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Skyrmions and skyrmion crystal (SkX) discovered in chiral magnets show unique physical properties due
to their nontrivial topology such as the stability against the annihilation and the motion driven by the ultralow
current density, which can be advantageous for the device applications such as magnetic memories. Especially,
the chiral dynamics, i.e., the velocity perpendicular to the force acting on a skyrmion, is a key to avoid the
impurity potential and enhances its mobility. However, the collective pinning of SkX occurs by the disorder,
which is crucial for its low energy properties. Here we study theoretically the low energy dynamics of SkX in the

presence of disorder effects in terms of replica field theory, and reveal nonreciprocal collective modes and their
electromagnetic responses along the direction of the external magnetic field. The physical quantities such as the
relaxation rate of uSR/NMR and the pinning frequency show a dramatic change associated with the topological
phase transition from the helical state to SkX. These results provide a firm basis to explore the glassy state

of SkX.
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I. INTRODUCTION

The spin orderings in magnets offer many interesting
physics. The typical magnets are the ferromagnets or antiferro-
magnets with the collinear structures. In these cases, the ground
state of the spin system as well as the electronic state are rather
simple and well understood. On the other hand, noncollinear
spin configurations in magnets are the focus of recent intensive
researches, which include the nontrivial ground states such as
the helical/spiral magnetic state, and the excited states such
as the domain walls, vortices, and magnetic bubbles [1-3].
The magnetic field or its gradient is a possible way to drive
these spin textures [2,3], while the recent development is their
current-driven motion induced by the spin transfer torque in the
metallic systems [4—6]. Therefore, the close relation between
the electronic conduction and magnetic texture has become an
important issue.

In particular, the chiral magnets, which have an
antisymmetric  interaction between spins known as
Dzyaloshinskii-Moriya (DM) interaction [7,8], show a
variety of intriguing phenomena caused by nontrivial spin
configurations [1]. The most natural one is the helimagnetic
state (HMS) since the DM interaction prefers the winding of
spins. Under the external magnetic field B, three helical spin
structures with wave vectors perpendicular to B are superposed
to result in the triangular crystal of skyrmion, i.e., skyrmion
crystal (SkX) [9-11]. SkX has been experimentally identified
by using the techniques such as neutron scattering [12], Lorentz
transmission electron microscopy [13], scanning tunneling
spectroscopy [14], and is now observed in many chiral
magnets such as metallic MnSi, (Fe,Co)Si, FeGe [14-17].
These materials have recently been intensively investigated
because of their topological properties: noncollinear spin
textures of SkX have a nontrivial winding number. While their
basic properties have been well understood for pure systems,
in real materials there are always disorders from, e.g., crystal
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defects or impurities. This is clear from the finite threshold
critical current density j. to derive the motion by spin transfer
torque effect, i.e., the impurity pinning [15]. It is expected that
the disorder modifies the low energy dynamics of the SkX,
which can be studied by x-ray diffraction, uSR resonance,
NMR, optical conductivity, and ac magnetic susceptibility. The
magnetic SkX appears in the presence of spin-orbit coupling
and both time-reversal and spatial inversion symmetry
breaking, and hence they are closely related to multiferroic
properties. Especially, the insulating multiferroic skyrmionic
system Cu,OSeO; has been found [18,19]. Note also that the
glassy behavior in multiferroics has been recently studied in a
magnetoelectric insulator BaCogTigO19 [20] where the spin-
orbit interaction plays an important role as in chiral magnets.

Pinning phenomenon has been intensively studied for the
charge density wave (CDW) and spin density wave (SDW),
vortex lattice in type-II superconductors, and Wigner crystal
[21-28]. Because of the broken translational symmetry, the
corresponding Goldstone modes, i.e., phasons, govern the low
energy dynamics. Phasons can be regarded as the acoustic
phonon of the charge, spin, and vortex crystals, respectively.
There are two types of pinning, i.e., strong pinning and weak
pinning. The former occurs when the impurity pinning strength
is very strong and the phason is pinned at each impurity,
while the weak impurities collectively pin the phason in the
latter case [21,22]. In the weak pinning case, there appears
a typical size of the domain &, called pinning length over
which the phason varies of the order of 7. The resultant glassy
state is characterized by a power-law dependence in a spatial
correlation function and magnetic form factors [24,25]. This
has been known as a Bragg glass state and has been discussed in
disordered systems such as the superconducting vortex lattice
[29]. Also the typical energy scale, i.e., pinning frequency wy,
appears, and it creates a gap in phason dispersion.

Although this accumulated knowledge is helpful to un-
derstand the disordered SkX, there are several new features
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FIG. 1. Tllustrations for (top) disordered magnetic SkX and (bot-
tom) disordered HMS in two dimensions. Color gradations indicate
the spatially varying phase, whose characteristic length scale is &,
defined in Eq. (15).

distinct from CDW, SDW, vortex lattice, and Wigner crystal.
(1) The gyrodynamics due to the topological skyrmion number
relates the x and y components of the SkX displacement as
the canonical conjugate pair [30], and hence its dispersion
becomes w, o g* in sharp contrast to the cases of CDW
and SDW. Although this feature is common with the vortex
lattice and Wigner crystal, the phason is overdamped in the
vortex lattice and not well defined, while it is underdamped
in SkX [30]. Wigner crystal is more similar to SkX, but the
magnetic properties are unique to SkX. (ii) There are nonre-
ciprocal nature of dynamics and electromagnetic responses,
i.e., the difference between parallel and antiparallel to the
external magnetic field B, which is closely related to the
chirality of the system. This can be detected by, e.g.,
the directional propagation of magnetic collective modes as
well as the directional dichroism analogous to that observed
in insulating multiferroics [31]. (iii) As the external magnetic
field B increases, there occurs the first-order topological phase
transition from HMS to SkX state, which offers a unique
opportunity to compare various physical properties in these
two cases as shown in Fig. 1. Namely, HMS (topologically
trivial) is similar to the conventional SDW, while the SkX is
characterized by the nontrivial topology. Already the orders
of magnitude difference in the threshold current density j.
has been reported experimentally [15,17], and theoretically
analyzed [30]. (iv) It is also possible to compare the two-
dimensional thin film sample and three-dimensional single

crystal sample of the same material. The pinning properties
depend strongly on the dimensionality, and this comparison
provides useful information.

As for the impurity effects on SkX, there have been previous
works that discuss the pinning-depinning transition and the
movement of skyrmions [32-37]. These works study the
nonequilibrium dynamics of skyrmions in terms of numerical
simulation. On the other hand, the glassy nature of SkX below
the critical current density has still remained to be explored
both theoretically and experimentally. In this paper we study
the disorder effect on SkX and HMS in terms of replica field
theory originally developed for spin glass and later applied to
CDW, SDW, vortex lattice, and Wigner crystal [24-28,38,39].
The present theory provides predictions on the domain size
&p, threshold current density j., pinning frequency w,, non-
reciprocal dispersion of phasons, ac conductivity oy, (w) and
oyxy(w), ac magnetic susceptibility x,,(¢q,), and relaxation
time 77 in uSR and NMR, in terms of the strength of the
impurities and their density. The comparison between two and
three dimensions, together with the SkX state and HMS are
summarized in Tables I, II and III.

II. EFFECTIVE ACTION AND GREEN FUNCTION
FOR DISORDERED SKYRMION CRYSTALS

We begin with the Hamiltonian for the two (d = 2) and
three (d = 3) dimensional chiral ferromagnets (FM) with
Dzyaloshinskii-Moriya (DM) interaction in the presence of
pinning potentials: 7 = Jbmem + F4in. The ferromagnetic
part ##Hmvpm contains the symmetric Heisenberg exchange
—JS; - §; between the nearest neighbor spins S; and §;, and
antisymmetric DM interaction D - (S; x S;) with D pointing
to the direction along the bond [7,8]. This Hamiltonian de-
scribes chiral magnets with cubic symmetry such as MnSi.
We also consider the external magnetic field B. Assuming
that the characteristic length scale for a magnetic texture is
much longer than the lattice constant, we obtain the following
Hamiltonian [40]:

2
P =/‘i—:[%"(vsﬂms-(sz)—gsuBBSZ],
M
d
S = / e—ZV(r)(SZ)Z, @

where D = |D]|, g; ~ 2 is the g factor, and up is the Bohr
magneton. The magnetic field is applied along the z axis.
The impurity or disorder effect enters through the pinning
potential V. The length a is a lattice constant and £ (>a) is
an averaged distance between impurities. In real materials, the
impurities or defects do not break the time-reversal symmetry,
and then the simplest form of the disorder potential is a form
of random magnetic anisotropy which is bilinear in S. For
simplicity, we take only the z component as in Eq. (2), which
tends to pin each skyrmion at its center. We assume that the
impurity potential V has a Gaussian distribution and satisfies

V)V = Virznped(S(r —r') where the overline means the

impurity average. We note the relation Vifnp ~ V(r)2. We
expect Viyp ~ J, since impurity effects considered in this
paper may enter through the lattice defect which modifies
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TABLE 1. Dependencies of physical quantities on the parameters (J,D,a,S, Vinp,£,&r, Ju) included in the theory of the disordered SkX.
Here we omit the constant factors. The results for the clean limit without disorders can be derived by taking the limit Vi, — 0 or £ — oo.
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interactions. In the following, we concentrate on SkX. The
results for HMS are given in Appendix B, and we will compare
the results between SkX and HMS in Sec. V.

The spin moment for skyrmion spin texture is characterized
by a hexagonal pattern in the magnetic structure factor [12],
and is given by [41,42]

3

= SZ [7:0; + /1 —n?ni], 3)
n; = 2 cos(Q; "+¢;)+Q x Zsin(Q; -r+¢i), (4)

where the three helical spin structures are superposed. The
wave vectors are defined by Ql = (=3% — 9)/2, Q2 =
(/3% — 9)/2, and Q; = . The magnitude Q = |Q,| =
D/Ja characterizes the size of magnetic skyrmions. Here
we have introduced the phason field ¢;, which describes the
low-energy dynamics of SkX, and the other field »; is its
canonical conjugate variable. The field variable ¢; represents
a modulation of helix along Q; where the spins are directed
inside the plane perpendicular to @Q;, and 7; corresponds to a
tilt of the spin moment from this plane [41,42].

The elementary excitation at low energy and at long wave-
length is described by two-component phason fields defined
by e = (—¢1 +¢2)/v2 and ¢, = (—¢; — ¢2 + 2¢3)//6,
which are regarded as local displacement fields by multiplying
Q. The similar linear combinations also apply to 1;, which
defines 1, and n,. There is also the symmetric (breathing)
part ¢s = (1 + P2 + ¢3)/\/§, but its dynamics is absent in
the low-energy theory of phasons and is not important [42].
Furthermore, the DM interaction along z direction, which is
a source of nonreciprocity discussed in this paper, does not

have influence on this symmetric part of the phason. For these
reasons we here neglect it.

Assuming that the spatial modulation of ¢; and the mag-
nitude of »; are small, we can write the low-energy effective
Hamiltonian as

dr JS%a? 1 U
JDOMEM 2/a7 ZI:T(Saﬂ(pra)z + Enotgﬂo}(_lv)nﬂjla
af

&)
(6)

where the suffices «, 8 indicate x and y. We have introduced the
antisymmetric tensor €,, = €, =0, €,, = —¢,, = 1. Putting
the Berry phase term with imaginary time representation
[30,42,43]

d h/kBT 3i
S = hS/ d Zf |: ¢at€0tﬂ¢ﬁ 7701 aﬂ¢ﬂi|

(N

together, we obtain the effective action in the low-energy
limit as . = .3 + f dt 7%hypm for clean systems. Here
T is a temperature. The first term in Eq. (7) is specific
to SkX [30]. The topological property characterized by the
number Ngx = (4m)~! fdAn - (0yn x Oyn) is responsible
for this term, where the integral [dA is performed over
the two-dimensional area and n = S/S. With this low-energy
effective action, the partition function is given by Z =
f D(po} P {ne)e ", The functional integral with respect to
N, can be performed without approximations, and then only
the phason modes need to be considered.

¢ (q) = JS?a* Q%1 + 3i DS%aq.¢,

TABLE II. Analogous table to Table I but for helimagnets. The expression for &, in helimagnets is the same as
that in SkX and is not shown.

HMS wp /T T Re o (wp) Re x (wp) Re M (w,)

i3 DV Sa’ Alkg AR AN etastJ 2SI
hJ2e3 hDJS hatstJ Vi, h? D2 ha’Viy, er

Jn DVimpSa A’kpt S IAD? e*a’etJ e*SeJ?
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J
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TABLE III. Ratio between physical quantities for SkX and HMS listed in Tables I and II.

SkX/HMS wp & 1/T'T Reo(wp) Re x(wp) Re XME(a)p)
s VinpS*a® ] DJE Vinpd’ 1 Vinp®
B J2e3 V2.al DJe DJ e
d=2 VimpSZa 1 D¢ Vimpa . Vimp@
Je Vimpad D¢ D¢

By combining the pinning potential given in Eq. (2) with
the above model, we can obtain the effective action that
determines the low-energy dynamics in the presence of dis-
order effects. Using the replica field theory combined with
a Gaussian variational approximation [24,27,39], we obtain
the response functions, whose derivations are summarized in
Appendix A. Thus the phason Green function ¥,4(q.w) =

(Pa(q,0)pp(—q, — w))/ah is given by

R 9Jh? .
G N (g,0) = [JSzazq2 -+ E - izzhw]l

4D?
9i Sh +27i12h2a 2 e ®
a) a) b
4 4ps

for w > 0, where we have introduced the static self-energy X,
and the damping part i ¥,/Aw valid for o — 0. The g,-linear
term in Eq. (8) [also in Eq. (6)] appears only for d =3
and vanishes for d = 2. It represents the mirror symmetry
breaking along z (magnetic field) direction. Note that this term
is characteristic for SkX where three helices are superposed,
and is not found in the single helix state. With use of this Green
function, we can also explicitly write down the Green function
Fup = (Manp)/a’h for the 1 field as

3Shwg(q)

2
5 )éé(q,a», )

F(g.0) = 2(g) + (
where g(g) corresponds to a static susceptibility. Equation (9)
can be derived if one starts from the action before performing
the integration with respect to 1 field. The self-energy coeffi-

cients are
2
3V2 Sa®
_ mp
E‘—<4mwa : (10)
s [9Z1 (98 > 95 (a1
T\ p? 4) ~ 4
3V2 §2q2
o = 12
! 27 J 02 (12)
9J% 95\> 98
(2D) 1
2 20 T ( 4) 4 (13

We have neglected the high-order w?q, term in evaluating
the self-energy. In the final expression for X, we have kept
the leading order term by taking the weak disorder limit as
21 — 0.

The form of the damping coefficient X, in Egs. (11) and
(13) originates from the first term in Eq. (7) related to the

topological property of SkX. The value X, ~ § is much
enhanced compared to the case without this term, i.e., the case
of HMS (see Appendix B), for weak impurities. This is due to
the dramatic change in the energy dispersion for phasons in the
presence of the topological term (see Sec. Il and Fig. 2), which
creates a large number of low-energy states that are involved in
the damping process. We note that the damping becomes zero if
we take the impurity potential Viy, as zero, since this w-linear
form of the self-energy is derived for frequencies much smaller
than the characteristic pinning frequency w;, which goes to zero
when Vi, — 0 as discussed below.

The static part of self-energy introduces new energy
and length scales. To see these quantities, we first
consider the Euler-Lagrange equation of motion
> P %D;gl(iV, —10;)pp(r,t) = 0. For the low-lying excitation
mode without spatial modulation, the equation of motion has
the form of the damped oscillator ¢ + 2¢ wp e + a)gqba =0,
where w; and ¢ (>0) are pinning frequency and dimensionless
damping ratio. The specific forms of these constants are

vy ]
=5 =7 (14)

The resonance frequency is /1 — £?w, which can be defined
for ¢ < 1, and the damping rate is given by {w,. Namely,
the phasons for SkX are located in the underdamped regime
near the critically damped case at ¢ = 1. These expressions
are valid for both d = 3 and d = 2, and the explicit param-
eter dependencies of pinning frequencies are summarized in
Table 1. The pinning frequency for d = 3 (wp Vi‘r‘npﬁ’6) is
strongly dependent on Viy, and £, and is smaller than the
one in the two-dimensional case (wp o Vo 72) for weak
impurity potentials. Intuitively this behavior can be understood
as follows: in two dimensions the skyrmion can be pinned
by a pointlike pinning center. On the other hand, in three
dimensions, we have the skyrmion strings each of which is
pinned by impurities, but the segment between pinned points
can be modulated. Thus the pinning is effectively much weaker
in three dimensions.

The static part X, also defines a new characteristic length
scale called pinning length &, given by

hw,

: Js? Jedr2 N+
=a,|— ~al —— ,
P X Vimpad/2

which is also listed in Table I. We can show that this length
scale represents the collective pinning by weak impurities
[21,22,26]. To demonstrate this in the context of magnets, we
first introduce the energy density from the spatial modulation

5)
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with the length scale & caused by impurities:

JS? \/(VimpSH)imp&?
E®) = g - p%_d S (16)

Here njyp ~ ¢=¢ is the impurity density. The first and sec-
ond terms are energy loss of the ferromagnetic interaction
and energy gain due to the impurity potential, respectively.
One can see that the pinning length & ~ &, minimizes this
energy density. Thus the present Gaussian variational approx-
imation used in the replica field theory is valid for weak-
pinning regime with &, > £. From Table I we have the ratio
£,/€ ~ (Vimp/J)*(a/€)* in d =3, which indicates that the
system is located in the weak pinning regime for a <« ¢ and
Vimp ~ J. In d = 2 we have the relation &,/¢ ~ Viy,p/J and
there is no a/¢ factor. Thus the pinning length for d = 3 is
much longer than that for d = 2, corresponding to the smaller
pinning frequency ind = 3 thanind = 2.

At the end of this section we comment on a nature of the
Bragg glass. While the static properties are basically similar to
the ones in the previous works for vortex lattice [25,44], let us
take a look at this behavior based on our model. The mean
squared phason field variable, meaning the roughness, are
calculated as B(r) = ([¢a(r) — $(0)1?) =~ (4 — d)In(r /&) at
large distance with r >> &;. This logarithmic growth is charac-
teristic for the Bragg glass. With this quantity, we can obtain the
impurity-averaged spin correlation function as (S(r) - $(0)) ~
382(r/&,)~“=D/3 which shows the power-law decay. Because
of this slowly decaying property, the Bragg glass state is
referred to as a quasiordered state [25]. Correspondingly,
the Fourier transformed quantity also shows a power-law
behavior, which can be measured by elastic neutron scattering
measurement as in the vortex lattice [29]. For chiral magnets,
the pinned crystal states have been identified experimentally
[12,17] and theoretically [34] at a small pinning potential,
which is expected to be the skyrmion Bragg glass discussed
in this paper. In contrast, for a perfect crystal B(r) >~ const.
is satisfied and the Fourier transformed magnetic form factor
becomes a delta function in g space. With stronger disorder
effects, on the other hand, we can have a power-law increase
in the function B(r), which results in an exponential decay
of the spin correlation functions. These two cases are clearly
distinguished from the Bragg glass state.

The existence of Bragg glass has been debated over the
years. While there have been support for the existence after
the proposal of this state in three dimensions [29,45,46], the
renormalization group theory suggested the absence of the
Bragg glass even in the three dimensions: the perturbative
analysis for the XY model shows the lower-critical dimension
dic ~ 3.9[47,48], whichis far beyond d = 3. There is a counter
argument that this conclusion relies on the perturbative analysis
around the critical point and the higher-order perturbations
will modify the critical dimension into dj. = 2 [49]. On the
other hand, the nonperturbative scaling analysis has also
been performed to give dj. >~ 3.8 [48,50]. Here the truncated
version of functional renormalization group equations has
been used, which however may differ from results obtained
for the nontruncated version [49]. Recently, the existence of
Bragg glass has been further supported by theoretical and
experimental investigations for density-wave glasses [51-53].

In two dimensions, on the other hand, it is naively expected
that the generation of dislocations, or vortices in phason field
variables, can occur under the presence of disorders and can
change the picture of quasiordered state [45,54,55]. However,
the characteristic length scale for dislocations is shown to be
much longer than the pinning length, and there can be a wide
region where the Bragg glass behavior is observed [25,54,56].
Indeed, the pinned Wigner crystal state has been interpreted
as a quasi-Bragg glass state in two dimensions [28]. Ind = 3,
the dislocation loop energetically costs much more than the
d = 2 case, and the Bragg glass state can be more robustly
present [25].

III. NONRECIPROCITY IN DISPERSION RELATION

Here we discuss the dispersion relation of phasons, which
is determined by the poles of the Green functions in Eq. (8).
Let us first consider the clean case without impurities. For the
three-dimensional SkX, we have two kinds of excitation modes
and can write the dispersions at small wave vectors as

4Ja*S 2 16J3a*Ss

hwiow(q) =~
wlo (q) 9 q 81D2
16J4a%S
— —7p7 44+ 0@, a7
DS 4Ja’S
liwnigh(q) =~ 5 +3DaSq; + q

+9Ja’Sq? + 0(g*). (18)

The quadratic form in the low-energy branch at small g is
characteristic for SkX [30], and the schematic illustration for
the dispersion relations are shown in the left panel of Fig. 2.
This behavior originates from the Berry phase term connecting
the field variables ¢, and ¢, in Eq. (7), with which a rotational
motion is generated [30].

In Egs. (17) and (18) we keep the lowest-order terms
with respect to g, which represents the nonreciprocity along
magnetic field (z) direction characteristic for SkX ind = 3. For
the lower energy branch wjoy, the ¢, term appears in the form
q*q.. This is because the presence of ¢.-linear term makes the
energy negative to cause instability, and is not allowed. For the
higher wyign branch, on the other hand, the g.-linear term can
appear. The minimum of the frequency whien(q) is lowered by

FIG. 2. Schematic pictures of dispersion relations along g, direc-
tion for the three-dimensional SkX in (left) clean case and (right) dirty
case. The dispersion relation in the right panel is determined by the
peak positions of the response functions.
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this g,-linear term, and the energy shift is estimated as

D’S
i Awnigh ~ 5 19)
which is similar to the ferromagnetic state (see Appendix D).
If this bottom of the dispersion relation touches the zero
energy by, e.g., tuning DM interaction along z direction, the
instability toward modulation along z direction will occur. For
two dimensions we get the dispersion relations by disregarding
the g.-dependent terms, and nonreciprocal nature does not arise
in the xy plane [42]. The absence of nonreciprocal dispersion
applies also to HMS (see Appendix B). Thus the g, terms in
the dispersion relation in three-dimensional SkX shows a sharp
contrast with SkX ind = 2 and HMS ind = 2,3.
In the presence of impurities, the lower excitation spectrum
has a peak at finite frequency, and the dispersion relation
W4, (@) 18 defined as

44/2J%a%?

4Ja’s ,
27Ds? T T

9>+ 0@,
(20)

i, (q) = how, —

where we have neglected the attenuation to visualize the
dispersion relation. The g.-linear term can now be present since
the pinning frequency is generated from impurity pinning. This
dispersion is illustrated in the right panel of Fig. 2. The shift of
minimum position in the wy,, branch due to the g, -linear term is
estimated as

J3xt
DéS7’
which is very small compared to iw, in the weak disorder case.
For whign, the effect of impurities does not enter in the leading
order.

Physical intuition about these excitation modes can be
obtained by analyzing the equations of motion in the uniform
limit with ¢ = 0. These equations are easily solved, and one
can see that the above two modes wj,, and whign correspond
to the clockwise and counterclockwise motions with the
frequencies wy,,, = wp and whigh = l;l—zjs. These clockwise and
counterclockwise natures are also reflected in the signs of the
q.-linear terms as in Egs. (18) and (20).

hAw), ~ @21

IV. RESPONSE FUNCTIONS
A. Local magnetic response

Let us consider the magnetic response of SkX. We first
define the real-space dynamical magnetic susceptibility by
xHV(r,r',t) = (S*(r,1)S"(r’,0)). We can rewrite it in terms
of dynamical phason variables in the lowest order. The Fourier
transform with respect to relative coordinates is given by

X" (q,0) = Q2 Z 0!}

(ni(q,0)nj(—q,—w))

an ni _o (i(q — 0 Q;,0)pi(—q + 0 Q;, — w)),

(22)

where u,v = x,y,z and n;; =2 —io Qi X Z with o = +£1.
The spatially fast oscillating part has been dropped and w > 0

is assumed. We also define the quasilocal magnetic response
function by xpo(w) = Q7! >, x"(g,w) with Q being a
volume of the system, which has the form

Xioe (@) 2= 8,00 (S0 + 8,1y + 25;u) Z%x(q w). (23)

Since the relation n ~ w¢ holds from the canonical conjugate
relation for a dynamical part, we have neglected the n-field con-
tributions which are small at low frequencies. Neglecting also
the g.-linear term that appears as a higher-order contribution,
we obtain the imaginary part of local magnetic susceptibility
for three dimensions as

FlZEQG)
and for two dimensions
Y
(2D) ~ 2
Im x50 () - (25)

With these expressions the local magnetic relaxation rate is
derived as

1 Akg lim Im Xloc(w)
_— 1m
T\ T B w0 ®

(26)

where A is a “hyperfine” interaction parameter which has
the dimension of energy. The detailed expressions for local
magnetic relaxation rate are summarized in Table I. When the
disorder effect becomes weaker, the magnetic relaxation rate
is increased because of the more low-energy state density of
phasons that are involved in the relaxation process. The typical
frequency dependencies of local magnetic spectrum for three-
and two-dimensional SkX are also shown in Figs. 3(a) and 3(b),
which have peaked structures around w = w, reflecting a
resonance at pinning frequency (see Sec. V for a choice of
parameters).

B. Dynamical coupling to uniform external fields

We consider the coupling between skyrmion spin texture
and external electromagnetic fields. This can be obtained in a
manner similar to the discussion for CDW, where the dynamics
of phasons carry the electrical current [57]. For a triple helix
structure of SkX, we superpose the results for the single helix
case which are derived by picking up the lowest-order electron
bubble contribution (see Appendix C). We then obtain the
following couplings with uniform electric and magnetic fields
in the action:

eh> A N"(0)Q
St = [ dtdr| —————
/tr|: J6mad ¢

(27)

where we have defined the vectors ¢ = (¢,,¢,,0) and 5 =
(1x,1y,0). The mean field for electrons is given by A = %JHS
with Jy being a Hund coupling from Coulomb repulsive
interaction, and N(0) is the density of states at Fermi level.
We note the relation N”(0) ~ & 3 where e ~ n?—:z is the Fermi
energy.

4mad

6g,ehS
_WL,,.B},
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FIG. 3. Frequency dependencies of local magnetic response func-
tions for (a) SkX ind = 3, (b) SkX ind = 2, (¢c) HMS ind = 3, and
(d) HMS in d = 2. The electrical conductivities are also shown for
(e) SkXind = 3, (f) SkX ind = 2, (g) HMS in d = 3, and (h) HMS
in d = 2. The typical parameters for MnSi are used for the plots
(see Sec. V).

The electrical conductivity oug is defined by the relation
Jo = 5 0upEp, and is given by

eh* A’N"(0)Q
6omad

The typical frequency dependencies for d = 3 and d = 2 are
plotted in Figs. 3(e) and 3(f), respectively (see Sec. V for a
choice of parameters). The spectrum has a peaked structure
at @ >~ wp, and the conductivity becomes zero when the
frequency approaches zero. This is a typical behavior of the
pinned state of elastic media [21,28]. It is characteristic for
d =2 that the two resonance peak structures can be seen in
the dynamical spectral functions as shown in Fig. 3(f). This
is because the pinning frequency w, is comparable to the
higher energy branch (~D?>S/J) in dispersion relation shown
in Fig. 2. In contrast, the two energy scales are much separated
in the three-dimensional SkX as shown in Fig. 3(e), since the
pinning frequency in d = 3 is much smaller than in d = 2 as
discussed before. We note that the low-energy properties for
SkX (and also for HMS) are gapless since the conductivity
behaves as o (w) x w?. This is similar to the behavior of the
Bose glass [58].

Next we consider the magnetic response functions. The
dynamical susceptibility defined by M, = > p XapBp, where

2
Oup(@) = ad< ) i0G5(0,0). (28)

M is the magnetization per unit volume, is given by
V6g.ehS 2
d S aT
Q = Fa 0, s 29
Xap(@) = a ( g ) 5(0.0) (29)

where .% is defined in Eq. (9). We can also have the cross
term representing the magnetoelectric effect: M, = X%EE 8-
The response kernel has the form
254 A2 ATV

KE () = wl@%ﬂ(o,w) (30)
These response functions (Gug, Xag, Xag ) at @ = w, in the
weak disorder limit are listed in Table I. While the pinning
frequency is sensitively dependent on the dimension of the
system, the response functions at resonance frequencies are
not the case. This insensitivity is characteristic for SkX, where
the w-linear term appears in Green functions due to their
topological properties. In contrast, the values are dependent
on the dimensionality for HMS (see Table II). A further
comparison between SkX and HMS is given in Sec. V.

C. Directional dichroism in three-dimensional SkX

‘We can also show that a directional dichroism, where the
responses to external electromagnetic waves propagating in the
directions +¢ and —gq are different, appears along the magnetic
field direction (parallel to Z) for the three-dimensional SkX. In
the realistic situation, since the conductivity from conduction
electrons is much larger than the one from phason contribution,
and also the electromagnetic field is reflected and cannot pen-
etrate through the sample, we expect the possible observation
in insulating compounds.

Noting therelations E = —9,A and B = V x A, thedynam-
ical coupling term (27) can be rewritten in terms of vector po-
tential. We then obtain the current in the form j, = Y I1,,A,
with u,v = x,y,z. For ¢ = (0,0,q,), i.e., the light propagating
along z direction, only the kernels I, I1,,,I1,,,I1,, are finite
and are given by the following 2 x2 matrix:

s\ R2A2N"(0)Q
\/gg—sedS) qu,(qz) +a [wl
4dma \/gmgd

3V6geri’s? . 1* L,
W“Zzg(fh)é] 0*9(g.0), ()

M(g;,0) = ad(

which produces the difference between the responses for +¢,
and —gq,. Let us estimate the magnitudes of the directional
dichroism at the resonance frequencies where the response
function becomes maximum. We use the relation w = c|q,]|
with ¢ being the speed of light and assume that the polarization
of light is along x direction. We can then write down the ratio
between the energy absorption coefficients for the lights having
the wave vectors +¢, and —g, as

Im I (-w/c,0) 1+ r(w)
Im I (tw/c,w) 1 —r(®)

(32)

The effect of directional dichroism is maximized when » ~ 1.
For a typical value of w, we choose w = wp and w = L;—Zhs which
correspond respectively to the characteristic energies for lower
(wiow) and higher (whign) branches in the dispersion relations
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shown in Fig. 2. The quantity r for each case is estimated as

Viﬁ‘lp a\’ EF 2UF
rlowEr(wp)N SD3J Z J_H ?7 (33)

DZS J EF 2 VUfr

rh‘ghzr( Jh)NSD<JH> ¢’ G
where we have used the expressions for the Fermi energy e ~
% and Fermi velocity vg ~ % for an order estimation. The
value of 7o, should be much smaller than the unity because
of the factor (a/£)°. Hence the directional dichroism is more
likely to be observed in the higher-energy wpign branch. Let
us also estimate the value of the absorption coefficient. The
intensity / of lightdecaysas I = [ye™** withx being a distance
that the light travels inside the material. The coefficient « for

both wyew and wpign branches is given by

Reo, (28) §3/ ¢ Ji\*/ D>
o = ( Jh ) ~ € _H - , (35)
c€ a \4meyhc &F J

where € is a permittivity of vacuum. As shown in the next
section, a moderate absorption coefficient & can be obtained
for three-dimensional SkX.

If we take ¢ L Z, the directional dichroism does not appear
in our model. On the other hand, it has been suggested that such
an effect can be detected by the light propagating along the xy
plane [59] by assuming the cubic symmetry of the crystal.
However, this material-specific effect is not included in the
present model. Our directional dichroism discussed here is
rather related to the general feature of the three-dimensional
SkX, and is not specific to a particular material.

V. DISCUSSION

As discussed above, we have clarified the characteristic
properties for SkX in the presence of disorders. In order to
make a closer connection with real materials, it is useful to es-
timate typical values of the parameters and physical quantities.
Let us first consider the distance £ between impurities, which
can be estimated from the critical current density j. for SkX
realized in metallic compounds such as MnSi. To do this, we
consider the energy density for spin-transfer torque introduced
by external current [30,42]:

B dr .
o= [ S5 Y antSiwatn G0
af

We have introduced the uniform emergent magnetic field
B ~ Q?h/|e|, which corresponds to the number density of
skyrmions. Within this expression, the anisotropy for j. does
not appear. At the critical current density j = j., this energy
is put equal to the pinning energy given in the second term of
the right-hand side in Eq. (16). This is similar to the estimation
for the electric-field depinning of CDW with weak impurities
[22]. We obtain the relation

BSje  VimpS?
Qad—S (spg)d/z'

Based on this, the expressions of critical current densities for
three and two dimensions are obtained and are listed in Table I.
As in the pinning frequency, the critical current density for

(37

d = 3 also becomes much smaller than the one in d = 2.
With increasing the size of skyrmions, i.e., O — 0, the energy
supply from the external current decreases because of B o Q?
as seen in Eq. (37), which leads to the larger critical current
density. This is in sharp contrast with the ordinary density
waves, where the critical current density becomes smaller when
the modulation period increases since the driving force is not
dependent on the period.

The relation in Eq. (37) is used to estimate the distance £ be-
tween impurities. For the SkX phase in the three-dimensional
material MnSi, we take J ~ 13 meV, D/J = 0.1 [60,61],
and § =0.1. The characteristic energy scale wpg, for the
higher-energy phason mode is given by D2S/J (see Fig. 2),
whose relevant frequency is ~1 GHz. We also use the lattice
constanta = 2.9 A [61], and assume Vi, > J for the impurity
potential. With the experimental critical current density j. =
10% A/m?[15,17], we obtain £ ~ 1nm. The pinning frequency
and length in three-dimensional SkX are then w, /27 ~ 10% Hz
and &, ~ 10° nm, respectively, indicating that the system
is well located in the collective or weak pinning regime
(&p/¢ ~ 10°). For two dimensions, the dependencies of pinning
frequency on the potential Vi, and the distance £ is weaker
compared to the d =3 case, which results in the shorter
pinning length &,/¢ ~ 10'. Hence the two-dimensional SkX is
nearly located at the edge of the region where the weak-pinning
approximation can be applied. The shorter pinning length
corresponds to the larger pinning frequency which is the order
of wp/27 ~ 10° Hz comparable to DS /i J. This is the reason
why we see the two resonance peaks in o(w) with a single
window as shown in Fig. 3(f).

As emphasized in the Introduction, it is characteristic for
chiral magnets that the physical quantities in SkX and HMS
can be directly compared, which is not the case for the other
disordered systems such as CDW, vortex lattice, and Wigner
crystals. This situation leads us to a deeper understanding of
the pinned elastic media. We summarize the results for HMS
in Table II (see Appendix B for derivation). The dynamical
quantities (local magnetic spectrum and conductivities) are
also plotted in Figs. 3(c), 3(d) 3(g), and 3(h), where the
single peak appears in the spectrum as is different from SkX.
This is because there is only one phason field variable and
the dispersion relation has only one branch as shown in the
dotted line in the left panel of Fig. 2. It is characteristic for
three-dimensional HMS that there is no @ dependence in local
magnetic spectrum as shown in Fig. 3(c), which is related to the
fact that the HMS in d = 3 is located at the critically damped
case with ¢ = 1 in our model.

The ratios between the quantities in SkX and HMS are also
given in Table III. First let us look at the pinning frequency in

Table I1I for d = 3. Since the ratio is given by @3 /wfMS o

(Vimp/J Y2(a /) with the relations a < £ and Vimp ~ J, the
pinning frequency is substantially reduced once we enter the
SkX phase from HMS. This change is a consequence of
the gyro dynamics that appears only in SkX. In contrast,
the pinning length is determined by the statics in the limit
o — 0, and is nearly unaffected except for a constant factor.
In d = 2 the ratio is wSkX/wEMS (' (Vimp/J)l(a/E)l, which
also suggests the reduced pinning frequency in SkX, but the
difference is much milder than the d = 3 case.
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The change in dynamics between SkX and HMS is reflected
also in different local magnetic responses. For SkX, the local

magnetic relaxation rate has the form 1/ 7} Vlm§£3 ford =3

and o<V, 2€2 for d = 2. On the other hand, 1/7; for HMS has
a weaker dependence on the impurity profiles, and notably the
HMS in d = 3 has no dependence on impurities. This results
in an enhanced local magnetic relaxation rate 1/7; in SkX
compared to HMS. The enhancement of 1/ 7 originates from
the difference of the low-lying energy modes which are w ~ ¢>
for SkX and @ ~ |gq| for HMS, where the quadratic dispersion
creates the more low-energy states.

According to Table III, for ac conductivity (o) and magneto-
electric susceptibility (xME), the ratio between SkX and HMS
are sensitively dependent on the impurity profiles, while the
magnetic susceptibility (x) is not. This is because the phason
field ¢ is directly involved in the expression of o and xMF as
in Eqgs. (28) and (30), and the low-energy dynamics is much
modified by impurities. For y, on the other hand, the n-field
conjugate to ¢ is instead relevant, whose Green function is
given by Eq. (9) and has the constant part §. Because of the
presence of this static susceptibility, the low-energy dynamics
is not sensitive to the weak disorders and there is not much
difference between SkX and HMS.

We have also proposed the possible observation of direc-
tional dichroism for three-dimensional SkX. By assuming the
magnitude relations ¢/vg ~ 10?, D/J ~ 107!, and Jyy /&g ~ 1
in Egs. (32), (33), and (34), we get ruyen ~ 1 and expect
that the directional dichroism is possibly observed in the
higher-energy wyign branch. As for the absorption coefficient
o defined by Eq. (35), it is estimated as & ~ 10~’a~!. Hence
the sample thickness r ~ 1 mm that gives ot ~ 11is appropriate
for detecting the directional dichroism along the magnetic field
direction.

VI. SUMMARY

We have investigated the dynamical properties of the
disordered magnetic skyrmions at low energies by using the
replica field theory combined with the Gaussian variational
approximation. The Green functions for the phasons, which
describes the low-frequency and long-wavelength behaviors,
have been explicitly calculated. With these quantities, we
have obtained the pinning frequency and length specific
to the pinned skyrmion states. The magnetic and electric
response functions have been derived in two- and three-
dimensional skyrmion crystals, and compared with the results
of the topologically trivial helimagnetic state to illuminate
the characteristic properties of magnetic skyrmions in the
presence of disorders. The difference of the low-energy glassy
properties between these two states is prominent, and hence
the chiral magnets are regarded as a unique system to show the
topological phase transition among the glassy states by tuning
temperature or applied magnetic field, which provide a deeper
understanding for physics of disorders. These features of
disordered magnetic skyrmions should give a clear distinction
from the other physical systems previously discussed.

Specifically for the three-dimensional skyrmion crystal, we
have clarified the nonreciprocal nature of collective excitation
modes and their electromagnetic responses along the direction
of the external magnetic field. The nonreciprocal properties

of chiral magnets put forward a new point of view for the
elastic media, and can be further investigated in the other
related systems such as three-dimensional vortex lattices in
noncentrosymmetric superconductors. Our results for pinned
regime of skyrmions can also be a foundation for further
exploring the glassy states and nonreciprocal responses in the
moving regime under the electronic current.
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APPENDIX A: DERIVATION OF EFFECTIVE ACTION
FOR SKYRMION CRYSTAL

Here let us derive the effective action for the disordered
SkX. The effect from pinning potentials is incorporated by
using a replica trick [24-26,39]. Within this theoretical frame-
work, the free energy after averaging over impurity configura-
tion is evaluated by using the relation In Z = lim,,_, % InZ"
for n € Z. The effective action for the n-replicated system is
written as

Sy = Z >/ dr[ Capbua@ Dbup(—.,7)

qop
JS%a*q?
+ T‘saﬂ(ﬁaa(qaf)(ﬁaa(_q’f)
9n%J 27ih* J%aq. .
+ haa(q,7) D2 Sup— D7 $ap(—q,7)

V2 S*ad dr
B 4;1@’ 2/ /dfdt
2
X [Z Cos[d)ai(r?t) - ¢b[(r,f,)]] ’

which describes the low-energy physics of disordered phasons.
For analysis, we take the Gaussian variational approximation
[26,39], in which the system is described by the action

LYYy

ab gqn af

(AD)

X Paa(q.00) [GTH(q i)}, Pop(—q.—iw,)  (A2)

and the variational functional is also defined as %, =
—h1nZy + (et — So)o Where Zy = [ D{¢q} exp[—So/1i].
The bosonic Matsubara frequency is given by /iw,, = 2ankgT .
We introduce the self- energy from impurities by the relation
(G‘l)a = (GyL O)aﬂ - %ﬂ’ and the stationary condition of
variational functional with respect to the self-energy o gives
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a set of equations to determine the Green function. Finally,
the Green function of the original system is given by 4,5 =
lim, o1, G%

Physically n replicas represent many metastable states
induced by impurities, and have similar properties: G* = G.
As for the off-diagonal elements of the Green function, one
possible situation is that these replicas are symmetric and
the correlation functions between replicas are not dependent
on replica index: G*® = G| for a # b (replica symmetric
solution). However, it has been known that this solution
is unstable for two and three dimensions [39]. Hence we
need to consider the replica symmetry broken solution. By
assuming the hierarchical replica symmetry breaking ansatz
[38], the off-diagonal components can be labeled by the one
parameter u € [0,1]. This procedure is proven to be exact in
the Sherrington-Kirkpatrick model for a spin glass [62].

The self-energy can be written in the form o(iw,) =
21(1 = 8,0) + [(iwy) with I(iw, — 0) = X/i|w,|, which is
finite only for the diagonal component [28]. Assuming the full
replica symmetry breaking solution, we obtain an explicit form
of the self-energy after straightforward calculation similar to
Refs. [26,28]. The equations that determine X; and /(i w,) are
derived as

6‘/112nps4 2d 1
q [Gga(q’o) + 21]
Hian) = ST 1 Gua(@.i02)
lwy) = —Yaalq,lwy) |,
@ Q) GO @0+ 3, et

(A4)

where G°(q,iw,) is the free phason Green function without dis-
order effects, and %5 = (P p)/ali is the full version given
by 9 q.iw,) = [G%(q,iw,)] ' — o(iw,)]1. In the quantum
theory of (2+1)-dimensional skyrmion system, i.e., the d = 2
case in our model, the response function has a static self-energy
31, which reflects the localization of skyrmions as in the case
of the Bose glass [26,58].

By performing the analytic continuation i w,, — w, the real-
frequency Green function is written in the 2x2 matrix form,
which is explicitly written in Eq. (8) of the main text. Since the
Green functions are derived with the Matsubara formalism,
the results can be applied at finite temperatures. While the
functional form of real-frequency Green functions after the
analytic continuation does not depend on temperature, we note
that the temperature dependence enters through the parameters
such as a modulus S of the spin moment.

APPENDIX B: RESULTS FOR HELIMAGNETIC STATE

We here summarize the properties of HMS, which are
compared to SkX. The spin configuration for the simple HMS
is given by

S =580y + Sv1—n?Zcos(Qy + ¢) + % sin(Qy + ¢)],
(B1)

where the modulation vector is along y direction (Q =¥).
After integrating out the n field, we obtain the effective low-

energy action for phason replica fields as

dr [ JS%a? .
eﬁ—Z/ / [ <V¢a>2+2D2 }
V2 ghgd J
_ ‘Z’l’ud Z/ r /drdr cos?

X[¢a(r,7) — ¢p(r, 7). (B2)

Tracing the same procedure given in the SkX case, we obtain
the Green function

Jh?
Y(q,0)"" = JS*a*q® — sz + 3 —i%hw, (B3)

where the self-energy coefficients are given by

. VimpSa’® 5 _ [HE B
'S\ mpne ) TN T pr

‘/12 242 275
2<2D>=—;‘[‘PJ s D= —Dzl. (BS)

The pinning length is given by &, = a/JS?/%;, which has
the same form as SkX. The coefficient is however different
and the ratios between SkX and HMS cases are given by
ESX/EMMS = 2 for d =3 and &3 /EMMS = g for d = 2.
The shorter plnmng length for SkX is due to the fact that
the triple helices in SkX generate more pinning energy than
the single helix state considered here. Note that this value is
dependent on the specific form of the pinning potential.

The equation of motion has the form of a damped oscil-
lator, and the pinning frequency w, and damping ratio ¢ is

determined as
hop =Dy 2L, = D22 (B6)
Wy = _—, =
P J 2JTE

for three and two dimensions. The pinning frequencies for
HMS are listed in Table II. The damping ratio is estimated as
t=1ford =3and¢ = 1//2ford = 2. Namely, the HMS
in d = 3 is located at the critically damped case.

From the pole of the Green function, we can also have the
dispersion relation

ho(q) =
for phason in the clean HMS. With the disorder effects it

becomes
SZ 2 .
(0] B8
7 N 2+ 0(gh. (B3)

We note that this excitation mode is accompanied by an
attenuation. Thus the nonreciprocity does not appear as distinct
from the dispersion relations for SkX.

DSalq| B7)

o' (q) = hawp +

APPENDIX C: EXTERNAL FIELD-SPIN COUPLING
IN SINGLE-HELIX CASE

We consider the phason-(uniform) external field coupling
following the theory for CDW in one dimension [57]. We begin
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A ¢

FIG. 4. Illustration for the lowest-order coupling between phason
field and vector potential.

with the electron Hamiltonian

z%=§:/mduﬂb%PMV—mf—WFw

— JuS(r)- or(m/}cn/(r), (ChH

where ep = hzz—:f is the Fermi energy and Jy is the Hund
coupling. The coupling to n (~we) is neglected, since it gives
a higher-order contribution compared to ¢ field. With this
Hamiltonian, we can obtain the lowest-order contribution for
the field-phason coupling which involves the electron-hole
bubble shown in Fig. 4. The bubble part F, connecting the
vector potential A, and phason field ¢ is explicitly written in
the Matsubara frequency domain as

Fu(g.iwn) = —4eA*kpT )
nk
(vf”k+Q - v,’;ka) -hq + (v;:+Q - v;:)ihwm
[(ihgn - 8k)(ih8n - Sk-‘rQ) - 4A2]2
where we have defined the fermionic Matsubara fre-
quency he, = 2n + 1)mkg T, the mean-field A = %JHS , the
ik’

single-particle excitation energy e = 5, - — ¢, and velocity

, (C2)

vy = ’zn—k.We have kept only the leading order terms. Assuming
er > A and kp > Q, the coupling term is given in the
Hamiltonian form by

hZN// 0 AZ
%=¥/dr¢Q-E, (C3)
3mad
where we have introduced the electric field E = —9, A and the

density of state N(0) at the Fermi level. We note the relation
N"(0) ~ 1/e3.

The coupling between uniform magnetic field and spin is
given by the Zeeman interaction [42]:

dr
A= —gun [ 5B (c4)
gsehS
=5 [ urng-B. Cs
2mQad/ rnQ (C5)

Since the phason part has a fast spatially oscillating factor ¢’ ¢”,
the dominant contribution comes from the » field.

APPENDIX D: DISPERSION RELATION
FOR FERROMAGNETIC STATE

Let us derive the dispersion relation for the excitation from
the ferromagnetic state, to make a comparison with SkX and
HMS. The spin moment is given by § = S% in the ground state.
The classical spin-wave analysis gives the dispersion relation

ho(q) = gusB + 3JSa*q* + DSag., (D1)

which is obtained based on Eq. (1). In contrast to HMS, here
the nonreciprocity along z direction appears in the dispersion
relation.

[1] For a review, see N. Nagaosa and Y. Tokura, Topological
properties and dynamics of magnetic skyrmions, Nat. Nanotech.
8, 899 (2013).

[2] A. P. Malozemoff and J. C. Slonczewski, Magnetic Domain
Walls in Bubble Materials (Academic Press, New York, 1979).

[3] S. Chikazumi, Physics of Ferromagnetism (Oxford University
Press, Oxford, 2009).

[4] J. C. Slonczewski, Current-driven excitation of magnetic multi-
layers, J. Magn. Magn. Mater. 159, L1 (1996).

[5] L. Berger, Emission of spin waves by a magnetic multilayer
traversed by a current, Phys. Rev. B 54, 9353 (1996).

[6] G. Tatara, H. Kohno, and J. Shibata, Microscopic approach
to current-driven domain wall dynamics, Phys. Rep. 468, 213
(2008).

[7] 1. E. Dzyaloshinskii, A thermodynamic theory of “weak” ferro-
magnetism of antiferromagnetics, J. Phys. Chem. Solids 4, 241
(1958).

[8] T. Moriya, New Mechanism of Anisotropic Superexchange
Interaction, Phys. Rev. Lett. 4, 228 (1960).

[9] N. Bogdanov and D. A. Yablonskii, Thermodynamically stable
“vortices” in magnetically ordered crystals. The mixed state of
magnets, Sov. Phys. JETP 68, 101 (1989).

[10] N. Bogdanov and A. Hubert, Thermodynamically stable mag-
netic vortex states in magnetic crystals, J. Magn. Magn. Mater.
138, 255 (1994).

[11] U. K. Roessler, N. Bogdanov, and C. Pfleiderer, Spontaneous
skyrmion ground states in magnetic metals, Nature (London)
442, 797 (2006).

[12] S. Miihlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A.
Neubauer, R. Georgii, and P. Boni, Skyrmion lattice in a chiral
magnet, Science 323, 915 (2009).

[13] X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y.
Matsui, N. Nagaosa, and Y. Tokura, Real-space observation of
a two-dimensional skyrmion crystal, Nature (London) 465, 901
(2010).

[14] S. Heinze, K. Bergmann, M. Menzel, J. Brede, A. Kubetzka,
R. Wiesendanger, G. Bihlmayer, and S. Bliigel, Spontaneous
atomic-scale magnetic skyrmion lattice in two dimensions,
Nat. Phys. 7, 713 (2011).

[15] FE. Jonietz, S. Miihlbauer, C. Pfleiderer, A. Neubauer, W.
Miinzer, A. Bauer, T. Adams, R. Georgii, P. Boni, R. A.
Duine, K. Everschor, M. Garst, and A. Rosch, Spin transfer
torques in MnSi at ultralow current densities, Science 330, 1648
(2010).

[16] X. Z. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W. Z. Zhang,
S. Ishiwata, Y. Matsui, and Y. Tokura, Near room-temperature
formation of a skyrmion crystal in thin-films of the helimagnet
FeGe, Nat. Mater. 10, 106 (2010).

[17] T. Schulz, R. Ritz, A. Bauer, M. Halder, M. Wagner, C. Franz,
C. Pfleiderer, K. Everschor, M. Garst, and A. Rosch, Emergent

024413-11


https://doi.org/10.1038/nnano.2013.243
https://doi.org/10.1038/nnano.2013.243
https://doi.org/10.1038/nnano.2013.243
https://doi.org/10.1038/nnano.2013.243
https://doi.org/10.1016/0304-8853(96)00062-5
https://doi.org/10.1016/0304-8853(96)00062-5
https://doi.org/10.1016/0304-8853(96)00062-5
https://doi.org/10.1016/0304-8853(96)00062-5
https://doi.org/10.1103/PhysRevB.54.9353
https://doi.org/10.1103/PhysRevB.54.9353
https://doi.org/10.1103/PhysRevB.54.9353
https://doi.org/10.1103/PhysRevB.54.9353
https://doi.org/10.1016/j.physrep.2008.07.003
https://doi.org/10.1016/j.physrep.2008.07.003
https://doi.org/10.1016/j.physrep.2008.07.003
https://doi.org/10.1016/j.physrep.2008.07.003
https://doi.org/10.1016/0022-3697(58)90076-3
https://doi.org/10.1016/0022-3697(58)90076-3
https://doi.org/10.1016/0022-3697(58)90076-3
https://doi.org/10.1016/0022-3697(58)90076-3
https://doi.org/10.1103/PhysRevLett.4.228
https://doi.org/10.1103/PhysRevLett.4.228
https://doi.org/10.1103/PhysRevLett.4.228
https://doi.org/10.1103/PhysRevLett.4.228
https://doi.org/10.1016/0304-8853(94)90046-9
https://doi.org/10.1016/0304-8853(94)90046-9
https://doi.org/10.1016/0304-8853(94)90046-9
https://doi.org/10.1016/0304-8853(94)90046-9
https://doi.org/10.1038/nature05056
https://doi.org/10.1038/nature05056
https://doi.org/10.1038/nature05056
https://doi.org/10.1038/nature05056
https://doi.org/10.1126/science.1166767
https://doi.org/10.1126/science.1166767
https://doi.org/10.1126/science.1166767
https://doi.org/10.1126/science.1166767
https://doi.org/10.1038/nature09124
https://doi.org/10.1038/nature09124
https://doi.org/10.1038/nature09124
https://doi.org/10.1038/nature09124
https://doi.org/10.1038/nphys2045
https://doi.org/10.1038/nphys2045
https://doi.org/10.1038/nphys2045
https://doi.org/10.1038/nphys2045
https://doi.org/10.1126/science.1195709
https://doi.org/10.1126/science.1195709
https://doi.org/10.1126/science.1195709
https://doi.org/10.1126/science.1195709
https://doi.org/10.1038/nmat2916
https://doi.org/10.1038/nmat2916
https://doi.org/10.1038/nmat2916
https://doi.org/10.1038/nmat2916

SHINTARO HOSHINO AND NAOTO NAGAOSA

PHYSICAL REVIEW B 97, 024413 (2018)

electrodynamics of skyrmions in a chiral magnet, Nat. Phys. 8,
301 (2012).

[18] S. Seki, X. Z. Yu, S. Ishiwata, and Y. Tokura, Observation of
skyrmions in a multiferroic material, Science 336, 198 (2012).

[19] M. Ozerov, J. Romhanyi, M. Belesi, H. Berger, J.-Ph. Ansermet,
J. van den Brink, J. Wosnitza, S. A. Zvyagin, and I. Rousochatza-
kis, Establishing the Fundamental Magnetic Interactions in
the Chiral Skyrmionic Mott Insulator Cu,0SeO; by Tera-
hertz Electron Spin Resonance, Phys. Rev. Lett. 113, 157205
(2014).

[20] H. Tonomoto, K. Kimura, and T. Kimura, Magnetoelectric glass
nature in magnetoplumbite-type BaCog TigO19, J. Phys. Soc. Jpn.
85, 033707 (2016).

[21] H. Fukuyama and P. A. Lee, Dynamics of the charge-density
wave. . Impurity pinning in a single chain, Phys. Rev. B 17, 535
(1978).

[22] P. A. Lee and T. M. Rice, Electric field depinning of charge
density waves, Phys. Rev. B 19, 3970 (1979).

[23] A. Larkin, Effect of inhomogeneities on the structure of the
mixed state of superconductors, Sov. Phys. JETP 31, 784 (1970).

[24] T. Giamarchi and P. Le Doussal, Elastic Theory of Pinned Flux
Lattices, Phys. Rev. Lett. 72, 1530 (1994).

[25] T. Giamarchi and P. Le Doussal, Elastic theory of flux lattices in
the presence of wreak disorder, Phys. Rev. B 52, 1242 (1995).

[26] T. Giamarchi and P. Le Doussal, Variational theory of elastic
manifolds with correlated disorder and localization of interacting
quantum particles, Phys. Rev. B 53, 15206 (1996).

[27] R. Chitra, T. Giamarchi, and P. Le Doussal, Dynamical Prop-
erties of the Pinned Wigner Crystal, Phys. Rev. Lett. 80, 3827
(1998).

[28] R. Chitra, T. Giamarchi, and P. Le Doussal, Pinned Wigner
crystals, Phys. Rev. B 65, 035312 (2001).

[29] T. Klein, 1. Joumard, S. Blanchard, J. Marcus, R. Cubitt, T.
Giamarchi, and P. Le Doussal, A Bragg glass phase in the vortex
lattice of a type II superconductor, Nature (London) 413, 404
(2001).

[30] J. Zang, M. Mostovoy, J. H. Han, and N. Nagaosa, Dynamics of
Skyrmion Crystals in Metallic Thin Films, Phys. Rev. Lett. 107,
136804 (2011).

[31] I. Kézsmarki, N. Kida, H. Murakawa, S. Bordacs, Y. Onose, and
Y. Tokura, Enhanced Directional Dichroism of Terahertz Light
in Resonance with Magnetic Excitations of the Multiferroic
Ba,CoGe,0; Oxide Compound, Phys. Rev. Lett. 106, 057403
(2011).

[32] S.-Z. Lin, C. Reichhard, C. D. Batista, and A. Saxena, Particle
model for skyrmions in metallic chiral magnets: Dynamics,
pinning, and creep, Phys. Rev. B 87, 214419 (2013).

[33] Y.-H. Liu and Y.-Q. Li, A mechanism to pin skyrmions in chiral
magnets, J. Phys.: Condens. Matter 25, 076005 (2013).

[34] C. Reichhardt, D. Ray, and C. J. Olson Reichhardt, Collective
Transport Properties of Driven Skyrmions with Random Disor-
der, Phys. Rev. Lett. 114, 217202 (2015).

[35] C. Hanneken, A. Kubetzka, K. von Bergmann, and R. Wiesen-
danger, Pinning and movement of individual nanoscale magnetic
skyrmions via defects, New J. Phys. 18, 055009 (2016).

[36] V. Raposo, R. F. L. Martinez, and E. Martinez, Current-driven
skyrmion motion along disordered magnetic tracks, AIP Adv. 7,
056017 (2017).

[37] C. Reichhardt and C. J. O. Reichhardt, Depinning and nonequi-
librium dynamic phases of particle assemblies driven over

random and ordered substrates: a review, Rep. Prog. Phys. 80,
026501 (2017).

[38] M. Mezard, G. Parisi, and M. Virasoro, Spin Glass Theory and
Beyond (World Scientific, Singapore, 1987).

[39] M. Mezard and G. Parisi, Replica field theory for random
manifolds, J. Phys. I (Paris) 4, 809 (1991).

[40] P. Bak and M. H. Jensen, Theory of helical magnetic structures
and phase transitions in MnSi and FeGe, J. Phys. C 13, L881
(1980).

[41] O. Petrova and O. Tchernyshyov, Spin waves in a skyrmion
crystal, Phys. Rev. B 84, 214433 (2011).

[42] G. Tatara and H. Fukuyama, Phasons and excitations in skyrmion
lattice, J. Phys. Soc. Jpn. 83, 104711 (2014).

[43] X.-X.Zhang, A. S. Mishchenko, G. De Filippis, and N. Nagaosa,
Electric transport in three dimensional skyrmion/monopole crys-
tal, Phys. Rev. B 94, 174428 (2016).

[44] S. E. Korshunov, Replica symmetry breaking in vortex glasses,
Phys. Rev. B 48, 3969 (1993).

[45] M. J. P. Gingras and D. A. Huse, Topological defects in the
random-field XY model and the pinned vortex lattice to vortex
glass transition in type-II superconductors, Phys. Rev. B 53,
15193 (1996).

[46] D. S. Fisher, Stability of Elastic Glass Phases in Random Field
XY Magnets and Vortex Lattices in Type-II Superconductors,
Phys. Rev. Lett. 78, 1964 (1997).

[47] P. Le Doussal and K. J. Wiese, Random-Field Spin Models
beyond 1 Loop: A Mechanism for Decreasing the Lower Critical
Dimension, Phys. Rev. Lett. 96, 197202 (2006).

[48] M. Tissier and G. Tarjus, Two-loop functional renormalization
group of the random field and random anisotropy O(N) models,
Phys. Rev. B 74, 214419 (2006).

[49] K. J. Wiese and P. Le Doussal, Functional renormalization
for disordered systems, basic recipes and gourmet dishes,
Markov Processes Relat. Fields 13, 777 (2007).

[50] M. Tissier and G. Tarjus, Unified Picture of Ferromagnetism,
Quasi-Long-Range Order, and Criticality in Random-Field
Models, Phys. Rev. Lett. 96, 087202 (2006).

[51] J.-I. Okamoto, C. J. Arguello, E. P. Rosenthal, A. N. Pasupathy,
and A. J. Millis, Experimental Evidence for a Bragg Glass
Density Wave Phase in a Transition-Metal Dichalcogenide,
Phys. Rev. Lett. 114, 026802 (2015).

[52] J.-I. Okamoto and A. J. Millis, Effect of dilute strongly pinning
impurities on charge density waves, Phys. Rev. B 91, 184204
(2015).

[53] D.F Mross and T. Senthil, Spin- and Pair-Density-Wave Glasses,
Phys. Rev. X' 5, 031008 (2015).

[54] D. Carpentier and P. Le Doussal, Melting of Two-Dimensional
Solids on Disordered Substrates, Phys. Rev. Lett. 81, 1881
(1998).

[55] C. Zeng, P. L. Leath, and D. S. Fisher, Absence of Two-
Dimensional Bragg Glasses, Phys. Rev. Lett. 82, 1935
(1999).

[56] P.Le Doussal and T. Giamarchi, Dislocations and Bragg glasses
in two dimensions, Physica C (Amsterdam) 331, 233 (2000).

[57] P. A. Lee, T. M. Rice, and P. W. Anderson, Conductivity from
charge or spin density waves, Solid State Commun. 14, 703
(1974).

[58] D. R. Nelson and V. M. Vinokur, Boson localization and
correlated pinning of superconducting vortex arrays, Phys. Rev.
B 48, 13060 (1993).

024413-12


https://doi.org/10.1038/nphys2231
https://doi.org/10.1038/nphys2231
https://doi.org/10.1038/nphys2231
https://doi.org/10.1038/nphys2231
https://doi.org/10.1126/science.1214143
https://doi.org/10.1126/science.1214143
https://doi.org/10.1126/science.1214143
https://doi.org/10.1126/science.1214143
https://doi.org/10.1103/PhysRevLett.113.157205
https://doi.org/10.1103/PhysRevLett.113.157205
https://doi.org/10.1103/PhysRevLett.113.157205
https://doi.org/10.1103/PhysRevLett.113.157205
https://doi.org/10.7566/JPSJ.85.033707
https://doi.org/10.7566/JPSJ.85.033707
https://doi.org/10.7566/JPSJ.85.033707
https://doi.org/10.7566/JPSJ.85.033707
https://doi.org/10.1103/PhysRevB.17.535
https://doi.org/10.1103/PhysRevB.17.535
https://doi.org/10.1103/PhysRevB.17.535
https://doi.org/10.1103/PhysRevB.17.535
https://doi.org/10.1103/PhysRevB.19.3970
https://doi.org/10.1103/PhysRevB.19.3970
https://doi.org/10.1103/PhysRevB.19.3970
https://doi.org/10.1103/PhysRevB.19.3970
https://doi.org/10.1103/PhysRevLett.72.1530
https://doi.org/10.1103/PhysRevLett.72.1530
https://doi.org/10.1103/PhysRevLett.72.1530
https://doi.org/10.1103/PhysRevLett.72.1530
https://doi.org/10.1103/PhysRevB.52.1242
https://doi.org/10.1103/PhysRevB.52.1242
https://doi.org/10.1103/PhysRevB.52.1242
https://doi.org/10.1103/PhysRevB.52.1242
https://doi.org/10.1103/PhysRevB.53.15206
https://doi.org/10.1103/PhysRevB.53.15206
https://doi.org/10.1103/PhysRevB.53.15206
https://doi.org/10.1103/PhysRevB.53.15206
https://doi.org/10.1103/PhysRevLett.80.3827
https://doi.org/10.1103/PhysRevLett.80.3827
https://doi.org/10.1103/PhysRevLett.80.3827
https://doi.org/10.1103/PhysRevLett.80.3827
https://doi.org/10.1103/PhysRevB.65.035312
https://doi.org/10.1103/PhysRevB.65.035312
https://doi.org/10.1103/PhysRevB.65.035312
https://doi.org/10.1103/PhysRevB.65.035312
https://doi.org/10.1038/35096534
https://doi.org/10.1038/35096534
https://doi.org/10.1038/35096534
https://doi.org/10.1038/35096534
https://doi.org/10.1103/PhysRevLett.107.136804
https://doi.org/10.1103/PhysRevLett.107.136804
https://doi.org/10.1103/PhysRevLett.107.136804
https://doi.org/10.1103/PhysRevLett.107.136804
https://doi.org/10.1103/PhysRevLett.106.057403
https://doi.org/10.1103/PhysRevLett.106.057403
https://doi.org/10.1103/PhysRevLett.106.057403
https://doi.org/10.1103/PhysRevLett.106.057403
https://doi.org/10.1103/PhysRevB.87.214419
https://doi.org/10.1103/PhysRevB.87.214419
https://doi.org/10.1103/PhysRevB.87.214419
https://doi.org/10.1103/PhysRevB.87.214419
https://doi.org/10.1088/0953-8984/25/7/076005
https://doi.org/10.1088/0953-8984/25/7/076005
https://doi.org/10.1088/0953-8984/25/7/076005
https://doi.org/10.1088/0953-8984/25/7/076005
https://doi.org/10.1103/PhysRevLett.114.217202
https://doi.org/10.1103/PhysRevLett.114.217202
https://doi.org/10.1103/PhysRevLett.114.217202
https://doi.org/10.1103/PhysRevLett.114.217202
https://doi.org/10.1088/1367-2630/18/5/055009
https://doi.org/10.1088/1367-2630/18/5/055009
https://doi.org/10.1088/1367-2630/18/5/055009
https://doi.org/10.1088/1367-2630/18/5/055009
https://doi.org/10.1063/1.4975658
https://doi.org/10.1063/1.4975658
https://doi.org/10.1063/1.4975658
https://doi.org/10.1063/1.4975658
https://doi.org/10.1088/1361-6633/80/2/026501
https://doi.org/10.1088/1361-6633/80/2/026501
https://doi.org/10.1088/1361-6633/80/2/026501
https://doi.org/10.1088/1361-6633/80/2/026501
https://doi.org/10.1088/0022-3719/13/31/002
https://doi.org/10.1088/0022-3719/13/31/002
https://doi.org/10.1088/0022-3719/13/31/002
https://doi.org/10.1088/0022-3719/13/31/002
https://doi.org/10.1103/PhysRevB.84.214433
https://doi.org/10.1103/PhysRevB.84.214433
https://doi.org/10.1103/PhysRevB.84.214433
https://doi.org/10.1103/PhysRevB.84.214433
https://doi.org/10.7566/JPSJ.83.104711
https://doi.org/10.7566/JPSJ.83.104711
https://doi.org/10.7566/JPSJ.83.104711
https://doi.org/10.7566/JPSJ.83.104711
https://doi.org/10.1103/PhysRevB.94.174428
https://doi.org/10.1103/PhysRevB.94.174428
https://doi.org/10.1103/PhysRevB.94.174428
https://doi.org/10.1103/PhysRevB.94.174428
https://doi.org/10.1103/PhysRevB.48.3969
https://doi.org/10.1103/PhysRevB.48.3969
https://doi.org/10.1103/PhysRevB.48.3969
https://doi.org/10.1103/PhysRevB.48.3969
https://doi.org/10.1103/PhysRevB.53.15193
https://doi.org/10.1103/PhysRevB.53.15193
https://doi.org/10.1103/PhysRevB.53.15193
https://doi.org/10.1103/PhysRevB.53.15193
https://doi.org/10.1103/PhysRevLett.78.1964
https://doi.org/10.1103/PhysRevLett.78.1964
https://doi.org/10.1103/PhysRevLett.78.1964
https://doi.org/10.1103/PhysRevLett.78.1964
https://doi.org/10.1103/PhysRevLett.96.197202
https://doi.org/10.1103/PhysRevLett.96.197202
https://doi.org/10.1103/PhysRevLett.96.197202
https://doi.org/10.1103/PhysRevLett.96.197202
https://doi.org/10.1103/PhysRevB.74.214419
https://doi.org/10.1103/PhysRevB.74.214419
https://doi.org/10.1103/PhysRevB.74.214419
https://doi.org/10.1103/PhysRevB.74.214419
https://doi.org/10.1103/PhysRevLett.96.087202
https://doi.org/10.1103/PhysRevLett.96.087202
https://doi.org/10.1103/PhysRevLett.96.087202
https://doi.org/10.1103/PhysRevLett.96.087202
https://doi.org/10.1103/PhysRevLett.114.026802
https://doi.org/10.1103/PhysRevLett.114.026802
https://doi.org/10.1103/PhysRevLett.114.026802
https://doi.org/10.1103/PhysRevLett.114.026802
https://doi.org/10.1103/PhysRevB.91.184204
https://doi.org/10.1103/PhysRevB.91.184204
https://doi.org/10.1103/PhysRevB.91.184204
https://doi.org/10.1103/PhysRevB.91.184204
https://doi.org/10.1103/PhysRevX.5.031008
https://doi.org/10.1103/PhysRevX.5.031008
https://doi.org/10.1103/PhysRevX.5.031008
https://doi.org/10.1103/PhysRevX.5.031008
https://doi.org/10.1103/PhysRevLett.81.1881
https://doi.org/10.1103/PhysRevLett.81.1881
https://doi.org/10.1103/PhysRevLett.81.1881
https://doi.org/10.1103/PhysRevLett.81.1881
https://doi.org/10.1103/PhysRevLett.82.1935
https://doi.org/10.1103/PhysRevLett.82.1935
https://doi.org/10.1103/PhysRevLett.82.1935
https://doi.org/10.1103/PhysRevLett.82.1935
https://doi.org/10.1016/S0921-4534(00)00005-8
https://doi.org/10.1016/S0921-4534(00)00005-8
https://doi.org/10.1016/S0921-4534(00)00005-8
https://doi.org/10.1016/S0921-4534(00)00005-8
https://doi.org/10.1016/0038-1098(74)90868-0
https://doi.org/10.1016/0038-1098(74)90868-0
https://doi.org/10.1016/0038-1098(74)90868-0
https://doi.org/10.1016/0038-1098(74)90868-0
https://doi.org/10.1103/PhysRevB.48.13060
https://doi.org/10.1103/PhysRevB.48.13060
https://doi.org/10.1103/PhysRevB.48.13060
https://doi.org/10.1103/PhysRevB.48.13060

THEORY OF THE MAGNETIC SKYRMION GLASS

PHYSICAL REVIEW B 97, 024413 (2018)

[59] M. Mochizuki and S. Seki, Magnetoelectric resonances and
predicted microwave diode effect of the skyrmion crystal in
a multiferroic chiral-lattice magnet, Phys. Rev. B 87, 134403
(2013).

[60] S. V. Grigoriev, S. V. Maleyev, A. 1. Okorokov, Y. O.
Chetverikov, P. Boni, R. Georgii, D. Lamago, H. Eckerlebe, and
K. Pranzas, Magnetic structure of MnSi under an applied field

probed by polarized small-angle neutron scattering, Phys. Rev.
B 74, 214414 (2006).

[61] Y. Ishikawa, G. Shirane, J. A. Tarvin, and M. Kohgi, Magnetic
excitations in the weak itinerant ferromagnet MnSi, Phys. Rev.
B 16, 4956 (1977).

[62] M. Talagrand, The Parisi formula, Ann. Math. 163, 221
(2006).

024413-13


https://doi.org/10.1103/PhysRevB.87.134403
https://doi.org/10.1103/PhysRevB.87.134403
https://doi.org/10.1103/PhysRevB.87.134403
https://doi.org/10.1103/PhysRevB.87.134403
https://doi.org/10.1103/PhysRevB.74.214414
https://doi.org/10.1103/PhysRevB.74.214414
https://doi.org/10.1103/PhysRevB.74.214414
https://doi.org/10.1103/PhysRevB.74.214414
https://doi.org/10.1103/PhysRevB.16.4956
https://doi.org/10.1103/PhysRevB.16.4956
https://doi.org/10.1103/PhysRevB.16.4956
https://doi.org/10.1103/PhysRevB.16.4956
https://doi.org/10.4007/annals.2006.163.221
https://doi.org/10.4007/annals.2006.163.221
https://doi.org/10.4007/annals.2006.163.221
https://doi.org/10.4007/annals.2006.163.221



