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We report our theoretical predictions on the linear magnetoelectric (ME) effects originating from odd-parity
multipoles associated with spontaneous spin and orbital ordering on a diamond structure. We derive a two-
orbital model for d electrons in eg orbitals by including the effective spin-orbit coupling which arises from the
mixing between eg and t2g orbitals. We show that the model acquires a net antisymmetric spin-orbit coupling
once staggered spin and orbital orders occur spontaneously. The staggered orders are accompanied by odd-
parity multipoles: magnetic monopole, quadrupoles, and toroidal dipoles. We classify the types of the odd-parity
multipoles according to the symmetry of the spin and orbital orders. Furthermore, by computing the ME tensor
using the linear response theory, we show that the staggered orders induce a variety of the linear ME responses.
We elaborate all possible ME responses for each staggered order, which are useful to identify the order parameter
and to detect the odd-parity multipoles by measuring the ME effects. We also elucidate the effect of lowering
symmetry by a tetragonal distortion, which leads to richer ME responses. The implications of our results are
discussed for the 5d transition metal oxides, AOsO4 (A = K, Rb, and Cs), in which the order parameters are not
fully identified.
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I. INTRODUCTION

The effect of the relativistic spin-orbit coupling (SOC) in
solids has drawn considerable interest in condensed matter
physics. In particular, the SOC in the absence of spatial
inversion symmetry, which is called the antisymmetric spin-
orbit coupling (ASOC), has widely been studied as a source of
intriguing phenomena in materials with noncentrosymmetric
lattice structures, e.g., an unconventional superconductivity in
a heavy-fermion compound CePt3Si [1], giant spin splitting
in the electronic band structure in a semiconductor BiTeI [2],
and the quantum spin Hall effect in transition metal dichalco-
genides [3]. Once such noncentrosymmetric systems undergo
the breaking of time-reversal symmetry by a magnetic order,
further unusual phenomena may arise, such as magnetoelectric
(ME) effects in multiferroic materials [4,5], the topological
Hall effect in skyrmion crystals [6], and nonreciprocal optical
phenomena in Rashba metals [7].

Meanwhile, such interesting physics may occur even in cen-
trosymmetric systems, once the lattice site lacks the inversion
center [8–12]. Such asymmetry at the lattice site is ubiquitously
found in the centrosymmetric systems whose unit cell includes
sublattices, e.g., zigzag chain, honeycomb, and diamond struc-
tures. In these systems, a spontaneous staggered order, such as
a Néel-type antiferromagnetic order, breaks spatial inversion
symmetry, which activates a net ASOC. This mechanism leads
to intriguing phenomena even in centrosymmetric systems,
such as the ME effect in Cr2O3 [13–15] and Co4Nb2O9

[16–19], valley splitting in the electronic band structure [20],
nonreciprocal magnon excitations in α-Cu2V2O7 [21–24], and
unconventional superconductivity [25].

Behind the intriguing phenomena in centrosymmetric sys-
tems, multipoles with odd parity play an important role [26].
The staggered electronic orders are accompanied by the odd-
parity multipoles, such as magnetic quadrupole [27], electric
octupole [28], and magnetic toroidal dipole [10,11,22,29–34].
A microscopic theory has recently been elucidated by the
authors through the systematic analysis of staggered charge,
spin, and orbital orderings in a minimal model on a honeycomb
structure [26,31,35]. The authors constructed a classification of
the staggered orderings and associated odd-parity multipoles,
and clarified how the ASOC is induced in each case. The results
are useful to predict various unconventional phenomena, such
as the spin and valley splitting in the band structure, asym-
metric band modulation with a band bottom shift, and peculiar
off-diagonal responses including spin and valley Hall effects
and ME effects [26]. The predictions will also be useful to
identify the type of staggered ordering by measurement of such
phenomena. Although the theory provides an archetype of the
ASOC physics, it is desired to apply it to realistic situations
and to test the predictive power.

In the present study, we theoretically predict the emergence
of the odd-parity multipoles, the ASOC, and the linear ME
effects on a centrosymmetric diamond structure, with the
5d transition metal oxides AOsO4 (A = K, Rb, and Cs) in
mind [36,37]. We derive an effective model for the relevant
eg orbitals by incorporating orbital-dependent hoppings, crys-
talline electric fields, and the effective SOC. The effective
SOC in the eg orbitals is obtained by taking into account the
atomic SOC with t2g orbitals, and plays an important role in
AOsO4 as the cubic crystalline electric field is comparable
to the atomic SOC [37]. We classify the staggered spin and
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orbital orders and the associated odd-parity multipoles from the
symmetry point of view. For each case, we elucidate what type
of ASOC is induced and what type of ME effect occurs. The
results are discussed for AOsO4, in which the order parameters
are not yet fully identified [36,37]. We show that the ME
responses are sensitive to the directions of ordered magnetic
moments. This would be useful for KOsO4 and RbOsO4 where
an antiferromagnetic order is anticipated but the direction of
the moment is unknown. We also discuss the results for other
electronic orderings by considering orbital and spin-orbital
channels, which provides a reference to identify the unknown
order parameter in CsOsO4.

The rest of the paper is organized as follows. In Sec. II,
after constructing the effective eg-orbital Hamiltonian, we
present possible odd-parity multipoles induced by staggered
electronic orderings. In Sec. III, we show what type of the
ASOC is activated in each staggered ordered state. In Sec. IV,
we elaborate the linear ME effects induced by the odd-parity
multipoles associated with staggered orderings. Section V is
devoted to the summary and future perspectives.

II. TWO-ORBITAL MODEL AND ODD-PARITY
MULTIPOLES

In this section, we present an effective model which includes
the ASOC hidden in the diamond structure. In Sec. II A,
we derive the effective Hamiltonian for twofold eg orbitals
modulated by the strong SOC through the mixing with t2g

orbitals. After classifying possible order parameters by sym-
metry in Sec. II B, we discuss emergent odd-parity multipoles
associated with the staggered electronic orders in Sec. II C.

A. Effective two-orbital Hamiltonian

Let us consider the energy levels of d electrons on the
diamond structure [Fig. 1(b)], with the 5d transition metal
oxides AOsO4 (A = K, Rb, and Cs) in mind. Under the
cubic crystalline electric field in each OsO4 tetrahedron [see
Fig. 1(b)], the tenfold atomic energy levels are split into the
sixfold t2g orbitals and the fourfold eg orbitals by �c, as shown
in the leftmost and middle panels of Fig. 1(a). Considering the
d1 electron configuration in each Os7+ cation in AOsO4, we
focus on the lower-energy eg orbitals in the following.

Although the eg orbitals have no matrix elements for the
atomic SOC, they are modulated by taking into account the
atomic SOC with the t2g orbitals. This becomes relevant when
the ratio λ/�c is not negligibly small (λ is the coupling
constant of the atomic SOC). In fact, a relatively large value
of λ/�c ∼ 0.18 was reported for KOsO4 from first-principles
calculations [37]. When we take into account such a SOC effect
in the second-order perturbation, the eg and t2g levels are fur-
ther split: the eg levels are lowered while keeping the fourfold
degeneracy, whereas the t2g levels are split into twofold and
fourfold [see the rightmost panel in Fig. 1(a)]. The eg orbital
bases are modulated by the mixing with the split t2g orbitals as

|d̃x2−y2σ 〉 = N [|dx2−y2σ 〉 ∓ 2i�|dxyσ 〉
+ i�|dyzσ̄ 〉 ∓ �|dzxσ̄ 〉], (1)

|d̃z2σ 〉 = N [|dz2σ 〉 +
√

3i�|dyzσ̄ 〉 ±
√

3�|dzxσ̄ 〉], (2)

FIG. 1. (a) Schematic picture of the atomic energy levels for 5d

orbitals. The cubic CEF and SOC represent the cubic crystalline
electric field �c and the atomic spin-orbit coupling λ, respectively.
We take into account the lowest-energy levels d̃x2−y2 and d̃z2 [Eqs. (1)
and (2)], which are derived from the eg orbitals dx2−y2 and dz2 with
a modulation through the mixing between eg and t2g orbitals by the
SOC. (b) and (c) Schematic pictures of the diamond structure in the (b)
absence and (c) presence of a tetragonal distortion. The lowest panel
shows the schematic energy levels for the d̃x2−y2 and d̃z2 orbitals in
the absence and presence of the tetragonal CEF �t . In (b) and (c),
schematic pictures of OsO4 tetrahedra are partly shown.

where |dxyσ 〉, |dyzσ 〉, and |dzxσ 〉 (|dx2−y2σ 〉 and |dz2σ 〉) are the
bases for the t2g (eg) orbitals with spin σ = ↑ or ↓ in the
absence of SOC, and � describes their mixing:

� = λ/(2�c) + λ2/(2�c)2 + O
(
λ3/�3

c

)
, (3)

for λ < �c. In Eqs. (1) and (2), N = 1/
√

1 + 6�2 is the
normalization factor and σ̄ represents the opposite spin to
σ . The axis of d orbitals is taken along with the crystal axis
shown in Fig. 1(b).

We construct a tight-binding model for the bases in Eqs. (1)
and (2) by adopting the Slater-Koster parameters for the
hopping elements [38]. The Hamiltonian is given by

Hc
0 = −t0

∑
kασσ ′

(γ0kc
†
Akασ cBkασ ′ + H.c.)

− t1
∑

kαβσσ ′
μ = x,y,z

(γμk[τy]αβ[σμ]σσ ′c
†
Akασ cBkβσ ′ + H.c.),

(4)

where c
†
skασ (cskασ ) is the creation (annihilation) operator of

a conduction electron with sublattice s = A or B, orbital

024414-2



EMERGENT ODD-PARITY MULTIPOLES AND … PHYSICAL REVIEW B 97, 024414 (2018)

α (α = 1 and 2 correspond to d̃x2−y2 and d̃z2 , respectively),
and spin σ at wave number k. The first and second terms
in Eq. (4) represent the kinetic energy of the conduction
electrons from the intra and interorbital hoppings, respectively.
In the second term, the Pauli matrices σ = (σx,σy,σz) and
τ = (τx,τy,τz) are introduced to describe the spin and “orbital”
degrees of freedom, respectively. Note that this orbital degree
of freedom in the eg orbital bases represents higher-order
electric and magnetic multipoles: τx and τz correspond to
the electric quadrupoles, x2 − y2 and 3z2 − r2, respectively,
while τy represents the magnetic octupole, lx ly lz [l = (lx,ly,lz)
represents the orbital angular momentum; see also Sec. II C].
The spin and orbital dependences in the interorbital hoppings
originate from the mixing between the original eg and t2g

orbitals by the effective SOC. Indeed, t1 is proportional to �

and vanishes in the absence of the SOC. In the following, we
take the lattice constant a = 1 as the length unit [see Fig. 1(b)],
and restrict the sums in Eq. (4) to the nearest-neighbor sites on
the diamond structure. Then, the wave number dependences
of the hoppings between the same orbitals t0 and the different
orbitals t1 are given by

γ0k = 4

(
cos

kx

2
cos

ky

2
cos

kz

2
+ i sin

kx

2
sin

ky

2
sin

kz

2

)
, (5)

γxk = −4

(
cos

kx

2
sin

ky

2
sin

kz

2
+ i sin

kx

2
cos

ky

2
cos

kz

2

)
,

(6)

γyk = −4

(
sin

kx

2
cos

ky

2
sin

kz

2
+ i cos

kx

2
sin

ky

2
cos

kz

2

)
,

(7)

γzk = −4

(
sin

kx

2
sin

ky

2
cos

kz

2
+ i cos

kx

2
cos

ky

2
sin

kz

2

)
.

(8)

The hoppings consist of the symmetric and antisymmetric parts
with respect to k, and the latter is essential to generate the
ASOC.

In addition, we also consider the effect of a tetragonal distor-
tion [see Fig. 1(c)], which is indeed observed in AOsO4 [36].
Under the tetragonal crystalline electric field, the energy levels
for d̃x2−y2 and d̃z2 orbitals are split by �t , as shown in the lower
panel of Figs. 1(b) and 1(c). At the same time, the hopping
integrals are modulated by the lattice distortion. Then, we
describe the effect of the tetragonal distortion by the additional
terms to Hc

0 in Eq. (4), which are given by

Ht
0 = −δt0

∑
kαβσσ ′

(γ0k[τz]αβc
†
Akασ cBkασ ′ + H.c.)

+ δt1

2

∑
kαβσσ ′
μ = x,y

(γμk[τy]αβ[σμ]σσ ′c
†
Akασ cBkβσ ′ + H.c.)

− δt1
∑

kαβσσ ′
(γzk[τy]αβ[σz]σσ ′c

†
Akασ cBkβσ ′ + H.c.)

+�t

∑
i

∑
αβ

∑
σ

[τz]αβc
†
iασ ciβσ . (9)

In the first three terms, we take into account the effect of the
tetragonal distortion on hopping elements by considering a
slight change of the bond direction from the 〈111〉 direction
by a small angle θ , as shown in Fig. 1(c): we take into account
the lowest order of θ , namely, δt0,δt1 ∝ θ . The fourth term in
Eq. (9) represents the tetragonal crystal field splitting between
the d̃x2−y2 and d̃z2 levels.

B. Staggered electronic orders

In the present study, we examine the electronic states of the
system in the presence of spontaneous symmetry breaking by
staggered electronic orders on the bipartite diamond structure.
Considering the experiments for AOsO4 in which the magnetic
susceptibility shows an anomaly [36], we focus on all possible
states with the breaking of time-reversal symmetry. Such order
parameters are represented by the Pauli matrices for spin (σ )
and orbital (τ ) indices: three spin orders σμ (μ = x,y,z), an
“orbital” order τy (magnetic octupole), and six spin-orbital
orders σμτν (μ = x,y,z and ν = x,z). Moreover, we focus on
the simplest realizations of the breaking of spatial inversion
symmetry (parity breaking) by adopting the staggered-type
orders on the bipartite structure, as these ten symmetry-broken
states exhibit even parity with respect to spatial inversion. We
introduce a mean-field term,

H1 = −h
∑

skαβσσ ′
c
†
skασ p(s)[σμ̃]σσ ′[τν̃]αβcskβσ ′ , (10)

where μ̃,ν̃ = 0,x,y,z, and σ0 and τ0 are the unit matrices in
spin and orbital spaces, respectively. h is the magnitude of
the symmetry-breaking field and p(s) = +1(−1) for s = A
(B). Thus the total mean-field Hamiltonian is given by H =
Hc

0 + Ht
0 + H1.

Each order parameter can be locally represented by taking
a product of the modulated eg bases in Eqs. (1) and (2) sup-
plemented by the spin-1/2 basis. When the system preserves
the cubic symmetry in the absence of the tetragonal distortion
(Ht

0 = 0), the product of the eg orbital bases with spin is
reduced under the point group Td as

(E ⊗ D1/2) ⊗ (E ⊗ D1/2)

= A+
1 ⊕ A−

2 ⊕ E+ ⊕ 2T −
1 ⊕ T +

2 ⊕ T −
2 , (11)

where E and D1/2 in the first line represent the eg orbital
and spin 1/2, respectively, and the superscripts + and − in
the second line represent time-reversal property. Note that the
irreducible representations with the superscript − correspond
to the order parameters with the breaking of time-reversal sym-
metry while keeping even parity. These ten order parameters
listed above are classified by the irreducible representations
in Eq. (11) as follows: τy belongs to A−

2 , σμ and σμτz to T −
1 ,

and σμτx to T −
2 (μ = x,y,z). When these orders appear in

a staggered manner, they are accompanied by the odd-parity
multipoles, as described in Sec. II C. As we restrict ourselves
to the order parameters breaking time-reversal symmetry, we
will omit the superscript − in what follows. The result is
summarized in Table I.

Meanwhile, in the presence of a tetragonal distortion, the
symmetry is lowered from Td to D2d . Using the reduction rules,
A2 → B1, E → (A1,B1), T1 → (A2,E), and T2 → (B2,E),
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TABLE I. Classification of the order parameters (OPs) with the
breaking of time-reversal symmetry while keeping even parity. We
also show the associated odd-parity multipoles under the cubic Td

and tetragonal D2d symmetries. Some of the odd-parity multipoles in
the momentum space, defined as Eqs. (21)–(23) and (26)–(28), are
also shown.

Td D2d even-parity OP odd-parity multipole

A1 A1 – –
A2 B1 τy M0

E A1 – Mv

B1 – Mu

T1 A2 σz σzτz Mxy fz(k)
E (σx,σy) (σxτz,σyτz) (Myz,Mzx) (fx(k),fy(k))

T2 B2 σzτx Tz f ′
z (k)

E (σxτx,σyτx) (Tx,Ty) (f ′
x(k),f ′

y(k))

the ten order parameters are classified by the irreducible repre-
sentations of the D2d point group as follows: σz and σzτz belong
to A2, τy belongs to B1, σzτx to B2, and (σx,σy), (σxτz,σyτz),
and (σxτx,σyτx) to E. The result is also summarized in Table I.

C. Odd-parity multipoles

The staggered electronic orders simultaneously induce odd-
parity multipoles, as they break spatial inversion symmetry in
addition to time-reversal symmetry. Two types of odd-parity
multipoles can be defined under the time-reversal symmetry
breaking in the expansion of the electromagnetic vector poten-
tial [29,39–41]. One is magnetic multipoles, which are defined
as

Mlm = −μB

∑
j

(
2lj

l + 1
+ σ j

)
· ∇Olm(rj ), (12)

where μB is the Bohr magneton, and lj and σ j stand for orbital
and spin angular momenta for an electron at the position rj ,
respectively. We introduced Olm(r) = √

4π/(2l + 1)rlYlm(r)
with Ylm being the spherical harmonics, and l and m are the
azimuthal and magnetic quantum numbers, respectively. The
other is magnetic toroidal multipoles, which are given by [42]

Tlm = −μB

∑
j

[
rj

l + 1
×

(
2lj

l + 2
+ σ j

)]
· ∇Olm(rj ). (13)

As Ylm has parity (−1)l , the lowest-rank magnetic multipoles
with odd parity are magnetic quadrupoles:

Myz ∝ ylz + zly + H.c., (14)

Mzx ∝ zlx + xlz + H.c., (15)

Mxy ∝ xly + ylx + H.c., (16)

Mu ∝ 2zlz − xlx − yly + H.c., (17)

Mv ∝ xlx − yly + H.c., (18)

and toroidal dipoles:

T ∝ r × l + H.c., (19)

where we omit the site index and spin angular momenta for
simplicity. We also define a magnetic monopole M0 as a
pseudoscalar, which is given by

M0 ∝ xlx + yly + zlz + H.c. (20)

Note that the magnetic monopole does not appear in the expan-
sion of the magnetic vector potential in Eq. (12). Nevertheless,
it may be activated when the magnetic unit cell possesses the
same symmetry as the pseudoscalar.

In the momentum space, these odd-parity multipoles are
given by [27]

Myz ∝ (cos ky − cos kz) sin kx = fx(k), (21)

Mzx ∝ (cos kz − cos kx) sin ky = fy(k), (22)

Mxy ∝ (cos kx − cos ky) sin kz = fz(k), (23)

Mu ∝ sin kx sin ky sin kz(cos kx − cos ky), (24)

Mv ∝ sin kx sin ky sin kz, (25)

and

Tx ∝ (cos ky + cos kz) sin kx = f ′
x(k), (26)

Ty ∝ (cos kz + cos kx) sin ky = f ′
y(k), (27)

Tz ∝ (cos kx + cos ky) sin kz = f ′
z(k). (28)

Note that they break both time-reversal and spatial inversion
symmetries. The asymptotic forms of Eqs. (21)–(23) in the
k → 0 limit are given by

fx(k) → (
k2
y − k2

z

)
kx, (29)

fy(k) → (
k2
z − k2

x

)
ky, (30)

fz(k) → (
k2
x − k2

y

)
kz. (31)

We note that they share the functional forms with the
Dresselhaus-type ASOC appearing in the diamond structure;
see Sec. III A. Similarly, the asymptotic forms of Eqs. (26)–(28)
in the k → 0 limit are given by

f ′
x(k) → kx, (32)

f ′
y(k) → ky, (33)

f ′
z(k) → kz, (34)

which give k-linear contributions.
These odd-parity multipoles are induced by the staggered

even-parity order parameters with the same irreducible rep-
resentation. Under the point group Td in the cubic symme-
try, the order parameter τy activates the magnetic monopole
M0. Meanwhile, σμτν (μ = x,y,z and ν = 0,z) activate the
magnetic quadrupoles Myz, Mzx , and Mxy ; σμτx (μ = x,y,z)
activate the toroidal dipoles Tx , Ty , and Tz. The result is
summarized in Table I.

On the other hand, under the point group D2d in the
tetragonal symmetry, τy activates a linear combination of M0
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and Mu, since B1 of the point group D2d is reduced from A2 and
E of the point group Td . Meanwhile, σz and σzτz activate the
magnetic quadrupole Mxy . σzτx activates the toroidal dipole
Tz, while σμτν (μ = x,y and ν = 0,x,z) activate a linear
combination of (Myz,Mzx) and (Tx,Ty), as E of the point group
D2d is reduced from T1 and T2 of the point group Td . The result
is also summarized in Table I.

III. ANTISYMMETRIC SPIN-ORBIT
COUPLING IN eg ORBITALS

In this section, we discuss the ASOC in our eg-orbital
model arising from the effective SOC by the eg-t2g mixing. In
Sec. III A, we show that the ASOC is hidden in a staggered form
in the paramagnetic state. Then, in Sec. III B, we show a net
component of the ASOC is induced by the staggered electronic
orderings discussed in the previous section. We discuss how
the form of ASOC depends on the electronic order.

In order to obtain the explicit form of the ASOC, we
perform the canonical transformation at one of two sublattices
by tracing out the other sublattice degree of freedom. In
other words, we treat the electron transfers between different
sublattices in Hc

0 + Ht
0 as the perturbation. The details of the

scheme are described in Ref. [26].

A. Paramagnetic state

In the paramagnetic state, there is no net component of
the ASOC, but a staggered component is allowed due to the
absence of inversion symmetry at each lattice site. In other
words, the effective ASOC has the same amplitude but an
opposite sign between the two sublattices. Indeed, in the
absence of a tetragonal distortion, the ASOC is obtained as

Hpara
ASOC(k) ∝ 4t2

1 [fx(k)σx + fy(k)σy + fz(k)σz]ρzτ0, (35)

where ρz is the z component of the Pauli matrix, representing
that the ASOC is staggered between the two sublattices. In
Eq. (35), fμ(k) (μ = x,y,z) are defined in Eqs. (21)–(23), and
hence, the asymptotic form of the effective ASOC in the k → 0
limit is similar to the Dresselhaus-type ASOC, preserving the
threefold rotational symmetry around the 〈111〉 direction [43],
as expected for the diamond structure.

Meanwhile, in the presence of a tetragonal distortion, the
ASOC in Eq. (35) is deformed as

Hpara(1)
ASOC (k) ∝ t̃a[t̃b{fx(k)σx + fy(k)σy} + t̃afz(k)σz]ρzτ0,

(36)

where t̃a = 2t1 − δt1 and t̃b = 2(t1 + δt1). In addition to these
terms, other components are also induced by the tetragonal
distortion:

Hpara(2)
ASOC (k) ∝ t0

�t

[t̃a{f ′
x(k)σx + f ′

y(k)σy} + t̃bf
′
z(k)σz]ρzτx

+ t̃a

�t

[t̃b{fx(k)σx + fy(k)σy}

+ t̃afz(k)σz]ρzτz, (37)

where f ′
μ(k) (μ = x,y,z) are defined in Eqs. (26)–(28). These

terms appear due to the mixing of T1 and T2 irreducible
representations of Td symmetry under D2d symmetry.

These staggered ASOCs often lead to anomalous magneto-
transport phenomena even in the paramagnetic state, such as
the (spin) Hall effect [44]. In fact, an anisotropic anomalous
Hall effect was observed under the magnetic field in the spinel
compound FeCr2S4 [45], whose origin is understood from the
ASOC similar to Eq. (35). It would be intriguing to investigate
magnetotransport phenomena under a tetragonal distortion,
since our analysis indicates that the effective two-orbital
model includes additional contributions, as shown in Eqs. (36)
and (37). This suggests that further interesting phenomena may
arise from not only a spontaneous lattice distortion but also an
applied pressure. Such investigation is left for future study.

B. Ordered states

In this section, we turn to the effective ASOC induced by the
staggered electronic orderings discussed in Sec. II B. We use
a similar procedure to the previous subsection for the model
Hc

0 + Ht
0 + H1, where H1 in Eq. (10) represents any of the ten

order parameters. Among many contributions, we focus on the
ASOCs proportional to the orbital component τ0 and τy , since
they lead to the linear ME effects, as discussed in Sec. IV.

1. Spin order

In the spin ordered states, H1 is proportional to σμτ0 (μ =
x,y,z). Under these parity breaking orders, a net component
of the ASOC is induced in the form of

Hσx

ASOC ∝ ht0

�2
t

[t̃bf
′
z(k)σy − t̃af

′
y(k)σz]ρ0τy

+ ht̃a t̃b

2�2
t

fx(k)ρ0σ0τ0, (38)

Hσy

ASOC ∝ ht0

�2
t

[t̃af
′
x(k)σz − t̃bf

′
z(k)σx]ρ0τy

+ ht̃a t̃b

2�2
t

fy(k)ρ0σ0τ0, (39)

Hσz

ASOC ∝ ht0 t̃a

�2
t

[f ′
y(k)σx − f ′

x(k)σy]ρ0τy

+ ht̃2
a

2�2
t

fz(k)ρ0σ0τ0. (40)

In contrast to the paramagnetic case, the ASOCs are propor-
tional to the unit matrix in sublattice space ρ0, namely, spatially
uniform. Moreover, the uniform ASOCs are proportional to
h, which indicates that they are induced by the spontaneous
electronic orderings [26]. In the presence of the cubic sym-
metry, the coefficients of Eqs. (38)–(40) are equivalent, while
they take different values for (σx,σy) and σz under a tetragonal
distortion.

From the symmetry point of view, the effective ASOCs in
Eqs. (38)–(40) break both spatial inversion and time-reversal
symmetries, as f ′

α(k)σμτy and fα(k)σ0τ0 are odd under both
time-reversal and spatial inversion operations. This indicates
that the effective ASOCs induced by the staggered spin orders
lead to the asymmetric band structure [26]. Furthermore, these
ASOCs represent the entanglement between the orbital motion
and spin moments, as they include the product of k and σ .
In the spin ordered states, their directions in the first term in
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Eqs. (38)–(40) are perpendicular to each other; for example,
in the σx ordered state, kz (ky) is coupled with σy (σz). This
indicates the possibility of transverse ME effects, as discussed
in Sec. IV.

2. Octupole order

In the magnetic octupole ordered state where H1 is propor-
tional to σ0τy , a uniform ASOC consists of three terms, which
is given by

Hτy

ASOC ∝ ht̃a

�2
t

[t̃b{fx(k)σx + fy(k)σy} + t̃afz(k)σz]ρ0τy.

(41)

Under the cubic symmetry, each term in Eq. (41) has the same
coefficient so that the threefold rotational symmetry around the
〈111〉 axis is preserved, while they take different coefficients
for (σx,σy) andσz terms under the tetragonal crystalline electric
field. In contrast to the ASOCs in the spin ordered states, k is
coupled with σ in the same component: kμσμ (μ = x,y,z).
This difference leads to different type of the ME responses,
i.e., longitudinal ME responses, as discussed in Sec. IV.

3. Spin-orbital order

In the spin-orbital ordered states,H1 is proportional to σμτν

(μ = x,y,z and ν = x,z). Among them, the states with the
orbital τz component show the following uniform ASOCs:

Hσxτz

ASOC ∝ hδt0

�2
t

[t̃bf
′
z(k)σy − t̃af

′
y(k)σz]ρ0τy, (42)

Hσyτz

ASOC ∝ hδt0

�2
t

[t̃af
′
x(k)σz − t̃bf

′
z(k)σx]ρ0τy, (43)

Hσzτz

ASOC ∝ hδt0 t̃a

�2
t

[f ′
y(k)σx − f ′

x(k)σy]ρ0τy. (44)

The forms of ASOCs in Eqs. (42)–(44) are similar to the first
terms in Eqs. (38)–(40), which implies that similar physical
properties are obtained between these ordered states. The
difference is in the coefficients: in the spin-orbital ordered
states, the coefficients in Eqs. (42)–(44) are proportional to
δt0, which indicates that the effective ASOCs are induced only
in the presence of a tetragonal distortion. This is in contrast to
the ASOCs in Eqs. (38)–(40), which remain finite even in the
cubic system.

Similarly, the uniform ASOCs in the spin-orbital ordered
states with the orbital τx component are represented by

Hσxτx

ASOC ∝ hδt0 t̃a

�2
t

f ′
x(k)ρ0σ0τ0, (45)

Hσyτx

ASOC ∝ hδt0 t̃a

�2
t

f ′
y(k)ρ0σ0τ0, (46)

Hσzτx

ASOC ∝ hδt0 t̃b

�2
t

f ′
z(k)ρ0σ0τ0. (47)

There are no spin and orbital components for these ASOCs as
in the second terms in Eqs. (38)–(40). The ASOCs in Eqs. (45)–
(47) give rise to a band deformation with the band bottom shift
to the kμ direction due to the k-linear contribution in f ′

μ(k)
as shown in Eqs. (32)–(34). This is regarded as an effective
toroidal field along the kμ direction in Eqs. (26)–(28) [11,26].

Similar to the spin-orbital ordered states with the τz component,
these ASOCs are induced only in the tetragonal system, as the
coefficients in Eqs. (45)–(47) are proportional to δt0.

IV. MAGNETOELECTRIC EFFECT

In this section, we discuss the possibility of the linear ME
effect under the staggered spin and orbital orderings. As the
staggered orders on the diamond structure break both spatial
inversion symmetry and time-reversal symmetry, they can give
rise to the linear ME effects. We present the results for the cubic
case in Sec. IV A and for the tetragonal case in Sec. IV B.

Before going into the results, we briefly review the relation
between the ME effect and the odd-parity multipoles. The
linear ME effect is induced by the lowest-order odd-parity
multipoles in Eqs. (14)–(20). This is understood from the
expansion of the free energy with respect to the electric field E
and the magnetic field B up to the second order, which is given
by [29,46]

F (E,B) = F0 − εμνEμEν

8π
− μμνBμBν

8π
− αμνEμBν. (48)

Here, F0 is the free energy in the absence of the electric and
magnetic fields; εμν , μμν , and αμν are the dielectric permittiv-
ity, magnetic permeability, and ME tensor, respectively. The
last term in Eq. (48) is related to the linear ME responses,
which is decomposed into three terms:

αμνEμBν = −M0(E · B) − T · (E × B)

−Mμν(EμBν + EνBμ). (49)

The coefficients of each term in Eq. (49) represent the pseu-
doscalar magnetic monopole in Eq. (20), toroidal dipole (polar
vector) in Eq. (19), and magnetic quadrupole (symmetric
traceless pseudotensor) in Eqs. (14)–(16) and the diagonal
components related with Mu and Mv in Eqs. (17) and (18)
as

Mu = 2Mzz − Mxx − Myy,

Mv = Mxx − Myy. (50)

Thus the linear ME effect takes place when the odd-parity
multipoles are present. We describe it for each case in the
following.

In the presence of the magnetic monopole, an isotropic
longitudinal ME responses are activated as

P ∝ M0B, M ∝ M0E, (51)

where P and M are the induced electric polarization and
magnetization, respectively. Thus the electric polarization
(magnetization) is induced in the direction parallel to the
magnetic (electric) field irrespective of the field direction.

Meanwhile, for the magnetic toroidal dipoles, the antisym-
metric transverse ME responses are activated as

P ∝ T × B, M ∝ −T × E. (52)

In this case, the electric polarization (magnetization) is induced
in the direction perpendicular to both the toroidal dipole
moment and the magnetic (electric) field.
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For the magnetic quadrupoles, the symmetric transverse ME
responses are activated as

Pμ ∝ MμνBν, Mμ ∝ MμνEν. (53)

Thus the longitudinal traceless responses are obtained for Mu

and Mv , while the symmetric transverse responses appear for
Myz, Mzx , and Mxy .

In order to discuss the linear ME effects for the microscopic
model Hamiltonian Hc

0 + Ht
0 + H1, we compute the ME

tensor between magnetic moments and electric currents for
each ordered state by using the linear response theory as

Kμν = 2π

iV0

∑
mnk

f (εnk) − f (εmk)

εnk − εmk

mnm
μkJmn

νk

εnk − εmk + iδ
, (54)

where V0 is the system volume, f (ε) is the Fermi distri-
bution function, and εmk is the eigenvalue of H = Hc

0 +
Ht

0 + H1. mnm
μk = 〈nk|σμ|mk〉 and Jmn

νk = 〈mk|Jν |nk〉 =
〈mk|∂H/∂kν |nk〉 are the matrix elements of the spin and
current operators, respectively, where |mk〉 is the eigenstate
of the Hamiltonian corresponding to the eigenvalue εmk. Kμν

represents the coefficient for the uniform magnetization with
the μ component induced by the electric field in the ν direction.
In Eq. (54), we set gμBe/(2h) = 1 (g is the g factor, e is the
elementary charge, and h is the Planck constant).

Note that the uniform ASOCs proportional to τ0 or τy play
an important role in the linear ME effects. This is because the
current operator Jν = ∂H/∂kν includes the τ0 component from
the term in H proportional to t0 and the τy component from
the term proportional to t1 and δt1, both of which give nonzero
matrix elements for 〈mk|Jν |nk〉.

A. Cubic symmetry

First, we discuss what type of the linear ME effect is
induced by staggered orders in the cubic case. As dis-
cussed in Sec. II C, the spin orders (H1 ∝ σμτ0 where
μ = x,y,z) activate the magnetic quadrupoles Myz, Mzx ,
and Mxy . The magnetic quadrupoles are expected to give
rise to the symmetric transverse ME responses in Eq. (53)
as discussed above. For example, the spin order with
〈σx〉 �= 0 activates the magnetic quadrupole Myz (see Ta-
ble I), which leads to the transverse magnetization along
the z (y) direction induced by the electric field in the
y (z) direction. In a similar manner, the transverse ME
responses are expected for σy and σz orders, since they are
accompanied with Mzx and Mxy , respectively.

The results can be extended to the spin orders whose
magnetic moments deviate from the 〈100〉 direction. For
example, when the magnetic moments are along the [110]
direction, the order parameter 〈σxy〉 is represented by 〈σx〉 and
〈σy〉 as 〈σxy〉 = √〈σx〉2 + 〈σy〉2, where 〈σx〉 = 〈σy〉. This type
of order parameter leads to the toroidal dipoles Tx and Ty in
addition to the magnetic quadrupoles Myz and Mzx , since the
nonzero 〈σxy〉 reduces the Td symmetry to the subgroup, and T1

and T2 turn to be in the same irreducible representation [47],
as shown in Table I. Thus the induced toroidal dipoles are
expected to become large when the effect of the symmetry
lowering becomes prominent by increasing 〈σxy〉. Thus the
total ME response is obtained by the sum of the contributions

from (Myz,Mzx) and (Tx,Ty). As the ME response of the
toroidal dipoles is the antisymmetric transverse one in Eq. (52),
it is expected that the magnetization induced along the z

direction by the electric field along the x (y) direction is
different from that along the x (y) direction by the electric
field along the z direction.

When the magnetic moments are aligned along the 〈111〉
direction [H1 ∝ (σx + σy + σz)τ0], the order parameter 〈σd〉 is
represented by 〈σd〉 = √〈σx〉2 + 〈σy〉2 + 〈σz〉2, where 〈σx〉 =
〈σy〉 = 〈σz〉. In this case, the symmetry lowering due to 〈σd〉
reduces A2 and T1 into the same irreducible representation,
which induces the magnetic monopole M0 in addition to the
magnetic quadrupoles (Myz,Mzx,Mxy); see Table I. Thus both
longitudinal and transverse ME responses are expected for the
〈σd〉 order, as the magnetic monopole results in the isotropic
longitudinal ME in Eq. (51). As in the 〈σxy〉 case, the induced
longitudinal response is expected to become larger when the
symmetry lowering becomes prominent by increasing 〈σd〉.

Next, we discuss the ME effect in the octupole ordered state
(H1 ∝ σ0τy). The octupole order 〈τy〉 is accompanied with
the magnetic monopole M0, as shown in Table I. Thus, from
Eq. (51), the isotropic longitudinal ME effect is expected, as
the 〈σd〉 order.

In the spin-orbital ordered states (H1 ∝ σμτν where μ =
x,y,z and ν = x,z), the magnetic quadrupoles (Myz,Mzx,Mxy)
and the toroidal dipoles (Tx,Ty,Tz) are induced for the σμτz and
σμτx orderings, respectively, as shown in Table I. However,
there are no ME responses for these cases in contrast to the spin
or octupole ordered states discussed above. This is because
the effective ASOC vanishes in the cubic case, as discussed
in Eqs. (42)–(47). The responses, however, become nonzero
once a tetragonal distortion is introduced, as described in the
following section.

In short, in the cubic case, the staggered spin orders along
the 〈100〉 directions, σμ with μ = x,y,z, lead to the symmetric
transverse ME responses, while the octupole τy order leads
to the longitudinal one. When the magnetic moments devi-
ate from 〈100〉 to 〈110〉 (〈111〉), the asymmetric transverse
(longitudinal) ME effects are also induced. We summarize the
results in Table II. In the table, instead of the ME coefficients
Kμν in Eq. (54), we show the induced magnetizations M⊥

μ and
M‖

μ; M⊥
μ represents a transverse component with μ �= ν, while

M‖
μ represents a longitudinal one with μ = ν. M ′⊥

μ denotes a
transverse component with a different magnitude from M⊥

μ .
In order to discuss the ME responses quantitatively, we cal-

culate the order parameter dependence of the ME coefficients
Kμν in Eq. (54). The results are shown by the closed symbols in
Figs. 2(a)–2(d). Figure 2(a) shows Kzy in the spin-σx ordered
state. When the order parameter is small, the ME coefficient
grows linearly to the order parameter due to Hσx

ASOC ∝ h in
Eq. (38), while it approaches zero as the order parameter
reaches the saturated value 0.5. The result indicates that the
magnitude of the transverse ME response is maximized when
the ordered moment is about a half of the saturation. Similar
results are obtained for the spin-σy and σz orders.

Figure 2(b) shows the result for the spin-σxy order with the
polarized moments along the [110] direction. In this case, the
transverse ME responses Kzy (Kzx) and Kyz (Kxz) are no longer
symmetric with each other, which indicates the emergence of
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TABLE II. Linear ME responses in the staggered ordered states under the cubic symmetry. M⊥
μ and M ′⊥

μ (M‖
μ) denote the induced

magnetizations perpendicular (parallel) to the direction of an applied electric field; the subscript μ = x,y,z represents the component of
the induced magnetization, and M⊥

μ and M ′⊥
μ have different magnitudes. Only the order parameters leading to nonzero linear ME responses are

shown. σxy and σd denote magnetic moments along the [110] and [111] directions, respectively.

order induced odd-parity multipoles E ‖ x E ‖ y E ‖ z remark

σx Myz – M⊥
z M⊥

y M⊥
y = M⊥

z

σy Mzx M⊥
z – M⊥

x M⊥
x = M⊥

z

σz Mxy M⊥
y M⊥

x – M⊥
x = M⊥

y

σxy (Myz,Mzx) + (Tx,Ty) M⊥
z M⊥

z M ′⊥
x ,M ′⊥

y M ′⊥
x = M ′⊥

y

σd (Mxy,Myz,Mzx) + M0 M‖
x ,M

⊥
y ,M⊥

z M‖
y ,M

⊥
x ,M⊥

z M‖
z ,M

⊥
x ,M⊥

y M‖
x = M‖

y = M‖
z , M⊥

x = M⊥
y = M⊥

z

τy M0 M‖
x M‖

y M‖
z M‖

x = M‖
y = M‖

z

the additional toroidal dipole Tx (Ty). The contribution from
the magnetic quadrupole, Kzy + Kyz, is dominant for the small
order parameter. While increasing h, the contribution from the
toroidal dipole, Kzy − Kyz, becomes relevant, as the symmetry
lowering becomes prominent by increasing 〈σxy〉 as mentioned
above.

Figure 2(c) shows the result for the spin-σd order with the
polarized moments along the [111] direction. In this case,
the longitudinal ME response with Kxx becomes nonzero in
addition to the transverse one with Kxy , as shown in the
figure. This additional Kxx is proportional to 〈σd〉3 in the small
〈σd〉 limit. The magnitude of Kxx is much smaller than Kxy

when the order parameter is small, e.g., the ratio of M
‖
x for

M⊥
x is about 5% at 〈σd〉 ∼ 0.05. While increasing 〈σd〉, the

difference becomes smaller, and the ratio approaches about
65% at 〈σd〉 = 0.5. This result indicates that the contribution
from the magnetic quadrupole is dominant when the magnetic
moment is small, while that from the magnetic monopole

becomes relevant gradually with the growth of the magnetic
moment, as expected from the arguments above.

Figure 2(d) shows the ME response in the octupole ordered
state with the order parameter 〈τy〉. In this case also, we have
a nonzero longitudinal response with Kxx , whose magnitude
increases linearly to 〈τy〉 because the induced ASOC is pro-
portional to h in Eq. (41). The ME coefficient is monotonically
enhanced while further increasing 〈τy〉.

B. Tetragonal symmetry

We turn to the ME effects in the tetragonal case. In this
case, the symmetry is lowered from Td to D2d . D2d is a
subgroup of Td , and the reduction rule for the irreducible
representations between them is given in Table I. Accordingly,
compared to the cubic case, different odd-parity multipoles are
additionally induced for some of the staggered orders, which
lead to additional ME responses.
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FIG. 2. The ME coefficients Kμν in the staggered ordered phases with the order parameters (a) 〈σx〉, (b) 〈σxy〉 = √〈σx〉2 + 〈σy〉2,
(c) 〈σd〉 = √〈σx〉2 + 〈σy〉2 + 〈σz〉2, (d) 〈τy〉, (e) 〈σxτx〉, (f) 〈σzτx〉, (g) 〈σxτz〉, and (h) 〈σzτz〉. The horizontal axis is the corresponding order
parameter in each phase. The closed (open) symbols represent the results in the absence (presence) of the tetragonal crystalline electric field.
The data are calculated at t0 = 1.0, t1 = 0.5, δt0 = 0 (δt0 = 0.1), δt1 = 0 (δt1 = 0.05), �t = 0 (�t = 0.5), temperature T = 0.01, and the
damping factor δ = 0.01 by using Eq. (54) for the cubic (tetragonal) system.
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TABLE III. Linear ME responses in the staggered ordered states under the tetragonal symmetry. M⊥
μ , M ′⊥

μ , and M ′′⊥
μ (M‖

μ and M ′‖
μ ) denote the

induced magnetizations with different magnitudes perpendicular (parallel) to the direction of an applied electric field; the subscript μ = x,y,z

represents the component of the induced magnetization. σxy and σd denote magnetic moments along the [110] and [111] directions, respectively.

order induced odd-parity multipoles E ‖ x E ‖ y E ‖ z remark

σx Myz + Tx – M⊥
z M ′⊥

y

σy Mzx + Ty M⊥
z – M ′⊥

x

σz Mxy M⊥
y M⊥

x – M⊥
x = M⊥

y

σxy (Myz,Mzx) + (Tyz,Tzx) M⊥
z M⊥

z M ′⊥
x ,M ′⊥

y M ′⊥
x = M ′⊥

y

σd (Myz,Mzx) + (Tx,Ty) M‖
x ,M

⊥
y ,M ′⊥

z M‖
y ,M

⊥
x ,M ′⊥

z M ′‖
z ,M ′′⊥

x ,M ′′⊥
y M‖

x = M‖
y , M⊥

x = M⊥
y ,

+Mxy + M0 + Mu M ′′⊥
x = M ′′⊥

y

τy M0 + Mu M‖
x M‖

y M ′‖
z M‖

x = M‖
y

σxτx Myz + Tx – M⊥
z M ′⊥

y

σyτx Mzx + Ty M⊥
z – M ′⊥

x

σzτx Tz M⊥
y M ′⊥

x – M ′⊥
x = −M⊥

y

σxτz Myz + Tx – M⊥
z M ′⊥

y

σyτz Mzx + Ty M⊥
z – M ′⊥

x

σzτz Mxy M⊥
y M⊥

x – M⊥
x = M⊥

y

In the spin ordered states (σμτ0 where μ = x,y,z), the
toroidal dipole Tx (Ty) is additionally activated besides the
magnetic quadrupole Myz (Mzx) in the 〈σx〉 (〈σy〉) order.
This is because the (σx,σy) orders belong to the irreducible
representation E under the D2d symmetry (see Table I). Thus
the ME responses in the 〈σx〉 and 〈σy〉 orders are similar to
that in the 〈σxy〉 order under the cubic symmetry. Meanwhile,
as there is no additional multipole in the 〈σz〉 order which has
the A2 symmetry, it leads to the same ME responses as in the
cubic case.

In the case of the spin-σd order, a further additional mul-
tipole Mu is induced under the tetragonal symmetry because
Mu belongs to the same irreducible representation B1 as M0

(see Table I). Hence, (Mxy,Myz,Mzx), (Tx,Ty,Tz), M0, and Mu

contribute to the ME responses in the σd ordered state. Similar
discussion is applied to the octupole order 〈τy〉 which belongs
to the irreducible representation B1.

In the spin-orbital ordered states (H1 ∝ σμτν where μ =
x,y,z and ν = x,z), where no ME effect is expected in
the cubic case, the lowering of the symmetry to tetragonal
D2d leads to nonzero ME responses due to the emergent
ASOC in Eqs. (42)–(47). The σzτz order induces the magnetic
quadrupole Mxy , which leads to the symmetric ME response,
while the σzτx order induces the toroidal dipole Tz, which leads
to the asymmetric ME response. On the other hand, in the
σxτν (σyτν) ordered states (ν = x,z), both Myz (Mzx) and Tx

(Ty) are activated because they belong to the same irreducible
representation E. In other words, Myz (Mzx) and Tx (Ty) are
indistinguishable from the symmetry point of view. In order to
clarify which multipoles play a dominant role, it is necessary
to evaluate the values of the ME coefficients in Eq. (54); we
will return to this point later.

In short, in the tetragonal case, the staggered spin orders
along the 〈100〉 directions, σμ with μ = x and y, lead to the
transverse ME responses, whose magnitudes depend on the
electric-field direction, while there is no qualitative change
in the σz order from the cubic case. The octupole τy order

induces the longitudinal ME responses with different magni-
tudes between the (x,y) and z components. In the spin-orbital
channel, the σzτx order leads to the asymmetric ME response,
while the σzτz order leads to the symmetric ME response.
The σxτx and σxτz (σyτx and σyτz) orders show similar ME
responses to those in the σx (σy) order. We summarize the
results in Table III. The notations are similar to those in
Table II.

As in the cubic case, we calculate the ME coefficients Kμν

in Eq. (54) as functions of the order parameters under the
tetragonal symmetry. The results are presented by the open
symbols in Figs. 2(a)–2(h). In the 〈σx〉 ordered state, Kzy

behaves differently from Kyz, as shown in Fig. 2(a). This is
due to the emergence of the additional toroidal dipole Tx . We
note that Kyz changes from the cubic case more significantly
compared to Kzy . This is because the contribution from the
first term in Eq. (38) is larger than that from the second term in
the additional ASOC induced by the tetragonal distortion for
δt1 > 0. For other spin and orbital orders, we find quantitative
changes of the ME responses; the results for σxy , σd , and τy

are shown in Figs. 2(b)–2(d), respectively.
Figures 2(e)–2(h) show the results for the spin-orbital orders

with the order parameters 〈σμτν〉 (μ = x,y,z and ν = x,z). In
the cases of σzτx [Fig. 2(f)], Kyx and Kxy become nonzero with
the same magnitude but different sign. This is attributed to the
presence of the toroidal dipole Tz, as discussed above. The
toroidal-type ME responses are enhanced when the ordered
parameter is about a half and full of the saturation. On the
other hand, in the σxτx ordered state [Fig. 2(e)], Kzy has
a different magnitude from Kyz. This is because there is a
contribution from the magnetic quadrupole Myz in addition to
Tx in the σxτx ordered state. Nevertheless, we find that the
magnitude of Kzy is close to that of Kyz in Fig. 2(e), which
indicates that the contribution from Tx is much larger than
Myz. In a similar way, we conclude that the contribution from
the magnetic quadrupole is larger than the magnetic toroidal
dipole in the σxτz ordered state in Fig. 2(g) by comparing the
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contributions from the magnetic toroidal dipole, Kzy − Kyz,
and the magnetic quadrupole, Kzy + Kyz. Meanwhile, in the
σzτz ordered state, Kxy and Kyx are equivalent with each other
due to the presence of the magnetic quadrupole Mxy , as shown
in Fig. 2(h).

It is also interesting to point out the sign change of the
ME responses in Figs. 2(e)–2(h), which might enable us to
control the direction of the induced magnetization by external
parameters, such as temperature and pressure. The origin of
such a sign change will be left for future problem.

V. SUMMARY AND CONCLUDING REMARKS

In summary, we have investigated the linear ME effects
associated with odd-parity multipoles, with the 5d transition
metal oxides AOsO4 (A = K, Rb, and Cs) in mind. By taking
into account the mixing between eg and t2g orbitals by the SOC,
we constructed an effective two-orbital model for the eg orbital
manifold. We have classified the staggered spin and orbital
orders and associated odd-parity multipoles, such as magnetic
monopole, quadrupoles, and toroidal dipoles, from the sym-
metry point of view. In each electronic ordered state, we have
shown the explicit form of the effective ASOC generated by the
staggered order. We have also predicted what type of the linear
ME effect is expected in the system, which provides a reference
to identify the order parameter for AOsO4 by measurement.

Let us comment on yet another interesting aspect by the
emergent ASOCs and odd-parity multipoles as the future
problem. As discussed in Sec. I, the emergent ASOCs result
in asymmetry in the electronic structure and spin-wave ex-

citations. Such asymmetry can be a source of nonreciprocal
phenomena in optical and magnetic collective excitations. In
the present model, such nonreciprocal responses are expected
for particular staggered electronic orders. For example, in the
spin-orbital σxτx ordered state, the effective ASOC in Eq. (45)
leads to a band deformation with the band bottom shift, while in
the spin σx ordered state, the valley splitting in the band struc-
ture is caused by the k3 contribution from the ASOC in Eq. (38).
It is intriguing to examine how these modulated band structures
are related with the nonreciprocal phenomena, which will
provide further probes to detect odd-parity multipoles.

Our results offer a way to observe odd-parity multipoles,
such as magnetic quadrupoles and toroidal dipoles, on the
diamond structure. There are other candidate materials with the
diamond structure that possess such odd-parity multipoles. For
example, KRuO4, whose crystal structure is similar to AOsO4,
shows a staggered magnetic order along the z direction [48,49],
which implies the emergence of magnetic quadrupoles. Spinels
AB2O4 are another candidates, as the A sites comprise the
diamond structure. Further experiments are desired for these
systems on the linear ME effects as well as the nonreciprocal
optical responses.
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