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Effect of applied orthorhombic lattice distortion on the antiferromagnetic phase of CeAuSb2
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We study the response of the antiferromagnetism of CeAuSb2 to orthorhombic lattice distortion applied through
in-plane uniaxial pressure. The response to pressure applied along a 〈110〉 lattice direction shows a first-order
transition at zero pressure, which shows that the magnetic order spontaneously lifts the (110)/(11̄0) symmetry
of the unstressed lattice. Sufficient 〈100〉 pressure appears to rotate the principal axes of the order from 〈110〉 to
〈100〉. At low 〈100〉 pressure, the transition at TN is weakly first order; however, it becomes continuous above a
threshold 〈100〉 pressure. We discuss the possibility that this behavior is driven by order parameter fluctuations,
with the restoration of a continuous transition being a result of reducing the point-group symmetry of the lattice.
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I. INTRODUCTION

Transitions in condensed-matter systems are defined by
their broken symmetries. Electronic orders can sometimes lift
the point-group symmetry of their host lattices, for example,
twofold rotationally symmetric order on a tetragonal lattice.
This is an intriguing possibility in part because fluctuations can
have nontrivial effects on such transitions [1]. Condensation
of a particular order can also obscure strong subleading
susceptibilities to alternative orders, which one wants to know
about to construct a good theory of the processes driving phase
formation [2]. As we present in this article, uniaxial pressure
can be used to probe both of these possibilities.

We study the heavy-fermion antiferromagnet CeAuSb2, a
layered, tetragonal compound with Néel temperature TN =
6.5 K [3,4]. We found in-plane uniaxial pressure to have
a strong effect on the magnetic transition, in ways more
pertinent to general questions of how magnetic order and lattice
symmetry interact than specifically to heavy-fermion physics.
An important aspect of our work is that the pressure is applied
using piezoelectric actuators, allowing in situ tunability. For
example, upon ramping the pressure at constant temperature
a first-order transition, with hysteresis, is observed at zero
pressure. This transition’s existence proves that the magnetic
order lifts the point-group symmetry of the lattice. We also
probe a long-standing prediction that a transition driven first-
order by fluctuations should become continuous when uniaxial
pressure selects a preferred direction [5,6], with much higher
resolution than before. Finally, there is no requirement to apply
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high pressures at room temperature, where samples are more
susceptible to plastic deformation than at low temperature.

All measurements here were done in zero magnetic field.
Our samples were grown by a self-flux method [7,8] and have
residual resistivity ratios (RRRs) R(300 K)/R(1.5 K) between
6 and 9. A shoulder in the resistivity ρ(T ) of CeAuSb2 marks
the Kondo temperature, TK ∼ 14 K [9]. Therefore, at TN the
cerium moments should be incorporated into the Fermi sea,
and there is thermodynamic evidence that they are: The heat
capacity has a Fermi liquid form (i.e., proportional to T )
between TN and ∼10 K, and below TN shows good entropy
balance with a Fermi liquid [10]. Recent neutron scattering data
suggest that the magnetic order itself is itinerant [11]: It was
found to be an incommensurate spin-density wave polarized
along the c axis, meaning that the polarization must vary from
site to site, which is not generally expected for local-moment
order. The propagation vector is (η,η,1/2), with η varying
between 0.130 and 0.136 depending on field and field history.

Our apparatus is described in Ref. [12]. Briefly, samples are
prepared as beams with high length-to-thickness and length-
to-width aspect ratios, and their ends are held in the apparatus
with epoxy, allowing application of both compressive and
tensile stresses along their length. A photograph of a mounted
sample is shown in Fig. 1(a). The sample is under conditions
of uniaxial stress: The stress is nonzero along the long axis
of the sample and zero along transverse directions. However,
because the apparatus has a high spring constant relative to
that of typical samples, the applied displacement is the more
directly controlled variable than the applied force. For samples
such as CeAuSb2, whose elastic moduli have not been reported,
we may estimate the applied strain but do not know the stress.
The displacement applied to the sample and sample-mounting
epoxy is measured with a capacitive displacement sensor, and
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FIG. 1. Results for 〈110〉 pressure. (a) Photograph of a mounted
sample. (b) Resistivity ρ110(T ) along a 〈110〉 lattice direction at
various fixed strains ε110. (c) Néel temperature TN (ε110), identified
at each strain as the maximum in dρ110/dT . (d) ρ110(ε110) at various
fixed temperatures. Arrows indicate the direction of the strain ramp.
In (b)–(d), ε110 = 0 is set to the location of the cusps in TN (ε110), seen
in (c).

the strain in the sample is estimated as this displacement times
0.8 divided by the exposed length of the sample. The factor
of 0.8 is an estimate for the effects of elastic deformation of
the epoxy, which allows some relaxation of the sample strain
[12,13].

We measure the resistivity, which is strongly affected by
the magnetic order [3,4], along the length of the samples. The
strain-induced change in sample resistance has a geometric
contribution due to the applied change in sample dimensions,
typically of magnitude �R/R ∼ 2ε, where �R is the change
in resistance and ε is the applied strain [14]. We find R to vary
much more strongly with strain than this and so neglect this
geometric effect in all plots and analysis below.

II. RESULTS: 〈110〉 PRESSURE

Five samples were measured under pressure, three cut
along a 〈100〉 lattice direction (that is, along the Ce-Ce bond
direction) and two along a 〈110〉 direction. Results for 〈110〉
pressure (inducing longitudinal strain ε110) are presented in
Figs. 1(b) through 1(d). Figure 1(b) shows resistivity versus
temperature at various applied strains. The Néel transition is
clearly seen in each curve, and an immediately apparent result
is that the quantitative effect of 〈110〉 pressure on TN is small:
Compression by 0.6% shifts TN by only ∼0.1 K.

However, when TN is plotted against ε110, in Fig. 1(c), a
sharp cusp in TN (ε110) becomes apparent. If the cusp is at
ε110 = 0, it indicates a two-component order parameter, in
which each component lifts the (110)/(11̄0) symmetry of the
lattice. Under this hypothesis, 〈110〉 pressure favors one of
these components, and the favored component switches when
the sign of the pressure changes, yielding the sharp change
in slope dTN/dε110. It is a reasonable hypothesis that the
cusp marks ε110 = 0. First, the strain applied to reach the
cusp, ∼0.1%, is compatible with plausible differential thermal
contractions between the sample and apparatus frame (which is
made of titanium). Second, samples fractured when tensioned
by more than ∼0.2% beyond the cusp, so at that point they
were definitely under tension.

If the two components coexist microscopically over some
strain range, strain ramps below TN should show two transi-
tions, corresponding separately to the onset of one and the
disappearance of the other component [15]. If they do not
coexist, the ordered state spontaneously lifts the (110)/(11̄0)
symmetry of the lattice, and a first-order transition, correspond-
ing to reversal of the sign of the symmetry breaking, is expected
at ε110 = 0. Our results, shown in Fig. 1(d), show a first-order
transition: ρ(ε110) changes in a steplike manner, and there is
clear hysteresis. Within our resolution, it extends up to TN . The
neutron data also point to spontaneous symmetry breaking:
the observed scattering peaks correspond to incommensu-
rate spin-density-wave propagation vectors q = (η,η,1/2) and
(η,−η,1/2), and the absence of peaks corresponding to mixing
of these components indicates that they exist in separate
domains [11]. Therefore, we conclude firmly that the magnetic
order spontaneously lifts the (110)/(11̄0) symmetry of the
lattice and assign the location of the cusp as ε110 = 0.

The cusp in TN (ε110) is not symmetric: |dTN/dε110| is
smaller on the compressive than on the tension side of the cusp.
This is not surprising: Uniaxial pressure applies not only an
in-plane orthorhombicity, i.e., a nonzero ε110 − ε11̄0, but also
changes to unit-cell volume and c-axis lattice parameter. Cou-
pling to the latter two variables will introduce such asymmetry.

Another feature apparent in the data above, also noted in
Ref. [9] and which will be important in discussing results of
〈100〉 pressure, is that the transition at TN appears to be weakly
first order. Although we did not resolve hysteresis between
increasing- and decreasing-temperature ramps, there is a clear
step in ρ(ε110) at TN . For further evidence, the heat capacity of
an unstrained crystal was measured, with the results shown in
Fig. 2. The sharp peak in heat capacity at TN strongly suggests
a first-order transition.

III. RESULTS: 〈100〉 PRESSURE

We now turn to results from 〈100〉 pressure. As described
in the Introduction, there is strong evidence that the magnetic
order of CeAuSb2 is an itinerant order, with the Ce magnetic
moments incorporated into the Fermi sea through the Kondo
effect at a temperature well above TN . The Kondo temperature
of CeAuSb2 has been shown to be tunable with hydrostatic
pressure [9]: It increases by a factor of ∼2 under 2 GPa.

We find that uniaxial pressure has a much smaller effect
on the Kondo temperature. In Fig. 3 we show the longitudinal
resistivity of a sample cut along a 〈100〉 crystal direction at a
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FIG. 2. Heat capacity of an unpressurized crystal of CeAuSb2,
with a mass of 2.2 mg. The sharp peak is consistent with a first-order
transition.

few applied strains ε100. The shoulder at ∼14 K indicates the
Kondo temperature and is at constant temperature to within 1 K
over the range of strains studied. Similarly,TK of CeRu2Si2 was
also found to have a very weak dependence on in-plane uniaxial
pressure [16]. Therefore, over the range of 〈100〉 strains studied
in this paper, we may safely assume that TK remains well above
TN and that we are probing an itinerant magnetic order.

ρ(T ) at various applied strains for one sample is shown
in Fig. 4. To make more clear the first-order-like nature of
the transition at low strains, the derivative dρ/dT is plotted
in the lower panel. In the response to 〈100〉 pressure there is
no obvious feature that might be identified with zero strain,
so we take zero strain to be at the same applied displacement
where the cusp in TN (ε110) was observed. Variability in the
precise mounting conditions achieved will introduce an error
of ∼0.1% on this determination.

Strains |ε100| < 0.25% do not strongly affect the transition;
over this range, compression weakly suppresses TN and possi-
bly reduces the size of the first-order-like jump in ρ. However,
at higher compression, ε100 < −0.25%, the first-order jump
disappears, and the transition splits into two features. The upper
feature is a downturn in the slope dρ/dT , and the lower feature
is a further downturn; we label their temperatures T2 and T1.
We hypothesize that an equivalent splitting would occur under
tensile strain; in the data in Fig. 4, the first-order jump also
shrinks somewhat under tensile pressure. However, attempts
to reach this hypothesized splitting in samples 1 and 2 resulted
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FIG. 4. Results from 〈100〉 pressure. (a) Resistivity ρ100(T ) along
a 〈100〉 lattice direction at various fixed strains ε100 and (b) the
corresponding derivatives dρ100/dT . The temperature T1 is identified
as the peak in dρ/dT , and T2 is identified as the step in dρ/dT .

in both samples fracturing. The samples broke at a sufficiently
low strain, ε100 ∼ +0.25%, that an essentially symmetric strain
response is not ruled out.

In Fig. 5 we plot ρ100 against ε100 at fixed temperatures. The
feature at T2 is visible as a change in slope dρ/dε in the 7.0
to 8.5 K curves. We assign this feature to be a second-order
transition: The slopes dρ/dε and dρ/dT both change, but no
first-order steps in ρ are apparent.

The feature at T1 is visible in, for example, the 6.0 K curve as
a peak in ρ100 at ε100 ∼ −0.3%. As the temperature is reduced,
it moves towards higher compressions and changes from a peak
into a steplike feature. It is suppressed to below 2 K at ε100 ∼
−0.5%. The steplike form at lower temperatures suggests
a first-order transition. For further evidence we performed
strain ramps at constant temperature, with the results shown in
Fig. 5(b). Small hysteresis loops are resolvable at temperatures
below ∼4 K.

We also probe the transverse resistance by running current
and measuring voltage across the width of the sample, as
illustrated in Fig. 5(c). In this configuration the current flow is
not homogeneous, so we do not attempt to extract a quantita-
tively precise transverse resistivity. However, the data reveal,
as shown in Fig. 5(c), that the transverse resistivity changes
opposite to the longitudinal resistivity across the transition at
ε100 ≈ −0.5%. Also, the transverse resistivity changes in a
sharp, first-order step. We show in Fig. 6 the transverse resis-
tivity at 1.5 K measured in increasing- and decreasing-strain
ramps, which reveal observable hysteresis: It is a first-order
transition. Generically, the change in longitudinal resistivity
should be as sharp as the change in transverse resistivity,
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FIG. 5. (a) ρ100(ε100) at fixed temperatures on a 0.5 K interval. The
data were collected in temperature ramps. (b) Change in resistance
�R100/R100(ε100 = 0) during increasing- and decreasing-strain ramps
at fixed temperatures. There is hysteresis below ∼4 K. (c) For a
qualitative measure of the transverse resistivity ρ010, current was
applied across the width of one sample, as indicated in the diagram
of the contact configuration. The resulting voltage across the sample
V010 is plotted, along with the longitudinal resistance.

and a possible reason that in the data it is not is that the
transverse configuration probes, effectively, a smaller volume
of the sample.

The first-order transition does not appear to extend up to TN .
The hysteresis disappears, and the form of ρ(ε100) changes
from steplike to peaked at T ∼ 3.5 K. The peaked form of
ρ(ε100) at higher temperatures may be a result of critical
fluctuations above the end point of the first-order transition.
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FIG. 6. Transverse response of the sample across the transition
at ε100 ≈ −0.5%, from increasing- and decreasing-strain ramps. The
hysteresis shows that the transition is first-order.
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[see Fig. 4(b)] and at lower temperatures as the approximate midpoint
of the step in ρ(ε100) [see Fig. 5(a)]. The in-plane propagation vector
is (η, ± η) for phase A, and we propose that it is (η2,0) or (0,η2) for
phase B.

IV. DISCUSSION AND CONCLUSION

As explained above, we conclude, in agreement with neu-
tron data [11], that the magnetic order of unstressed CeAuSb2

spontaneously lifts the (110)/(11̄0) symmetry of the lattice.
The V-shaped form of TN (ε110) indicates two anisotropic order
parameter components, with 〈110〉 principal axes, and the
first-order transition across ε110 shows that they do not coexist
microscopically. We note that Sr3Ru2O7 provides an alterna-
tive example of anisotropic order parameter components, and
in that material they do coexist microscopically over a nonzero
range of applied lattice orthorhombicity [15].

However, although the spontaneous symmetry breaking is
with 〈110〉 principal axes, 〈100〉 pressure has a quantitatively
much stronger effect than 〈110〉 pressure. We summarize our
〈100〉 pressure data with the phase diagram in Fig. 7. It
appears very likely that strong 〈100〉 pressure changes the
principal axes of the order from 〈110〉 to 〈100〉, in other words
that unstressed CeAuSb2 has a subleading susceptibility to a
〈100〉 order which becomes dominant with sufficient applied
(100)/(010) orthorhombicity. The simplest example to imagine
is that the in-plane propagation vector of the spin-density wave
rotates from (η, ± η) to (η2,0) or (0,η2), with η2 in general
not equal to η. The first piece of evidence for rotation of the
principal axes is the first-order transition at ε100 ≈ −0.5%:
Electronic orders generally pin to high-symmetry directions of
the host lattice, so rotation between 〈110〉 and 〈100〉 principal
axes should, in general, be discontinuous. The second is the
strong linear dependence of the transition temperature T2

on 〈100〉 pressure, in other words on applied (100)/(010)
orthorhombicity. In principle, the linear dependence could
also be due to coupling to unit-cell volume and/or inter-
plane spacing, parameters that also vary linearly with applied
〈100〉 pressure. However, unless the mechanical properties of
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CeAuSb2 are extraordinarily anisotropic, 〈110〉 pressure will
yield changes similar to these parameters, and yet it has much
less effect on the magnetic transition.

In the density functional theory calculations reported in
Ref. [11], nesting vectors parallel to 〈100〉 directions as well
as 〈110〉 directions were found, so CeAuSb2 may well have a
strong subleading susceptibility to a 〈100〉 spin-density wave.
A more complicated textured order such as the field-induced
“woven” order proposed in Ref. [11], which has 〈100〉 principal
axes, is also, in principle, a possibility; however, this order was
proposed as a way to accommodate both strong nesting and
strong field-induced polarization, and at zero field a straight-
forward spin-density wave seems generically more likely.

The phase diagrams against 〈100〉 and 〈110〉 pressure are
our main results. In the remainder of this paper we discuss
a different topic, the possibility that the Néel transition, for
|ε100| < 0.25%, is driven first-order by competing fluctuations
and that uniaxial pressure restores a continuous transition by
selecting a preferred direction and eliminating the competition.

We can rule out an alternative explanation for the first-
order transition, strong magnetoelastic coupling. If the gain in
magnetic condensation energy from a given lattice distortion
exceeds its elastic energy cost, then the transition becomes
first order [17]. The strain dependence of TN may be written
as TN = TN,0(1 + βε), with β being a coupling constant and
ε being a strain associated with the mode of deformation most
strongly favoring the ordered phase. The heat capacity of a
material is C = −T ∂2F

∂T 2 , where F is the free energy. For T close
to and below a second-order transition at TN , this expression
may be integrated:

�F = �C

2TN

(TN − T )2,

where �C and �F are the change in heat capacity and free
energy due to the magnetic order. �C, from the data in
Fig. 2, is ∼1 × 105 J/m3 K. The elastic energy cost of lattice
deformation is �F = (E/2)ε2, where E is the elastic modulus
associated with strain ε. The elastic compliance drives the
transition first-order if the gain in condensation energy exceeds
the elastic energy cost, i.e., if E − �CTN,0β

2 < 0.
Although the elastic moduli of CeAuSb2 have not been

measured, we may take E ∼ 100 GPa, a typical Young’s
modulus for metals, as an order-of-magnitude estimate. There-
fore, a first-order transition is expected if β exceeds ∼400.
With uniaxial pressure, dTN/dε is not nearly so large: The
steepest ε → 0 strain dependence is obtained with tensile
〈110〉 pressure, for which |dTN/dε| ≈ 94 K, yielding β ≈ 14.
We also tested the effect of biaxial pressure, by epoxying
thin samples of CeAuSb2 to titanium and aluminum plates
and using the differential thermal contraction to apply biaxial
pressure. The differential thermal contraction between these
materials between room temperature and T → 0 is 0.25%, and
the observed difference in TN was 0.04 K, yielding β ∼ 2.5.
This measured value of β might be suppressed by plastic defor-
mation of the epoxy during the initial stages of the cooldown,
which would relax some of the thermal stress; however, it is
orders of magnitude too low to drive a first-order transition.

Instead, we propose that the transition is driven first-order
by fluctuations. The magnetic order in CeAuSb2 persists even
if the RRR is below 3 [3], indicating a robust order with a short

range of interaction, which favors stronger fluctuation effects
[18,19]. Competition between fluctuations in the disordered
state can drive a transition first-order; in theoretical studies of
magnetic helices in MnSi [20], density wave order in layered
cuprates [21,22], and general multicomponent orders [5], a
continuous transition is predicted when all possible compo-
nents of the order can condense simultaneously. However,
there is competition in CeAuSb2, where condensation of, e.g.,
(η,η,1/2) prevents condensation of (η,−η,1/2) order. Reference
[5] provides a more precise criterion for fluctuation-driven
first-order transitions. Ordered phases were studied with a
fourth-order, multicomponent Ginzburg-Landau Hamiltonian,
in which the strength of competition between the components
is set by the coefficients of the biquadratic terms [Eq. (2.1) of
that paper]. The Hamiltonian was constructed so that either one
or all of the components could condense: The coefficients of the
biquadratic terms were set equal, and if this coefficient is below
a threshold, then the components may coexist in mean-field
theory, and if it is above that threshold, condensation of one
precludes condensation of all others. It was found that if the
number of components n is � 4, a first-order transition is
expected as soon as the biquadratic coefficient exceeds this
threshold, i.e., as soon as only one component condenses in
mean-field theory. (For n < 4, stronger competition is required
to get a first-order transition.) n is at least 4 in CeAuSb2: There
are two possible density-wave orientations, and because they
are incommensurate, there are phase and amplitude degrees of
freedom for each.

Restoring a continuous transition is predicted to require
symmetry-breaking fields exceeding a noninfinitesimal thresh-
old strength [5,6,21]. The clearest experimental demonstration
is on the antiferromagnetic transition of MnO. It is first order
but becomes continuous under uniaxial stress [23], a result
explained through the effect of reduced point-group symmetry
on fluctuations [24,25]. However, this demonstration is over
40 years old, and the present piezoelectric-based pressure
apparatus offers much better resolution. In CeAuSb2, 〈100〉
pressure appears to restore a continuous transition by rotating
the principal axes to 〈100〉 and selecting a preferred direction
between (100) and (010). Strong 〈110〉 pressure should also
restore a continuous transition by selecting between the (110)
and (11̄0) directions; however, the weak coupling between the
electronic system and 〈110〉 lattice deformation means that this
may occur at a pressure beyond what we were able to apply.
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