculated using

〈Sk〉i = T

Zk

∂Zk

∂HMF,ki

, (9)

where i ∈ x,y,z and k ∈ a,b,m,n.
To study the ZFC and FC temperature dependencies of the

moments, we use the Levenberg-Marquardt (LM) algorithm
[27], as described in Appendix. We increment the temperature
to Ti and start the algorithm using the solution of the previous
Ti−1 as a seed.

In experiments, the FC and ZFC temperature scanning
procedures were used. We will argue from the mean-field
simulations that FC results in a metastable state, whereas ZFC
creates a state closer to equilibrium.

The mean-field FC scans are started at high T and cooled
in the field. In the second procedure, the simulation starts with
the system in the equilibrium state at low T and is heated with
Hz applied. This is similar to the experimental ZFC procedure
in that the system starts from a state close to equilibrium. We
will use the ZFC label for the mean-field procedure starting at
low T in the equilibrium state.

For J/(4j ) = 2/3, and Hz/(4j ) = 2.27 × 10−4, we show
typical results in Fig. 13 for average spin moments parallel
(left) and perpendicular (right) to Hz versus T for F/(4j ) =
−0.67, 0, and 0.67 for both the FC and ZFC procedures.
For this figure and all the other figures in this section, the
temperature scale T is normalized so that the FC transition for
J/(4j ) = 2/3 is at TC = 89.5 K, the experimentally observed
transition temperature for the net moment. The ZFC transitions
occur at T = Teq. The total moment along the magnetic field is
Tz = Saz + Sbz + Smz + Snz and total moment perpendicular

to the field is Txy =
√∑

i∈x,y(Sai + Sbi + Smi + Sni)2. For

F/(4j ) = −0.67, the equal moments on Sm and Sn are aligned
with Hz and the equal moments on Sa and Sb are smaller and
aligned opposite to Hz. This configuration yields a significant
net moment along Hz for T < TC . Above TC , the very small
moments induced by Hz on Sm and Sn are larger than those
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FIG. 13. The average moments of each spin component as well
as the net moment Tz along H and Txy perpendicular to H , where
H is an applied field equivalent to Hz = 20 Oe for FC and ZFC
with J/(4j ) = 2/3 and F/(4j ) = −0.67, 0, and 0.67. In the ZFC
procedure, the system is started in its ground state at low temperature.
All interactions are antiferromagnetic.

on Sa and Sb and this preference for the alignment of Sm

and Sn gets locked in below TC , despite the energy cost
of having Sa and Sb aligned. This is clearly a metastable
state. If the system starts from the ground-state configuration,
which is likely representing the ZFC state, Sa and Sb align

FIG. 14. The behavior of the moments near Teq for J/(4j ) = 2/3,
showing the polarization of the sublattices for FC and ZFC as well
as the energy for FC and ZFC. The smooth growth of the weak FC
ferrimagnetic moment contrasts to sharp SF transition observed in
ZFC.

in opposite directions, all spins align in an antiferromagnetic
configuration, and no strong net moment develops.

For F/(4j ) = 0.67, the FC behavior is similar for the net
moment along Hz, but with a net moment growing more slowly
below TC and decreasing less at small T . The ZFC behavior,
however, exhibits the BC2 state at low T , consistent with the
ground-state calculation. The BC2 state has its transition at
a higher temperature, Teq ≈ 170 K, and it has no strong net
moment parallel or perpendicular to Hz.

For F = 0, the FC behavior is intermediate between the
F/(4j ) = −0.67 and 0.67 cases, but the ZFC case shows
a BC-type state with the higher transition temperature Teq.
Again, only FC shows a significant net moment along Hz.
The metastable FC state is achieved when the LM algorithm
settings suitably limit the explorable parameter space, as
detailed in Appendix.

The mean-field simulation cannot answer the question of
whether the real system will achieve the equilibrium state
upon FC or enter the metastable state. We can equilibrate the
system in the simulation upon FC if we allow each iteration
in temperature to sample a large enough region of parameter
space. On the other hand, we know that the real LCO system
shows strong hysteresis; FC results in a significant net moment
and ZFC produces a much reduced moment. This indicates
that for FC, the LCO system has a difficult time transforming
from the state above Teq to the equilibrium state is entered
upon ZFC. The simulation results near Teq indicate why this
might be. Figure 14 shows the two configurations of spin
moments obtained upon FC and ZFC for the case F/(4j ) =
0.67. For ZFC, the system retains antiferromagnetic order for
all T � Teq, with Sb and Sm along Hz and Sa and Sn in the
opposing direction. The four sublattice magnetizations nearly
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cancel for T � Teq, as they also do for T � Teq. Above Teq,
the small net magnetization decreases as T increases and the
moments on Sm and Sn are significantly larger than those of Sa

and Sb.
The FC situation for T > Teq is identical to the ZFC one.

However, as T decreases below Teq, the system cannot easily
transition to the ZFC state. On both sides of the twin interface,
the sublattices with Sm and Sn are more polarized along the
field than the Sa and Sb sublattices. In order to reach the
ZFC state, the entire sublattices on one side of the interface
must reverse direction. The antiferromagnetic interactions
between Sa and Sb can help facilitate the reversal, but it is not
easy to achieve the reversal through short-range fluctuations
in the same way that a uniform antiferromagnet would. In
the latter case, independent regions of antiferromagnetically
correlated regions fluctuate and grow in size near the transition
temperature; the fluctuating regions do not have to compete
against a field-induced bias favoring the alignment of one
sublattice with the field over the other. In the interface case,
the spins with the largest moments, Sm and Sn, do not interact
directly and the bias created by the field throughout the lattices
on each side of the interface opposes equilibration of the entire
system. If the system does not equilibrate close to Teq, it
only becomes harder as T decreases because the field-induced
bias of the sublattice moments increases. Although the field-
induced bias at each site is small, the overall effect of the bias
is strong because it permeates the entire system, effectively
eliminating the ability of local fluctuations to reverse entire
sublattices. Although Sa and Sb are not aligned, despite the
antiferromagnetic interaction between them, the system orders
at a temperature TC , which is much lower than Teq.

Although the mean-field simulation cannot equilibrate
through thermal fluctuations, upon each change in temperature
we allow the system to vary the initial parameters within set
limits. If these variations are allowed to be large enough, the
ZFC state, which is closer to equilibrium, can be achieved upon
FC. The variation of one parameter affects an entire sublattice;
this facilitates the reversal of that entire sublattice at once, elim-
inating the need for local fluctuations to grow against the field-
induced bias for the Sm and Sn sublattices to align with the field.

For T < Teq, the nonequilibrated FC system acts like a weak
ferrimagnet with different moments on the two sublattices on
either side of the interface. When T decreases to TC , the system
orders antiferromagnetically with the two unequal sublattice
moments creating a net moment. Unlike the ZFC antiferro-
magnetic transition that remains sharp at Teq independent of
the magnitude of H , the ferrimagnetic-like transition rounds
with increasingH because the field directly couples to the order
parameter as a result of the unequal sublattice moments. If the
real LCO system does not, in fact, readily achieve equilibrium,
one could expect FC behavior like that observed in this model.

We also examined the case where J/(4j ) = −2/3, shown
in Fig. 15, where the ferromagnetic interaction favors the
alignment of Sa and Sb in the same direction for both the FC
and ZFC procedures. In this case, because there is no conflict
caused by the field-induced larger moments on sublattices Sm

and Sn and the ferromagnetic J , the transition temperatures TC

and Teq, for FC and ZFC, respectively, are nearly equal for all
values of F . However, just as in the case for J > 0, H couples
directly to the order parameter and the FC transition rounds

FIG. 15. The average moments of each spin component as well as
the net moment Tz along H and Txy perpendicular to H , where H is an
applied field equivalent to Hz = 20 Oe for FC and ZFC with J/(4j ) =
−2/3 and F/(4j ) = −0.67, 0, and 0.67. The interactions are all
antiferromagnetic except between Sa and Sb which is ferromagnetic.

rapidly as H increases. For ZFC, in contrast, the transition
remains sharp as H increases. Unlike the J > 0 case, net
moments occur for the ZFC case as well as for FC for F � 0 as
a result of the unequal sublattice moments. Although the case
F < 0 resembles the experiment, with a significant net moment
only upon FC, the FC net moment decreases too rapidly

024418-10



ORIGIN OF THE NET MAGNETIC MOMENT IN LaCoO3 PHYSICAL REVIEW B 97, 024418 (2018)

FIG. 16. The net moment M and H/M vs T upon FC for several
fields with J/(4j ) = 2/3 and F/(4j ) = −0.67, 0, and 0.67.

with decreasing T to resemble the experiments. Because
there is no reason to believe that the magnetic interaction is
ferromagnetic for γ = 165◦ in LCO, we only compare J > 0
to the experimental magnetization data in the remaining part
of this section.

The FC behaviors produced in the mean-field calculations
for J/(4j ) = 2/3 and all F resemble the net moment observed
in the FC for magnetization experiments that measure the net
moment along the field. The suppression of the moment in
the magnetization experiments [2] upon cooling in very small
fields, H � 3 Oe, is also consistent with the ZFC calculations
that show no significant net moment. For the polarized neutron
scattering experiments, the fields at the sample were Hz �
16 Oe, so the sample was in the metastable state for all the
measurements.

Figure 16 shows the net moment along Hz and Hz/M versus
T for various fields upon cooling for J/(4j ) = 2/3. The field
is normalized using the Curie law M/Hz = Cm/Tm on an
isolated spin with g = 1 and S = 1. The resulting conversion,
HkOe = 1.47Hz, ensures that the field strengths reasonably
reflect those used in the experiments. As Hz decreases, M

versus T approaches an envelope below TC that represents
the spontaneous ordering. The transition is sharp near TC

for small Hz, but quickly rounds with increasing field. For
Hz/M versus T , Curie-Weiss behavior is seen as a straight
line above 150 K, and the net moment decreases Hz/M below
TC with rounding that increases rapidly for increasing Hz.
This behavior mimics well that of the net moment observed in
bulk LCO powders experiments, except that the experimental
data include a large antiferromagnetic component from the

bulk spins far from the interface that is not included in this
model. Because the magnetization measurements [1,12] do not
indicate a large decrease in the net moment as T decreases
towards zero, the behavior for F > 0 most resembles the
experimental results, though it must be remembered that the
mean-field approximation suppresses the thermal fluctuations
that exist in the LCO system.

Finally, we address the case where the oxygen octahedra
are tilted in the configuration in the manner described in the
previous section. Introducing the tilt, �Ck take the form

−→
C a = M1

−1[M1
−−→〈Sa〉 � M1

−−→〈Sa〉 � M1
−−→〈Sa〉],

−→
C b = M2

−1[M2
−−→〈Sb〉 � M2

−−→〈Sb〉 � M2
−−→〈Sb〉],

−→
C m = M2

−1[M2
−−→〈Sm〉 � M2

−−→〈Sm〉 � M2
−−→〈Sm〉],

−→
C n = M1

−1[M1
−−→〈Sn〉 � M1

−−→〈Sn〉 � M1
−−→〈Sn〉], (10)

where the appropriate rotation matrix expresses each spin
vector in the coordinates of its respective oxygen octahedron,
the Hadamard vector product is performed, and the resulting
vector is then expressed in the original coordinate frame.
Results from the ground-state T = 0 calculation using Eq. (10)
are very close to those with finite T in Eq. (4), and the small
T and Hz behavior from the mean-field calculation reflects the
ground-state results. These results indicate that the effective
mean field represented by Eq. (10) is a good indicator of the
behavior when cubic isotropy is broken by the tilted octahedral
geometry though it does not precisely reflect a cubic anisotropy
in the coordinates of the octahedra. The results were not
significantly different from the case of untilted octahedra, so
we conclude that the tilt is not a dominant factor in the behavior
of LCO magnetic behavior.

Although we have presented most results for a specific
value J/(4j ) = 2/3 and some results with J/(4j ) = −2/3,
we found qualitatively similar results for other values such as
J/(4j ) = 4/3 and 1/3. The basic behavior does not seem sen-
sitive to the magnitude of J/(4j ) chosen with |J | comparable
to, but larger than j .

For the model, we have shown that the net moment is
generated by the twin interface. That result is not dependent on
the sign of F or J , and tilting of the octahedra by the angle in
LCO does not significantly alter behavior of the net moment. In
the neutron scattering measurements, the observed scattering
indicates components of the net moment perpendicular to the
field. The top panel of Fig. 13 shows that, upon FC with F < 0,
a perpendicular component is generated for the field aligned
with an axis of the octahedron surrounding the Co ion. In an
actual experiment, the field will not, in general, be aligned with
one of the octahedral axes because the twin interfaces will be
in many different orientations. For this reason, if F > 0, we
would still expect a significant perpendicular component of the
net moment with respect to the applied field because there will
be a significant field component along all the octahedral axes.
Only for F = 0, would there be no perpendicular component
and only if the tilting is an insignificant factor.

VI. CONCLUSION

The mean-field calculation provides a plausible explanation
for the observation of a significant net moment associated
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with critical-like behavior in LCO magnetization and neutron
scattering experiments, its rapid rounding in relatively small
fields, and the large difference in behavior for results obtained
from the FC and ZFC procedures. The twin interface results in
large interactions across the twin boundaries on half the sites
with neighboring sites having no magnetic interaction. This
asymmetry imposed on the sublattices enables a ferrimagnetic-
like transition in the metastable state that rounds quickly with
the field. One significant implication of the model is that LCO
can exhibit a net moment in the absence of any ferromagnetic
interaction between spins.

Critical fluctuations are suppressed in mean-field models,
and more sophisticated techniques might modify the physical
picture derived in the present model. However, the apparent
consistency between the mean-field model and the experimen-
tal observations, particularly the large differences between the
behavior in FC and ZFC, suggest that the model captures much
of the essence of the physics, which is that the asymmetric
influence of the twin interface on the two antiferromagnetic
sublattices results in a FC metastable state with a significant
net moment.

LCO surfaces have a larger average value of γ than
the interior [7]. The resulting strain is likely accommodated
by twinning. Similarly, strain near impurity defects can be
released through high densities of twin interfaces. The large
net moment observed in LCO with large strain or defects is
likely attributable to the induced twinning. Understanding the
physical mechanism behind the appearance of a net moment
in LCO is important in the design of thin-film devices using
this material [28,29] and systems with similar properties.

The model presented here is for the net moment that forms
near T = 89 K at twin interfaces in LCO. It does not address
the behavior of the bulk moments in LCO. In particular,
interesting behavior takes place as the temperature decreases
to T ≈ 40 K where the bulk magnetic moment decreases
precipitously [1,3]. At low temperatures, quantum-based mod-
els [30] and experimental interpretations [31,32] have been
proposed for the formation of excitons and for exciton
condensation.
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APPENDIX

To find the ground state, we minimize Eqs. (2)–(4) using the
algorithm SLSQP (Sequential Least SQuares Programming)
from the SCIPY package [27]. It minimizes H subject to the
constraints

√
S2

ix + S2
iy + S2

iz = 1 with i ∈ a,b,m,n. Because

SLSQP is a local minimizer, a combination of several initial
seeds are necessary to avoid being trapped in local minima.

For the finite-temperature mean-field calculations, we
use a root finding algorithm from the scipy.optimize pack-
age [27]. It solves the system of nonlinear equations in a
least squares sense using a modification of the Levenberg-
Marquardt algorithm as implemented in MINPACK [33]. In-
tegrals in Eq. (8) are solved numerically. We use a com-
bination of QAG adaptive integration and QAGP adaptive
integration with known singular points for difficult regions;
the algorithms [34] are implemented in the GNU scientific
library [35].

The Levenberg-Marquardt (LM) attempts to minimize

S(x) =
12∑
i=1

(xi − fi(x))2 (A1)

for a given set of parameters. Equation (A1) is minimized
with xi = 〈Sk〉j for k ∈ a,b,m,n and j ∈ x,y,z, with fi =
(T/Zk)(∂Zk/∂HMF,kj ), representing a total of 12 equations and
12 variables. To first order,

S(x + σ ) =
12∑
i=1

(xi − fi(x) − Jiσ )2. (A2)

The Jacobian J is calculated numerically. For this algorithm,
two stopping criteria were set,

||D(xk − xk+1)||
||D(xk+1)|| � XTOL, (A3)

where D is the diagonal matrix specifying the allowed scale of
x, and

||f(xk)||
||f(xk+1)|| � 1 + FTOL. (A4)

Here, k indicates the step of the algorithm. We set XTOL =
FTOL = 1.5 × 10−8. Because LM finds only the local min-
imal, choosing the best initial x0 and D0 is paramount in
determining whether the calculation finds the equilibrium or
a metastable state. For ZFC, the SLSQP algorithm is used to
find the global minimal state for T = 0. This state is then used
as the initial x0

0 for the LM algorithm at finite T0 for T0 > 0.
The scaling matrix is set to D0

0 = |x0
0|. The LM algorithm

produces the value x0
final, which is the spin configuration at T0

(the subscript “final” indicates the final result of k iterations).
For eachTq+1 calculation, the previous result atTq is used as the
seed. For FC, we start at highT and decrease the temperature on
each iteration, i.e., Tq < Tq−1. For each Tq , the size of the initial
step of LM algorithm is δ||Dq

0xq

0 || with δ = 1 and xq

0 = xq−1
final

is the spin configuration for previous Tq−1. The scaling matrix
is Dq

0 = |xq

0 |. Specifying xq

0 and Dq

0 in this way constrains the
parameter space so that the state is metastable, as observed in
the LCO experiments. If the value of δ or minimal floor on xq

0
and Dq

0 is increased, this results in a larger parameter space,
corresponding to higher likelihood of finding the equilibrium
state in FC.

024418-12



ORIGIN OF THE NET MAGNETIC MOMENT IN LaCoO3 PHYSICAL REVIEW B 97, 024418 (2018)

[1] A. M. Durand, D. P. Belanger, C. H. Booth, F. Ye, S. Chi, J.
A. Fernandez-Baca, and M. Bhat, J. Phys.: Condens. Matter 25,
382203 (2013).

[2] A. M. Durand, T. J. Hamil, D. P. Belanger, S. Chi, F. Ye,
J. A. Fernandez-Baca, Y. Abdollahian, and C. H. Booth, J. Phys.:
Condens. Matter 27, 126001 (2015).

[3] D. P. Belanger, T. Keiber, F. Bridges, A. M. Durand, A. Mehta,
H. Zheng, J. F. Mitchell, and V. Borzenets, J. Phys.: Condens.
Matter 28, 025602 (2016).

[4] M. Itoh, M. Sugahara, I. Natori, and K. Motoya, J. Phys. Soc.
Jpn. 64, 3967 (1995).

[5] Y. Lee and B. N. Harmon, J. Appl. Phys. 113, 17E145 (2013).
[6] J.-Q. Yan, J.-S. Zhou, and J. B. Goodenough, Phys. Rev. B 70,

014402 (2004).
[7] A. M. Durand, D. P. Belanger, T. J. Hamil, F. Ye, S. Chi, J. A.

Fernandez-Baca, C. H. Booth, Y. Abdollahian, and M. Bhat, J.
Phys.: Condens. Matter 27, 176003 (2015).

[8] G. Maris, Y. Ren, V. Volotchaev, C. Zobel, T. Lorenz, and T. T.
M. Palstra, Phys. Rev. B 67, 224423 (2003).

[9] P. Vullum, R. Holmestad, H. Lein, J. Mastin, M.-A. Einarsrud,
and T. Grande, Adv. Mater. 19, 4399 (2007).

[10] P. E. Vullum, H. L. Lein, M.-A. Einarsrud, T. Grande, and R.
Holmestad, Philos. Mag. 88, 1187 (2008).

[11] R. M. Moon, T. Riste, and W. C. Koehler, Phys. Rev. 181, 920
(1969).

[12] J.-Q. Yan, J.-S. Zhou, and J. B. Goodenough, Phys. Rev. B 69,
134409 (2004).

[13] K. Binder and P. C. Hohenberg, Phys. Rev. B 6, 3461 (1972).
[14] K. Binder and P. C. Hohenberg, Phys. Rev. B 9, 2194 (1974).
[15] K. Asai, P. Gehring, H. Chou, and G. Shirane, Phys. Rev. B 40,

10982 (1989).
[16] D. Phelan, D. Louca, S. Rosenkranz, S.-H. Lee, Y. Qui, P. J.

Chupas, R. Osborn, H. Zheng, J. F. Mitchell, J. R. D. Copley,
J. L. Sarrao, and Y. Moritomo, Phys. Rev. Lett. 96, 027201
(2006).

[17] A. Podlesnyak, S. Streule, J. Mesot, M. Medarde, E. Pom-
jakushina, K. Conder, A. Tanaka, M. W. Haverkort, and D. I.
Khomskii, Phys. Rev. Lett. 97, 247208 (2006).

[18] R. A. Cowley, M. Hagen, and D. P. Belanger, J. Phys. C 17, 3763
(1984).

[19] D. Fuchs, L. Dieterle, E. Arac, R. Eder, P. Adelmann, V. Eyert,
T. Kopp, R. Schneider, D. Gerthsen, and H. v. Löhneysen, Phys.
Rev. B 79, 024424 (2009).

[20] J. W. Freeland, J. X. Ma, and J. Shi, Appl. Phys. Lett. 93, 212501
(2008).

[21] D. Fuchs, E. Arac, C. Pinta, S. Schuppler, R. Schneider, and H.
v. Lohneysen, Phys. Rev. B 77, 014434 (2008).

[22] A. Herklotz, A. D. Rata, L. Schultz, and K. Dorr, Phys. Rev. B
79, 092409 (2009).

[23] A. Posadas, M. Berg, H. Seo, D. J. Smith, A. P. Kirk, D.
Zhernokletov, R. M. Wallace, A. de Lozanne, and A. A. Demkov,
Microelectron. Eng. 88, 1444 (2011).

[24] G. Bannasch and W. Selke, Eur. Phys. J. B 69, 439 (2009).
[25] T.-C. Dinh and R. Folk, arXiv:0907.1480.
[26] M. Dudzinski, J. Sznajd, and J. Zittartz, Eur. Phys. J. B 17, 575

(2000).
[27] T. E. Oliphant, Comput. Sci. Eng. 9, 10 (2007).
[28] W. S. Choi, K. T. Kang, H. Jeen, Z. Gai, and H. N. Lee, Curr.

Appl. Phys. 17, 722 (2017).
[29] C. Hu, K. W. Park, A. Posadas, J. L. Jordan-Sweet, A. A.

Demkov, and E. T. Yu, J. Appl. Phys. 114, 183909 (2013).
[30] J. F. Afonso and J. Kunes, Phys. Rev. B 95, 115131

(2017).
[31] S. El-Khatib, D. Phelan, J. G. Barker, H. Zheng, J. F. Mitchell,

and C. Leighton, Phys. Rev. B 92, 060404 (2015).
[32] S. R. Giblin, I. Terry, D. Prabhakaran, A. T. Boothroyd, and C.

Leighton, Phys. Rev. B 79, 174410 (2009).
[33] J. J. Moré, B. S. Garbow, and K. E. Hillstrom, ANL-80-74,

1980.
[34] R. Piessens, E. de Doncker-Kapenga, C. W. Überhuber, and

D. K. Kahaner, QUADPACK: A Subroutine Package for Automatic
Integration (Springer Science and Business Media, Berlin,
2012), Vol. 1.

[35] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, M.
Booth, and F. Rossi, GNU Scientific Library (Lightning Source,
2003).

024418-13

https://doi.org/10.1088/0953-8984/25/38/382203
https://doi.org/10.1088/0953-8984/25/38/382203
https://doi.org/10.1088/0953-8984/25/38/382203
https://doi.org/10.1088/0953-8984/25/38/382203
https://doi.org/10.1088/0953-8984/27/12/126001
https://doi.org/10.1088/0953-8984/27/12/126001
https://doi.org/10.1088/0953-8984/27/12/126001
https://doi.org/10.1088/0953-8984/27/12/126001
https://doi.org/10.1088/0953-8984/28/2/025602
https://doi.org/10.1088/0953-8984/28/2/025602
https://doi.org/10.1088/0953-8984/28/2/025602
https://doi.org/10.1088/0953-8984/28/2/025602
https://doi.org/10.1143/JPSJ.64.3967
https://doi.org/10.1143/JPSJ.64.3967
https://doi.org/10.1143/JPSJ.64.3967
https://doi.org/10.1143/JPSJ.64.3967
https://doi.org/10.1063/1.4798350
https://doi.org/10.1063/1.4798350
https://doi.org/10.1063/1.4798350
https://doi.org/10.1063/1.4798350
https://doi.org/10.1103/PhysRevB.70.014402
https://doi.org/10.1103/PhysRevB.70.014402
https://doi.org/10.1103/PhysRevB.70.014402
https://doi.org/10.1103/PhysRevB.70.014402
https://doi.org/10.1088/0953-8984/27/17/176003
https://doi.org/10.1088/0953-8984/27/17/176003
https://doi.org/10.1088/0953-8984/27/17/176003
https://doi.org/10.1088/0953-8984/27/17/176003
https://doi.org/10.1103/PhysRevB.67.224423
https://doi.org/10.1103/PhysRevB.67.224423
https://doi.org/10.1103/PhysRevB.67.224423
https://doi.org/10.1103/PhysRevB.67.224423
https://doi.org/10.1002/adma.200700021
https://doi.org/10.1002/adma.200700021
https://doi.org/10.1002/adma.200700021
https://doi.org/10.1002/adma.200700021
https://doi.org/10.1080/14786430802082016
https://doi.org/10.1080/14786430802082016
https://doi.org/10.1080/14786430802082016
https://doi.org/10.1080/14786430802082016
https://doi.org/10.1103/PhysRev.181.920
https://doi.org/10.1103/PhysRev.181.920
https://doi.org/10.1103/PhysRev.181.920
https://doi.org/10.1103/PhysRev.181.920
https://doi.org/10.1103/PhysRevB.69.134409
https://doi.org/10.1103/PhysRevB.69.134409
https://doi.org/10.1103/PhysRevB.69.134409
https://doi.org/10.1103/PhysRevB.69.134409
https://doi.org/10.1103/PhysRevB.6.3461
https://doi.org/10.1103/PhysRevB.6.3461
https://doi.org/10.1103/PhysRevB.6.3461
https://doi.org/10.1103/PhysRevB.6.3461
https://doi.org/10.1103/PhysRevB.9.2194
https://doi.org/10.1103/PhysRevB.9.2194
https://doi.org/10.1103/PhysRevB.9.2194
https://doi.org/10.1103/PhysRevB.9.2194
https://doi.org/10.1103/PhysRevB.40.10982
https://doi.org/10.1103/PhysRevB.40.10982
https://doi.org/10.1103/PhysRevB.40.10982
https://doi.org/10.1103/PhysRevB.40.10982
https://doi.org/10.1103/PhysRevLett.96.027201
https://doi.org/10.1103/PhysRevLett.96.027201
https://doi.org/10.1103/PhysRevLett.96.027201
https://doi.org/10.1103/PhysRevLett.96.027201
https://doi.org/10.1103/PhysRevLett.97.247208
https://doi.org/10.1103/PhysRevLett.97.247208
https://doi.org/10.1103/PhysRevLett.97.247208
https://doi.org/10.1103/PhysRevLett.97.247208
https://doi.org/10.1088/0022-3719/17/21/010
https://doi.org/10.1088/0022-3719/17/21/010
https://doi.org/10.1088/0022-3719/17/21/010
https://doi.org/10.1088/0022-3719/17/21/010
https://doi.org/10.1103/PhysRevB.79.024424
https://doi.org/10.1103/PhysRevB.79.024424
https://doi.org/10.1103/PhysRevB.79.024424
https://doi.org/10.1103/PhysRevB.79.024424
https://doi.org/10.1063/1.3027063
https://doi.org/10.1063/1.3027063
https://doi.org/10.1063/1.3027063
https://doi.org/10.1063/1.3027063
https://doi.org/10.1103/PhysRevB.77.014434
https://doi.org/10.1103/PhysRevB.77.014434
https://doi.org/10.1103/PhysRevB.77.014434
https://doi.org/10.1103/PhysRevB.77.014434
https://doi.org/10.1103/PhysRevB.79.092409
https://doi.org/10.1103/PhysRevB.79.092409
https://doi.org/10.1103/PhysRevB.79.092409
https://doi.org/10.1103/PhysRevB.79.092409
https://doi.org/10.1016/j.mee.2011.03.108
https://doi.org/10.1016/j.mee.2011.03.108
https://doi.org/10.1016/j.mee.2011.03.108
https://doi.org/10.1016/j.mee.2011.03.108
https://doi.org/10.1140/epjb/e2009-00171-x
https://doi.org/10.1140/epjb/e2009-00171-x
https://doi.org/10.1140/epjb/e2009-00171-x
https://doi.org/10.1140/epjb/e2009-00171-x
http://arxiv.org/abs/arXiv:0907.1480
https://doi.org/10.1007/s100510070094
https://doi.org/10.1007/s100510070094
https://doi.org/10.1007/s100510070094
https://doi.org/10.1007/s100510070094
https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.1016/j.cap.2017.02.013
https://doi.org/10.1016/j.cap.2017.02.013
https://doi.org/10.1016/j.cap.2017.02.013
https://doi.org/10.1016/j.cap.2017.02.013
https://doi.org/10.1063/1.4831673
https://doi.org/10.1063/1.4831673
https://doi.org/10.1063/1.4831673
https://doi.org/10.1063/1.4831673
https://doi.org/10.1103/PhysRevB.95.115131
https://doi.org/10.1103/PhysRevB.95.115131
https://doi.org/10.1103/PhysRevB.95.115131
https://doi.org/10.1103/PhysRevB.95.115131
https://doi.org/10.1103/PhysRevB.92.060404
https://doi.org/10.1103/PhysRevB.92.060404
https://doi.org/10.1103/PhysRevB.92.060404
https://doi.org/10.1103/PhysRevB.92.060404
https://doi.org/10.1103/PhysRevB.79.174410
https://doi.org/10.1103/PhysRevB.79.174410
https://doi.org/10.1103/PhysRevB.79.174410
https://doi.org/10.1103/PhysRevB.79.174410



