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Electron-assisted magnetization tunneling in single spin systems
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Magnetic excitations of single atoms on surfaces have been widely studied experimentally in the past decade.
Lately, systems with unprecedented magnetic stability started to emerge. Here, we present a general theoretical
investigation of the stability of rare-earth magnetic atoms exposed to crystal or ligand fields of various symmetry
and to exchange scattering with an electron bath. By analyzing the properties of the atomic wave function, we
show that certain combinations of symmetry and total angular momentum are inherently stable against first or
even higher-order interactions with electrons. Further, we investigate the effect of an external magnetic field on
the magnetic stability.
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I. INTRODUCTION

The experimental discovery of large magnetic anisotropy
in single Co atoms on a Pt(111) surface [1] has given hope
that systems as small as one atom can be used for informa-
tion storage in real-life applications. The magnetic properties
of single adsorbed atoms have since been investigated for
a large range of atom-substrate combinations [2–13] using
low-temperature scanning tunneling microscopy (STM) and
x-ray magnetic circular dichroism (XMCD). Both techniques
provide information on the magnetic anisotropy, i.e., the zero
field splitting of the magnetic states caused by the crystal field,
and the magnetization decay, i.e., the lifetime T1, caused by
magnetization tunneling [14].

In most of the cases reported, the lifetime of the magnetic
state was found to be short, with the atom switching between
two degenerate antiparallel configurations on a timescale of
pico- to microseconds. The interaction of the atom with con-
duction electrons of the substrate is an important effect limiting
the stability of these states [4–9]. Two ways of reducing the
interaction were proposed: one by physically separating the
atom and the conducting substrate by a thin insulator [2,3],
the other by using rare-earth atoms where localized 4f

electrons, responsible for the magnetic moment, are shielded
from the substrate electrons [9]. Both approaches extended the
magnetic lifetimes. Lifetimes to the order of minutes at zero
magnetic field were found for Holmium atoms on Pt(111) [10]
followed by an even higher stability in Ho atoms on MgO
[12,15], persisting in the presence of magnetic field. Dy atoms
on graphene on Ir were also found to be stable up to 1000 s
[13]. In the latter four reports, the role of the symmetry of the
crystal field for stability was highlighted.

In this paper, we focus on the influence of symmetries
on magnetic stability and provide a theoretical framework of
stability criteria for rare-earth systems that follow logically
from the combination of symmetries of the magnetic atom
and its environment. We start with the analysis of Cq point
group (q-fold rotational symmetry) as the one relevant for

atoms adsorbed on a crystal surface, and later extend the
results to Cqv,Cqh,Dq,Dqh,Dqd, and S2q point groups. The
results are thus applicable not only to single magnetic atoms
on surfaces but also to larger complexes (e.g., magnetic
molecules) containing a single spin. One can also imagine
removing the limitation of rare-earth atoms by considering an
effective spin. Further, we do not consider phonon-mediated
processes due to their ill-defined angular momentum and for
the moment neglect the role of the nuclear spin.

During the preparation of this paper, several other theoret-
ical works analyzing magnetic stability have been published
[16–18]. This paper, however, allows stability analysis without
restricting the ground state spin or the magnetic field direc-
tion. Further, we extend the stability analysis to higher-order
processes and higher symmetries. Interestingly, unconstrained
analysis gives different predictions about stability, although
identical Hamiltonians are studied. We discuss the differences
in the results at the end of the paper.

II. SYMMETRIES OF THE HAMILTONIAN

A magnetic atom in an anisotropic environment can be
generally described by the following Hamiltonian:

H = Hel + HSO + HCF, (1)

where Hel describes the Coulomb interactions within the
atom, HSO is the spin-orbit interaction, and HCF is the crystal
field, i.e., the electrostatic interaction of the atom with the
environment. For rare-earth atoms, the spin-orbit coupling is
generally stronger than the effect of the crystal field. Therefore,
the last term can be treated as a perturbation on the free atom’s
lowest J multiplet. We can denote the components of the
multiplet as |L,S,J,m〉 ≡ |m〉 with fixed values for L,S, and
J , and m = −J, − J + 1, . . . ,J . We choose the quantization
axis z along the highest-order rotation axis, i.e., perpendicular
to the surface when atom on a surface is considered. Note
that for transition metals, the crystal field usually exceeds the
spin-orbit interaction leading to the partial or full quenching
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of the orbital momentum. Further, the atomic states can be a
complex mixture of several electronic configurations. Thus,
often an effective spin is used to describe the low energy part
of the atomic states [2,3]. In this case, care has to be taken
when analyzing magnetic stability.

As has already been reported [10,17,18], two inherent
symmetries of HCF play an important role for the properties
of the atom wave function: the rotational symmetry and the
time-inversion symmetry.

Time-inversion symmetry: The Hamiltonian HCF is due
to the electrostatic interactions and, thus, HCF has to commute
with the time-reversal operator T (see Refs. [17–19]). T is
antiunitary, i.e., for any states |a〉 and |b〉, 〈a|b〉 = 〈T b|T a〉. T
further anticommutes with all components of the total angular
momentum J , such that T J = −JT and T Ĵ± = −Ĵ∓T .
The angular momentum eigenstates transform according to
T |m〉 = (−1)m|−m〉, which implies T 2 = 1 for integer J

and T 2 = −1 for half-integer J (see, e.g., Refs. [19,20]).
Since HCF commutes with T , for any eigenstate |�〉 also
the time-reversed state T |�〉 is an eigenstate of HCF with
the same energy. As time reversal also changes the sign of
the expectation value of Ĵz of such a state, we conclude
that the states with nonzero 〈Ĵz〉 form degenerate pairs.1 If
singlet states exist, their 〈Ĵz〉 is zero, i.e., they are effectively
nonmagnetic and do not change under time reversal (modulo
a phase). Such states are only possible in systems with integer
J , as for half-integer J the spectrum consists exclusively of
Kramers’ doublets. Since we are interested in magnetization
tunneling, we only consider doublet states in the following.
Higher-order degeneracies are only possible with fine-tuning
the parameters of HCF, which we explicitly exclude.2 We note
that singlet states also usually come in pairs, as symmetric
and antisymmetric combinations of two magnetic states with
opposite 〈Ĵz〉, and additional energy terms might reverse singlet
formation. We will consider this case later in the section on the
influence of magnetic field.

Rotational symmetry: In Cq symmetry, the environment
of the magnetic atom is invariant under a rotation by 2π/q,
and so HCF also commutes with the rotation operator R2π/q

(see Refs. [17–19]). Therefore, we can choose the eigenstates
of the system to be eigenstates of both HCF and R2π/q . Such
eigenstates are superpositions of |m + nq〉 kets, as all such kets
acquire the same phase φ = 2πm/q under rotation.

In the following, we use the example of C5 symmetry
(Fig. 1), although it is not found on crystal surfaces. Five-
fold rotational symmetry does, however, occur in magnetic
molecules, and has recently attracted interest regarding mag-
netic stability [21,22]. Most importantly, it is the lowest
symmetry that demonstrates all the relevant effects. A more
practically minded reader can use Fig. 2 as a reference,
which also contains examples of all effects, spread over more
practically relevant systems. In the aforementioned figures, the

1As |�〉 and T |�〉 are in this case both eigenstates with the
same energy and different 〈Ĵz〉, we conclude that two orthogonal
eigenvectors can be constructed from them.

2The irreducible representations of Cn,Dn, and S2n point groups
have maximal order 2, so the highest possible degeneracy order is
a doublet, barring accidental degeneracy.

FIG. 1. Classes and transitions in fivefold rotation-symmetric
environments. (a), (c) Rotational classes for integer and half-integer
J , respectively. Each circle indicates a set of |m〉 acquiring the same
phase under rotation by 2π/5. Empty circles show classes protected
against first-order transitions. (b), (d) Transition matrix elements
between states belonging to particular doublets. Asterisks at certain J

values indicate that higher-order protection is valid only for coherent
electron scattering.

q rotation classes are visualized as points on a circle in the
complex plane [Figs. 1(a) and 1(b)]. The points represent the
phases φ gained by the application of the rotation operator. A
given eigenstate belongs to one and only one class.

Note that for states |a〉 and |b〉 belonging to different
classes, 〈a|Ĵz|b〉 is zero. This follows from the fact that
R2π/q and Ĵz commute. The same relation can be achieved
for two degenerate states from the same class by choosing
the corresponding eigenvector basis. This choice removes the
ambiguity in the definition of eigenstates and maximizes |〈Ĵz〉|
for each state,3 mimicking the interaction between the single
spin and the electron bath [23].

3We consider the 2 × 2 matrix representation of Ĵz in the doublet
space. Since Ĵz is a Hermitian operator, the off-diagonal matrix
elements o and o∗ are complex conjugate to each other and the
diagonal matrix elements have the same magnitude d but different
signs due to time inversion symmetry. The determinant of this matrix
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FIG. 2. Classes and transitions in two-, three-, four- and sixfold rotation-symmetric environments. Each circle indicates a set of |m〉 acquiring
the same phase under rotation by 2π/q. Empty circles show classes protected against first-order transitions. Half-empty circles indicate classes
protected only at low J . Asterisks at certain J values indicate that higher-order protection is valid only for coherent electron scattering.

Such a choice of eigenstates has one more important
consequence. Since an eigenstate |�〉 belongs to a particular
class and consists of a well-defined set of |m〉 basis states, its
time-reversed counterpart T |�〉 consists of |−m〉 basis states
and thus belongs to a class with a reversed sign of φ (which
might be the same class). On the class diagram [Fig. 1(a)], these
two classes are symmetric about the x axis. If the two classes
are different, |�〉 and T |�〉 are automatically orthogonal, and
thus T |�〉 must be the other state of the doublet up to a phase
factor. We can write for two states |�+〉 and |�−〉 belonging

is thus −d2 − |o|2 and its value cannot depend on the choice of basis.
Thus, for o = 0, d will reach its maximum.

to the same doublet T |�+〉 = eiχ |�−〉. The phase χ may be
different in every doublet.

III. MAGNETIZATION TUNNELING

In an isolated system, any eigenstate is indefinitely stable.
For atoms adsorbed on the surface, however, the magnetic
atom becomes an open quantum system via the interaction
with the substrate. The magnetization can become unstable
if we consider the interaction between the local 4f moment
and the bath electrons. The scattering of these electrons on
the atom within the J multiplet can be described by the
operator V [3,5,6,24,25]:

V = J · σ = Ĵzσ̂z + 1
2 (Ĵ+σ̂− + Ĵ−σ̂+), (2)
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acting in the product space of the atom and the scattering
electron (σ is the spin of the latter). We note that the standard
exchange coupling would include the magnetic atom’s spin
instead of the total angular momentum, but the Wigner-Eckart
theorem ensures that S can be written as J up to a proportion-
ality factor.

This interaction couples different eigenstates of the atom. A
system prepared in one of the two ground states can undergo a
complete magnetization reversal, i.e., electron-assisted magne-
tization tunneling to the other ground state. We can characterize
the stability of the system by the value of the matrix element
Vn = 〈�−

g |Vn|�+
g 〉, where �±

g are the two ground states of
the system (remember that we only consider cases where the
ground states belong to a doublet). Namely, if V1 is nonzero, a
single electron scattering event may reverse the magnetization
of the atom. The energy cost of this process is zero, so that
the switching will take place at arbitrary low temperatures and
would eventually lead to Kondo screening [26]. If V1 is zero,
one can consider higher-order matrix elements, corresponding
to interactions with several electrons.

Since V operates in a product space of the atom and the
interacting electrons, Vn are operators in the electron spin
space. The equality Vn = 0 is to be understood as every
component of it in the J space being equal to zero. Thus, we
will consider matrix elements of the form 〈�−

g |Ĵin . . . Ĵi1 |�+
g 〉,

with ik = x,y,z or, equivalently ik = +, − ,z. If all such
matrix elements are zero, Vn is a zero operator. Note that
such matrix elements describe coherent multi-electron inter-
actions, where the intermediate states are virtual states. This
is analogous to cotunneling [27]. Thus, this analysis describes
zero-energy transitions of the magnetic state of the atom. At
finite temperature, we additionally expect incoherent multi-
electron interactions, where intermediate states are thermally
populated, i.e., there is energy transfer between the atom
and the bath. This is in analogy to sequential tunneling.
In that case, the relevant matrix elements are of the form
〈�−

g |Ĵin |�in−1〉 . . . 〈�i2 |Ĵi2 |�i1〉〈�i1 |Ĵi1 |�+
g 〉, and a full solu-

tion requires solving the complete master equation [16,28].
As will be shown, the symmetries of the system lead to V1

being zero for particular classes, thus protecting the ground
state doublet from magnetization tunneling.

Protection by rotational symmetry: Let us consider a
ground state |�+

g 〉 from class 2πg/q and the state V|�+
g 〉.

The three components of V , namely Ĵz, Ĵ+, and Ĵ−, affect
the class of the state differently [see arrows in Figs. 1(a)
and 1(b)]. V|�+

g 〉 is a linear combination of eigenstates with
classes 2πg/q (from Ĵz|�+

g 〉), 2π (g + 1)/q (from Ĵ+|�+
g 〉),

and 2π (g − 1)/q (from Ĵ−|�+
g 〉). The other ground state |�−

g 〉
is from class −2πg/q. It is evident that V1 = 〈�−

g |V|�+
g 〉 will

be exactly zero unless −g is equal to either g or g ± 1. This
means that the matrix element will vanish when the start and
end classes are not neighbors on the circle in the complex plane,
or, equivalently, a single scattering event with a conduction
electron can only transfer ±1h̄. For example, consider a dou-
blet ±3π/5 from Fig. 1(c).V|� 3

5 π 〉 will only have components
from π/5,3π/5 and π , and so 〈�− 3

5 π |V|� 3
5 π 〉 = 0, as indi-

cated in the table in Fig. 1(d) by a zero on a blue background.
This is the protection mechanism reported in XMCD studies
for Ho atoms on MgO and for Dy atoms on graphene [11,13].

For higher-order electron scattering processes that can
transfer more than one h̄, the number of classes in Vn|�+

g 〉
increases and, at a certain order, depending on the separation
between the doublet classes, Vn ceases to be zero and zero-
energy transitions involving n electrons become allowed. A
prominent example of this is the ±4π/5 doublet in Fig. 1(a)
for J = 2. In general, for 2J + 1 � q, there are at least as
many classes as basis states and the states become eigenstates
of Ĵz. Thus, for J = 2, there is no direct path between 4π/5
and −4π/5 (i.e., Ĵ+|2〉 = 0). The shortest path in this case
contains four transitions between classes, and so V4 is the first
matrix element that is nonzero.

A similar situation is realized in the π doublet in Fig. 1(b)
for J = 5/2, as again the two ground states are just |5/2〉
and |−5/2〉, and at least five transitions are needed to switch
between the two states. Note that the two states in this doublet
remain eigenstates of Ĵz also for higher values of J , up to
11
2 . This means that every intermediate state Ĵin . . . Ĵi1 |�+

g 〉 is
also an eigenstate of Ĵz, and thus the first nonvanishing matrix
element is of the fifth order. We remind the reader that this
higher-order protection only holds for coherent processes. For
incoherent processes, the first interaction excites the atom from
the ground state | 5

2 〉 into any eigenstate containing | 3
2 〉, | 5

2 〉, or
| 7

2 〉. From there, a direct path to the other ground state, |− 5
2 〉,

might exist depending on the class. We have marked the cases
where this distinction matters by an asterisk at the appropriate
J values in Figs. 1 and 2.

Protection by time-inversion symmetry: Consider again
the two ground states of an atom with integer J . As shown
above, the two states are connected by time reversal T |�+

g 〉 =
eiχg |�−

g 〉. This also implies T |�−
g 〉 = T e−iχg T |�+

g 〉 =
eiχgT 2|�+

g 〉 = eiχg |�+
g 〉.

We now consider one component of V1, 〈�−
g |Ĵi |�+

g 〉, where
i = x,y, or z. Transforming such a matrix element we can
write

〈�−
g |Ĵi |�+

g 〉 = 〈T �+
g |eiχg Ĵi e−iχgT |�−

g 〉
ĴiT =−T Ĵi

= −〈T �+
g |T Ĵi |�−

g 〉
〈T α|T β〉=〈β|α〉

= −〈Ĵi�
−
g |�+

g 〉
〈OH α|β〉=〈α|OH β〉

= −〈�−
g |Ĵi |�+

g 〉. (3)

Thus, for integer J , any matrix element of the form
〈�−

g |Ĵi |�+
g 〉 is zero. E.g., the ±4π/5 doublet in Fig. 1(a)

for J > 2 is protected from first-order transitions. This is the
protection mechanism reported by Miyamachi et al. for Ho
atoms on Pt(111) [10].

For half-integer J the argument above does not apply.
Instead, time-reversal protection manifests itself in systems
where two ground states belong to the same class. These
remain magnetic and do not form singlets, since Kramers
theorem protects the doublet from mixing and splitting. For
those doublets, Ĵ+|�+

g 〉 and Ĵ−|�+
g 〉 both belong to a different

class than |�+
g 〉, so only 〈�−

g |Ĵz|�+
g 〉 might be nonzero. We

have, however, chosen eigenstates that maximize 〈Ĵz〉, setting
these matrix elements to zero. Thus, also in this case, V1
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vanishes. An example of such doublet is the π class in Fig. 1(c),
as indicated in the table Fig. 1(d) by a yellow background.
Note that protection by time reversal only holds for first-order
electron scattering for both integer and half-integer J systems.

In total, we have identified two different mechanisms that
can protect the ground state from zero-energy magnetization
flips up to a specific order of electron scattering. First, the
states can be protected by time-reversal symmetry [yellow
background in Figs. 1(c) and 1(d)]. Second, the states can
be protected by rotational symmetry [blue background in
Figs. 1(c) and 1(d)]. The two cases can coexist for certain
combinations [green background in Figs. 1(c) and 1(d)].

IV. INFLUENCE OF MAGNETIC FIELD

Let us now consider how a magnetic field B applied to the
system affects the protection mechanisms. Strictly speaking,
such a field lifts the degeneracy of the doublets, and so
transitions within the doublet cannot be excited elastically any
more. For finite temperatures, however, the substrate electrons
have enough thermal energy to flip the magnetization when
JB � kBT . Note that the magnetic field may induce other
zero-energy transitions, when two states become degenerate
due to the Zeeman energy. This is reflected by distinct steps
in the hysteresis loop due to Zener tunneling and has been
described in detail elsewhere [29].

In the following, we consider two different situations. First,
the external magnetic field is applied along the z direction.
Adding a term HZ = gJ ĴzBz to the Hamiltonian does not
change the rotational symmetry but breaks time reversal
symmetry. Thus we expect no changes to the classes of the
eigenstates, but they will be no longer connected by T .

For small fields, we can treat the Zeeman term as a
perturbation. The resulting perturbed ground states |	±

g 〉 can
then be written as

|	±
g 〉 = |�±

g 〉 +
∑

φ±
k =φ±

g

〈�±
k |HZ|�±

g 〉
Eg − Ek

|�±
k 〉 + O

(
B2

z

)
, (4)

where φ±
k = φ±

g reflects the fact that the matrix element for
the Zeeman term is only nonzero if �±

k is in the same class as
�±

g .4 As expected, the perturbed states are in the same class as
the unperturbed. Thus we only need to consider the breaking
of time-inversion symmetry, lifting that particular protection.
Indeed, if we consider the components of V1 for the new states,

〈	−
g |Ĵi |	+

g 〉 =������� = 0
〈�−

g |Ĵi |�+
g 〉

−
∑

φ−
k =φ−

g

〈�−
g |HZ|�−

k 〉
El

〈�−
k |Ĵi |�+

g 〉

−
∑

φ+
k =φ+

g

〈�+
k |HZ|�+

g 〉
Ek

〈�−
g |Ĵi |�+

k 〉 + O
(
B2

z

)
.

(5)

4Note that for half-integer J , the other half of the doublet is in the
same class and so Ek is zero for one of the summands. However,
HZ is diagonal within the doublet subspace and so this term can be
neglected.

Since �+
k and �−

k are connected by time reversal, we can
use the same reasoning as in Eq. (3) to show that

〈�±
a |HZ|�±

b 〉 = −ei(χa−χb)〈�∓
b |HZ|�∓

a 〉, (6)

〈�±
a |HZ|�∓

b 〉 = −(−1)2J ei(χa−χb)〈�±
b |HZ|�∓

a 〉, (7)

and to rewrite the first sum in terms of �+
k :

∑
φ−

k =φ−
g

〈�−
g |HZ|�−

k 〉
Ek

〈�−
k |Ĵi |�+

g 〉

= (−1)2J
∑

φ+
k =φ+

g

〈�+
k |HZ|�+

g 〉
Ek

〈�−
g |Ĵi |�+

k 〉. (8)

The resulting first-order correction to V1 is thus

[1 + (−1)2J ]
∑

φ+
k =φ+

g

〈�+
k |HZ|�+

g 〉
Ek

〈�−
g |Ĵi |�+

k 〉, (9)

and vanishes for half-integer J . Note that the second-order
terms are a product of three matrix elements, and the corre-
sponding term contains [1 − (−1)2J ], which does not vanish
for half-integer J in the general case. Therefore, V1 is pro-
portional to Bz for integer and to B2

z for half-integer J , as
noted in yellow boxes in Figs. 1 and 2. Thus, we expect an
increase of flipping rate of the magnetic moment proportional
to B2

z and B4
z for integer and half-integer spins, respectively.

This effect was reported in an STM study for Ho atoms on
Pt(111) [10]. Note that we can expect the same dependency
for any perturbation proportional to Ĵz. This includes, e.g.,
the diagonal part of the exchange interaction between two
nearby atoms 1 and 2 proportional to Ĵ (1)

z Ĵ (2)
z . Thus, the lifetime

of the magnetization is expected to drop for Ho on Pt(111)
when increasing the coverage of Ho adatoms. This is also in
agreement with numerical calculations by Hübner et al. [16],
where the magnetic field dependency of the matrix element
was computed for the case 〈Ĵz〉 = 8, q = 3.

For integer J , where the crystal field leads to the for-
mation of pairs of singlet states, the magnetic field plays
the opposite role. The Zeeman energy reverses the symmet-
ric/antisymmetric pairing due to the crystal field and partially
restores magnetic states. V1 is then inversely proportional to
Bz. For example, in the case of Ho with J = 8 and an m = ±8
ground state in fourfold symmetry, an application of magnetic
field results in magnetic states with long lifetimes [12]. This
reduces to the situation mentioned above, in which Zener
tunneling would induce a step in the hysteresis curve near
zero magnetic field. Again, the same effect would be observed
for any perturbation proportional to Ĵz. As shown elsewhere
[28], the coupling to the electron bath can also undo singlet
formation leading to a doublet of ground states with short
lifetimes.

In the second case, the field is applied perpendicular to z

(in-plane). Such a field breaks both symmetries and quenches
the magnetic moment along z. Only in the case that this
field is applied along a different high-symmetry direction
(e.g., an in-plane twofold rotation axis in D3) can we expect
some remnant magnetization. For the general case of a tilted
magnetic field, no simple statement can be made on the
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TABLE I. Electron-assisted magnetization tunneling in single 3+ rare-earth ions (a) under the assumption of ground states with maximum
〈Ĵz〉 and (b) for the most stable ground states. The numbers denote the smallest number of electron scattering processes needed for a transition
between the two ground states (lowest k such that V k �= 0). “-” denotes singlet ground states. Shaded cells indicate absence of first-order
magnetization tunneling.

(a) La Ce Pr Nd PmSm Eu Gd Tb Dy Ho Er TmYb

J 0 5
2

4 9
2

4 5
2

0 7
2

6 15
2

8 15
2

6 7
2

C2 - 1 - 1 - 1 - 1 - 1 - 1 - 1

C3 - 1 2 2 2 1 - 1 - 2 2 2 - 1

C4 - 1 - 1 - 1 - 1 - 1 - 1 - 1

C6 - 5 2 3 2 5 - 1 - 3 2 3 - 1

(b) La Ce Pr Nd PmSm Eu Gd Tb Dy Ho Er TmYb

J 0 5
2

4 9
2

4 5
2

0 7
2

6 15
2

8 15
2

6 7
2

C2 - 1 - 1 - 1 - 1 - 1 - 1 - 1

C3 - 3 2 2 2 3 - 3 2 2 2 2 2 3

C4 - 1 2 1 2 1 - 1 2 1 2 1 2 1

C6 - 5 2 3 2 5 - 3 2 3 2 3 2 3

power of the leading-order term and effects like crossover may
arise.

V. PRACTICAL SYMMETRIES

We can now apply the above analysis to systems of practical
value, i.e., in two-, three-, four- and sixfold symmetric envi-
ronments. The results, which are presented in detail in Fig. 2,
can be summarized as follows:

(1) For integer J

– if the two ground states belong to the same class, they
are nonmagnetic singlets,

– if the two ground states belong to different classes, at
least two electrons are needed for zero-energy magnetiza-
tion switch.
(2) For half-integer J

– in threefold (sixfold) symmetric environments for
the ground state containing |±3/2〉 at least two (three)
electrons are needed for zero-energy magnetization switch,
otherwise one electron provides for zero-energy magneti-
zation switch.

For systems with small J , higher-order stability can be ex-
pected. See Fig. 2 for details.

Finally, for the simple case of rare-earth atoms in the
oxidation state 3+ and a HCF giving ground states of max-
imal 〈Ĵz〉, i.e., the situation best suited for magnetic data
storage, we give a simple table that summarizes the findings
(Table I). We note that the best candidates for magnetically
stable systems are Sm and Ce in sixfold symmetric adsorption
sites.

VI. HIGHER SYMMETRIES

We now analyze the stability of degenerate doublets in other
axial symmetries with a q-fold rotation axis. We show that
these symmetries behave either like Cq or like C2q . In the
latter case, the stability is greatly enhanced—e.g., in a D5d -
symmetric environment there are ten classes, so that ground
states in a magnetic atom with integer J are protected up to
second order in most of the cases.

A. Cqv and Dq

Cqv adds a vertical mirror plane σv to Cq . The σv operator
anticommutes with Ĵz and does not commute with R2π/q :
σvR2π/q = R−2π/qσv . Thus, the eigenstates we chose will not

be eigenstates of σv , and their composition will be the same
as for Cq . Marciani et al. have shown that the presence of the
mirror plane introduces only a weak constraint on the switching
process [17].

Dq adds a twofold rotation axis perpendicular to the main
axis to Cq . The Rπ

x operator behaves exactly like σv with
respect to R2π/q and the components of J . Thus, again, the
stability in Dq will follow the same rules as in Cq .

B. Cqh and Dqh

The rules change in the environments with a horizontal
mirror plane σh. The σh operator commutes with Ĵz and
anticommutes with Ĵx , Ĵy , and Ĵ±. Thus |m〉 are eigenstates of
σh with eigenvalue sign alternating between neighboring m’s.
We can write σh|m〉 = (−1)J+m|m〉. σh also commutes with
R2π/q , and thus the eigenstates of HCF can be chosen to be
eigenstates of both R2π/q and σh. In fact, the eigenstates we
chose in Sec. II are already eigenstates of both operators. This is
easy to see in the case of doublets where the two states belong to
different classes, as there the choice is unique. For same-class
doublets, we note that they only exist for half-integer J and odd
q and are composed of kets withm = q(n + 1

2 ). If such a state is
an eigenstate of σh, then for every n it can contain either |m〉 or
|−m〉, but not both, since 〈−m|σh|−m〉 = (−1)2m〈m|σh|m〉 =
(−1)q〈m|σh|m〉 = −〈m|σh|m〉. It follows that for every n one
of the doublet’s states will contain |m〉, while the other |−m〉,
and so the matrix element of Ĵz between these states will be
zero, consistent with our choice from Sec. II.

Now every state is characterized by the rotational phase
φ and the eigenvalue of σh (±1). Note that for even q, all
the states with the same φ gain the same sign after reflection.
Thus for even q the number of classes does not change, and
the same analysis applies. For odd q, however, half of the
|m〉 kets gain one sign and the other half the other, splitting
every class in two. In this case, we can reclassify the states
according to a new phase φ2q = πm

q
, that would normally arise

in C2qv symmetry. The new classes combine states with a same
eigenvalues of R2π/q and σh and have the same properties we
have used before, namely:

(1) Ĵ± operators switch the class one step forward or
backward along the unit circle,

(2) Ĵz operator does not affect the class,
(3) T connects classes with opposite sign of φ2q .
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TABLE II. Similarity regarding magnetic stability between axial
point groups. An eigenstate in any of the listed groups behaves as it
would in the corresponding Cq or C2q group.

q Cqv Cqh Dq Dqh Dqd S2q

odd C2q C2q Cq CqCq Cqeven Cq Cq C2q C2q

Thus the stability rules in Cqh are the same as the stability
rules in Cq for even q and C2q for odd q. The Dqh behaves the
same way, since the additional Rπ

x symmetry does not have a
strong effect on stability.

C. Dqd and S2q

The S2q point group is generated by the rotation-reflection
operator Sπ/q = Rπ/qσh with Sπ/qSπ/q = R2π/q . Sπ/q com-
mutes with Ĵz and anticommutes with Ĵx , Ĵy , and Ĵ±.
Sπ/q |m〉 = (−1)J+meiπm/q |m〉. The choice of eigenstates as
eigenstates of both H and Sπ/q again maximizes 〈Ĵz〉 for
every doublet. We can thus use the phase φs = πm(1 + 1/q) to
classify the states. In the case of even q, we obtain 2q classes,
while, in the case of odd q, there are only q classes. Based on
this, we can reclassify the states again based either on φ2q or
φ, depending on the parity of q. As in the previous case, this
preserves the composition of classes and the action of Ĵz, Ĵ+,
Ĵ−, and T with respect to the unit circle of classes. It follows
that the stability rules in S2q are the same as the stability rules
in Cq for odd q and C2q for even q. The Dqd has additionally
a vertical mirror plane, which does not alter stability rules.

Table II summarizes the found relations of higher-order
symmetries to the behavior of the simpler Cq symmetry.

VII. MAGNETIC STABILITY OF Ho ATOMS

There have been several reports of stable and unstable single
rare-earth atom systems, mostly based on Holmium single
atoms. Here we review the results in the light of our stability
criteria.

Ho atoms on threefold symmetric adsorption sites on
Pt(111) have been investigated by STM [10] and XMCD
[11]. Donati et al. report a ground state with J = 8,m = ±6
(class 0), obtained by fitting XMCD spectra based on multiplet
calculations. In this configuration, there are two singlet states
that will mix in a high magnetic field, leading to a hysteresis-
free magnetization curve, as measured in the experiment. Ab
initio calculations from the paper by Miyamachi et al., on the
other hand, predict a ground state with J = 8,m = ±8 (classes
±2π/3). Such ground states are protected by time-reversal
symmetry, so we expect long lifetimes, unless a magnetic field
is applied. The STM experiments showed long lifetimes at zero
field that become shorter in small magnetic fields. The energy
of an inelastic excitation observed in the experiment also agrees
with the theoretically predicted J multiplet structure.

Interestingly, an ensemble of Ho atoms with time-reversal-
protected ground state doublet would also show no magnetic
hysteresis under the experimental conditions of the XMCD
measurements (T = 2.5 K, ≈ 10 s per point). At zero field, the
average magnetization of Ho atoms is zero, as the two stable

magnetization orientations are equally probable. The applica-
tion of a magnetic field along z splits the doublet, introducing a
preferential orientation, while at the same time increasing the
switching rate quadratically, leading to an overall increase in
average magnetization. At high fields, the two states split so far
that switching rate becomes negligible and the magnetization
saturates. As the magnetic field is reduced, the switching rate
increases and then decreases again for vanishing magnetic
field. Since the energy difference between the two states also
goes down to zero, we again expect equal population of the
ground states at zero field and no hysteresis. The stability
at vanishing magnetic fields would be also influenced by
the distance between Ho atoms due to exchange or dipolar
interactions. As has been shown above, any operator linear in
J acts like a magnetic field. Note that the STM experiments
have been carried out at extremely low coverage [10], while
the XMCD data was taken at a coverage of 0.04% [11].

Thus the STM and the XMCD results agree on the absence
of hysteresis, but disagree on the multiplet structure. The
question about the configuration of the crystal field and
the ground state of this system remains open. Shick et al.
[30] have proposed that the crystal field parameters and thus
〈Ĵz〉 of the ground state changes with magnetic field, due to
an interaction between 5d and 4f orbitals, such that in low
magnetic fields one expects 〈Ĵz〉 ≈ 8, and in high magnetic
fields 〈Ĵz〉 ≈ 6.

Similar to Ho on Pt(111), STM experiments [12] and
XMCD experiments [15] on Ho atoms in fourfold symmet-
ric adsorption sites on MgO fundamentally disagree on the
class of the ground state. The ground state deduced from
XMCD spectra is the class ±π/2 doublet (〈Ĵz〉 = 4.66). It
is protected from switching by rotation symmetry and so the
magnetization curves show a hysteresis. The estimated crystal
field parameters predict the first excited state 4.5 meV higher
than the ground state. At the same time, the STM experiments
report the first excited state at 73 meV above the ground state.
Natterer et al. estimate m = ±8 (class 0) from the Ho magnetic
moment. This ground state should be nonmagnetic, but as the
experiments are done in a mostly in-plane magnetic field, the
two singlet states would mix and acquire a magnetic moment.
Transitions between such mixed states are, in general, allowed,
but the actual transition probability depends on the strength of
the crystal field. In the STM setup, the magnetic state was stable
for several hours, likely indicating weak transversal anisotropy
and, as expected, weak interaction with the electron bath. We
would expect little or no hysteresis in this system, as at zero
field the magnetic states should lose their magnetization.

As in the previous case, the origin of the disagreement
between STM and XMCD data on the energy spectrum in Ho
on MgO remains open and needs further investigation. Possible
explanations such as different MgO thickness and averaging
over several adsorption sites in the XMCD experiment can only
partially explain the discrepancies.

VIII. COMPARISON TO OTHER THEORETICAL RESULTS

A. M. Marciani et al. (2017)

The paper by Marciani et al. [17] uses an approach very
similar to ours. However, we disagree with several points of the
analysis. First, in the case of q = 3, Marciani et al. write that for
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J = 9/2 the ground state is not stable, based on their analysis of
the structure of the Hamiltonian. This is not confirmed by a di-
rect construction of an appropriate Hamiltonian and calculation
of the transition rates. The relevant block of the Hamiltonian
in the basis |− 9

2 〉,|− 3
2 〉,| 3

2 〉,| 9
2 〉 has a general form:

⎡
⎢⎣

2d a b 0
ā 0 0 b

b̄ 0 0 −a

0 b̄ −ā 2d

⎤
⎥⎦,

plus a constant term, and can be diagonalized analytically.
The eigenstates with maximal 〈Ĵz〉 within every doublet are
not connected by either Ĵ+, Ĵ−, or Ĵz. Thus first-order electron
transitions are forbidden between these states.

Second, Marciani et al. assume large uniaxial anisotropy,
such that 〈Ĵz〉 of the ground state is very close to J . For the case
where the ground state has a smaller 〈Ĵz〉, they propose using
a smaller Jeff ≈ 〈Ĵz〉 for analysis of the ground state stability.
This, however, might lead to wrong conclusions if 2J � q

while 2Jeff < q, as the latter suggests stable states. Consider,
for example, J = 7

2 in C6, and two doublets from the φ = ± 5
6π

class pair, one with 〈Ĵz〉 ≈ 7
2 and the other with 〈Ĵz〉 ≈ 5

2 . Both
are unstable, as they contain states from neighboring classes.
However, if the second doublet has lower energy, Marciani
et al. suggest using Jeff = 5

2 to determine the stability. But in
a system with J = 5

2 , the eigenstates of HCF are eigenstates of
Ĵz, and the doublet 〈Ĵz〉 = 5

2 is stable up to fourth order. Using
this conclusion for the 〈Ĵz〉 ≈ 5

2 doublet in J = 7
2 system is

definitely unwarranted.
To avoid such mistakes, one could amend the definition of

Jeff to include the class of the doublet in question instead of its
〈Ĵz〉. That is, one should choose Jeff equal to the highest m that
belongs to the same class. For the example above, that would
be m = 7

2 for both doublets, and thus the same conclusion on
stability will be reached. One should keep in mind, however,
that such a definition would only work for single-electron
processes, as higher-order stability also depends on the
neighboring classes. As an example, consider the ± 2

3π

doublet for J = 2 and 3 in C6. Jeff is equal to 2 for both
cases, but, for J = 3, second-order transitions are possible at
nonzero temperature, while for J = 2 they are forbidden.

B. M. Prada (2017)

The paper by M. Prada [18] classifies single atom systems
by introducing a geometric phase as a phase difference be-
tween two equivalent paths connecting the two ground states.
However, this phase was introduced based on the equality
T R2π/q = R−2π/qT , which, due to commutativity [17,19,20]
ofT andR2π/q only holds for q = 2. The operatorsT + andT −
are thus not equivalent to T , as the paper claims, but toR4π/qT
and R−4π/qT , and the proposed phase is essentially double
the eigenvalue of R2π/q for the state. This has repercussions
throughout the paper, as, for example, T + and T − do not
anticommute with Ĵx or Ĵy , and thus Eq. (15) in Ref. [18] de-
rived under the assumption T + J = −JT + becomes invalid.
Through these mistakes, the final classification scheme [18]
gives wrong results in almost one half of the cases: for half-
integer J all doublets in three-, four- and sixfold symmetric

environments are listed as protected. A direct calculation shows
that this is untrue. For example, let us consider the case of
J = 7

2 in C3v and ground states from the φ = ±π
3 class pair.

The two relevant blocks of the Hamiltonian in |− 7
2 〉,|− 1

2 〉,| 5
2 〉

and |− 5
2 〉,| 1

2 〉,| 7
2 〉 bases have a general form:

⎡
⎣

e1 a c

ā e2 b

c̄ b̄ e3

⎤
⎦ and

⎡
⎣

e3 −b c

−b̄ e2 −a

c̄ −ā e1

⎤
⎦.

We could now calculate the V1 analytically, but since it is
enough to show that V1 is not zero for specific values of the
constants, we choose to calculate matrix elements 〈	−

g |Ĵ±|	+
g 〉

numerically for e1 = −1, e2 = 0, e3 = −0.5, a = b = 0.01,
c = 0.0001. These values satisfy the criteria of 〈Ĵz〉 ≈ J , out-
of-plane easy axis and small transversal terms. We get a ground
state energy of approximately −1.0001 and 〈	−

g |Ĵ−|	+
g 〉 =

0.0004, 〈	−
g |Ĵ+|	+

g 〉 = 0.
Based on our analysis of the problem, we believe that it

is impossible to classify all the possible systems based on
a single number. However, if we ignore the complications
arising at small J and in magnetic field, and focus on first-
order interactions, it becomes possible. First, we note that
for integer J everything except single states is protected,
and single states gain a phase φg = 0 or π under rotation
by R2π/q . Thus we write that the doublet is stable unless
cos2 φg = 1. For half-integer J the doublet is stable, unless
the two states belong to neighboring classes. This we write
as cos2 φg = cos2 π

q
. We combine the two cases and introduce

a number η = cos2 φg − cos2 (πJ ) − cos2 π
q

sin2 (πJ ). Now
given an eigenstate that belongs to a rotation class with phase
φg , we conclude that this state belongs to a magnetic doublet,
protected in first order against magnetization tunneling, unless
η = 0.

To additionally check the correctness of our results, numer-
ical calculations have been performed for q = 2,3,4,5, and 6
and J up to 12 using Hamiltonians based on Stevens operators
[31]. The corresponding PYTHON code is made available on
Github [32].

IX. CONCLUSIONS

We have analyzed the stability of magnetization in arbitrary
doublets in two-, three-, four- and sixfold symmetric adsorption
sites. We show that, depending on the symmetry, the value
of J and the ground state doublet, different-order processes
are needed for a zero-energy magnetization switch. The most
stable doublet requires a fifth-order scattering process to switch
(C6 : J = 5/2,m = 5/2).

In real-life systems, the protection will not be absolute.
Presence of magnetic fields (particularly in-plane) and Jahn-
Teller distortion can break the symmetries that protect the
magnetization. Further, at T > 0 K, phonons can also induce
transitions as they distort the lattice, temporarily inducing
mixing of the states. This breaks both protection mechanisms.
Similarly, the hyperfine interaction may lead to additional
constraints on magnetization tunneling that depend on mag-
netic field. However, in the limit of low fields and a thermal
population of the nuclear spin states, the nuclear spins may
be treated as a simple heat bath in analogy to the electron
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heat bath. When taking the lowest-order interaction of the
electronic total angular momentum J with the nuclear spin
I of the form AI J , the selection rules are identical to electron
scattering not qualitatively changing magnetic stability. Only,
if simultaneous spin flips of a conduction electron and a nuclear
spin are considered, the rules for elastic magnetization reversal
change and stability can only be sustained for protection of
at least second order. The difference between a theoretically
stable and theoretically unstable system can, however, make a
decisive difference in the lifetime of the magnetic state.

The considerations above would limit the lifetime of any
system. Magnetic stability cannot be achieved over arbitrary
times. For applications of single atoms on surfaces for quantum

information processing, additionally the decoherence time
T2 is of importance. A functioning device must operate on
the quantum states faster than the decoherence time and the
magnetization lifetime. We note that maximally stable states
(long lifetimes) are also maximally classical. If one prepares a
superposition of the two ground states, e.g., 1√

2
(|�+

g 〉 + |�−
g 〉),

it only takes the elastic interaction with a single electron of the
bath to completely dephase the superposition.
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