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Spin-wave stiffness in the Dzyaloshinskii-Moriya helimagnets Mn1−xFexSi
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The small-angle neutron scattering is used to measure the spin-wave stiffness in the field-polarized state
of the Dzyaloshinskii-Moriya helimagnets Mn1−xFexSi with x = 0.03, 0.06, 0.09, and 0.10. The Mn1−xFexSi
compounds are helically ordered below Tc and show a helical fluctuation regime above Tc in a wide range up
to TDM. The critical temperatures Tc and TDM decrease with x and tend to 0 at x = 0.11 and 0.17, respectively.
We have found that the spin-wave stiffness A change weakly with temperature for each individual Fe-doped
compound. On the other hand, the spin-wave stiffness A decreases with x duplicating the TDM dependence on x,
rather than Tc(x). These findings classify the thermal phase transition in all Mn1−xFexSi compounds as an abrupt
change in the spin state caused, most probably, by the features of an electronic band structure. Moreover, the
criticality in these compounds is not related to the value of the ferromagnetic interaction but demonstrates the
remarkable role of the Dzyaloshinskii-Moriya interaction as a factor destabilizing the magnetic order.

DOI: 10.1103/PhysRevB.97.024409

I. INTRODUCTION

The energy landscape of the magnetic systems determines
both the resultant magnetic structure and magnetic excitations.
This is clearly demonstrated for the cubic B20-type compounds
with the Dzyaloshinskii-Moryia (DM) interaction. The com-
petition between the ferromagnetic exchange interaction and
the antisymmetric DM interaction leads to the appearance of
the homochiral helical magnetic structure [1,2]. Moreover the
magnetic field-temperature (H -T ) phase diagram replicates
itself in all these compounds showing transitions first from
the plain spiral to the conical state and then to the fully
polarized state upon enhancement of the field. Another feature
of the (H -T ) phase diagram is the appearance of a skyrmion
lattice in the narrow range of the magnetic fields close to the
critical temperature Tc. The skyrmion lattice and its position
in the (H -T ) phase diagram may be considered as a finger-
print of the magnetic interactions inherent to the B20-type
compounds.

Similarly, the spin-wave excitations are directly determined
by the same set of the magnetic interactions. The theory
predicts a highly anisotropic spin-wave spectrum with a linear
dispersion at q ‖ ks and quadratic one at q ⊥ ks for the long-
wave excitations (q < ks) where ks is the wave vector of the
helix [3–5]. Another remarkable feature of the helimagnon
spectrum is its intrinsic multimode nature caused by the
periodic potential of the helical structure [6,7]. Moreover,
even in the fully polarized state the spin waves are strongly
anisotropic. The spin-wave energy in this case was explicitly
given by Kataoka in [4]

εq = A(q − ks)
2 + (H − HC2), (1)

where ks matches with the orientation of the external magnetic
field. The sign of the DM constant determines the direction
of the helix wave-vector ks being parallel or antiparallel with
respect to the direction of the field. Here and further on we
omit the factor gμB at the value of the field H for simplicity
but imply H is measured in the energy units.

The validity of the spin-wave dispersion [Eq. (1)] has
recently been experimentally proven using the small-angle
polarized neutron scattering [8]. Using polarized neutrons it
was demonstrated that the sign of the DM constant determines
a preferable clockwise or anticlockwise rotation of the spin
waves, i.e., the chirality of the DM helimagnets results in
one-handed excitations in the full-polarized state. The analysis
of the scattering patterns allows one to measure the spin-
wave stiffness as a function of the temperature. Conclusions
derived in [8] on the basis of SANS measurements have
been proven once again using triple-axis spectroscopy [9].
The complementarity of the two methods have been clearly
discussed in [8].

It can be analytically shown that the inelastic neutron
scattering in the case of DM helimagnets is concentrated
mostly around the momentum transfers corresponding to ±ks

within two narrow cones limited by the cut-off angle θC for the
energy gain/energy loss, respectively [8]. The cut-off angle θC

is connected to the spin-wave stiffness A via the dimensionless
parameter θ0 = h̄2/(2Amn):

θ2
C(H ) = θ2

0 − θ0

Ei

H + θ2
B, (2)

where mn is the neutron mass, θB is the Bragg angle of the
scattering on spin spiral with the length 2π/ks , and Ei denotes
the energy of incident neutrons.
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It is also known that the substitution of manganese by iron
in the isostructural solid solutions Mn1−xFexSi suppresses the
helical spin state [10]. The neutron scattering studies [11,12]
together with magnetic data and specific heat measurements
[10,13,14] discovered a quantum critical point (QCP) cor-
responding to the suppression of the spin spiral phase with
long-range order (LRO) in Mn1−xFexSi. This QCP located at
xc1 ≈ 0.11–0.12 is, however, hidden by a spin helix fluctua-
tion [12–14]. This spin helix fluctuation regime, sometimes
referred to as chiral spin liquid [15,16], vanishes at the second
QCP xc2 ≈ 0.24. Thus it has been shown that Mn1−xFexSi
undergoes a sequence of the two quantum phase transitions
[14]. A close look at the Hall effect data in Mn1−xFexSi had
shown that the substitution of Mn with Fe results rather in hole
doping opposite to naturally expected electron doping [17].
The two groups of the charge carriers contribute to the Hall
effect and the ratio between them changes the sign of the Hall
effect constant at xc1 ≈ 0.11, what is definitely associated with
the QCP in these compounds.

In spite of numerous studies of the spin-wave dynamics
in MnSi [6–9,18–20], there were no attempts to perform
measurements on the spin-wave dynamics of the doped com-
pounds such as Mn1−xFexSi, Fe1−xCoxSi, etc. In this paper we
report on the direct measurements of the spin-wave stiffness
of the several representatives of Mn1−xFexSi using a small-
angle neutron scattering technique. As the major experimental
achievement, we demonstrate that the magnetic system of these
compounds shows little softening with temperature T while it
does with increase of the dopant concentration x.

II. EXPERIMENT

The series of Mn1−xFexSi single crystals with x = 0.03,
0.06, 0.09, and 0.108 were grown using the Czochralski
technique. These samples were prepared as cylinders with a
height of 8–10 mm and a diameter of 3–4 mm. Magnetic mea-
surements of the newly synthesized compounds were carried
out with a Quantum Design MPMS-5S SQUID-magnetometer,
which is located at the Institute of Condensed Matter Physics,
TU Braunschweig, Germany. The temperature dependencies
of the susceptibility χ in the magnetic field H = 10 mT are
shown in Fig. 1 for the Mn1−xFexSi compounds with x = 0,
0.03, 0,06, and 0.09. The corresponding curves for the sample
with x = 0.108 is given in [21].

The experiments with the doped Mn1−xFexSi compounds
should be placed within the context of earlier studies of
the phase transition in pure MnSi. As was demonstrated in
[12,22,23], there are two characteristic temperatures which
determine a transition from disordered to the helical state:
namely, a transition into the helix phase at Tc (LRO transition)
and a crossover to the helix fluctuating regime at TDM (SRO
crossover). These critical temperatures (Tc and TDM) have been
determined as a maximum and a minimum of the derivative
of the susceptibility with respect to the temperature dχ/dT

in accord with the approach used in [12]. The derivative of
the susceptibility on temperature dχ/dT for the compound
with x = 0.03 is shown as an example in the inset of Fig. 1.
These inflection points divide the temperature scale into the
three regions: (i) the helix phase (LRO) occurs from low
temperatures to Tc (maximum of dχ/dT ); (ii) the fluctuating
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FIG. 1. The temperature dependencies χ in themagnetic field
H = 10 mT for the Mn1−xFexSi compounds with x = 0, 0.03, 0,06,
and 0.09. The inset shows a temperature derivative of the susceptibility
dχ/dT for sample with x = 0.03. The definitions of TC and TDM are
given in the text.

helical regime occupies a band between Tc and TDM (minimum
of dχ/dT ); and (iii) the paramagnetic phase is identified above
TDM. The crossover temperature TDM denotes the point of the
change of the character of the spin fluctuations from a helical
(i.e., with DM interaction) to a ferromagnetic one (i.e., where
DM interaction can be neglected).

Thus, it is well established that the transition is based on a
smooth temperature evolution of the spin fluctuations into the
helix structure [22–24]. An interplay of two length scales—the
spiral period ds and the correlation length of the critical
fluctuations ξ—results in the appearance of new magnetic
properties in the system upon temperature decrease. The
concept proposed in [24] and developed in [22,23] starts with
the short range correlations at high temperature (ξ � ds). This
high-temperature range can be well described by the ferromag-
netic type of the fluctuations, when the Dzyaloshinskii-Moriya
(DM) interaction is neglected. When the correlation length
ξ approaches the value of ds , the ferromagnetic description
of the spiral fluctuations is no more applicable. The DM
interaction becomes noticeable and the full scale (“true”) helix
fluctuations can be realized when ξ becomes larger than ds . The
crossover from ferromagneticlike regime to helixlike regime
of fluctuations occurs at TDM = 32.5 K, when ξ ≈ ds . It was
shown in [22] that the system may undergo another crossover
to the regime of the anisotropic fluctuations at TA < TDM. The
magnetic system transforms finally into the steady spiral at
Tc = 29 K. The transition should be of the second order, if one
takes into account the anisotropy of fluctuations. These three
regimes were named in [23] as Bak-Jensen regime, Brazovskii
regime [25], and Wilson-Fisher regime, respectively. If one
suggests that the anisotropy is weak, then the phase transition
becomes the fluctuation-induced first-order one with two
characteristic temperatures TDM and Tc [23].

The temperature-concentration (T -x) phase diagram is
shown in Fig. 2. It is apparent in Fig. 2 (in accord with
[12–14,17]) that Tc approaches 0 at xc ≈ 0.11–0.12, while
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FIG. 2. Temperature-concentration (T -x) phase diagram of the
Mn1−xFexSi compounds. The helix wave vector k as a function of x.
Closed symbols give values for the samples of present study. The open
symbols are taken from [11,12] with the systematic shift δx = −0.02.
The dashed lines are guides for the eye.

the band of the fluctuating helix regime increases with x. The
decrease of Tc is accompanied by the linear with x increase
of the helix wave vector k, as shown in Fig. 2. Comparing the
data presented in this paper with those of the papers [11,12]
one should note the discrepancy between them. It appears
that the set of samples in [11,12] grown by the Bridgman
method have the systematic shift in the concentration x roughly
equaled to +0.02 as compared to the samples used in the given
study produced by the Czochralski method. We added the
experimental points of [11,12] to Fig. 2, however, shifted for
−0.02 along the x axis. It is seen that dependencies of k, TDM,
and Tc taken from different sets of the samples match each
other. Such a shift in no way harms the conclusions of [11,12],
or the results discussed below.

Following the protocol of measurements given in [8], we
have determined the spin-wave stiffness in the fully polarized
state for the Mn1−xFexSi compounds using small-angle neu-
tron scattering. The polarized and nonpolarized small-angle
neutron scattering were performed for the single crystals with
x = 0.03, 0.06, and 0.09 using the PA20 instrument (λ =
0.51 nm) at the Orphei reactor at the LLB (France) and for the
single crystal with x = 0.108 using the SANS-1 instrument
(λ = 0.5 nm) at the FRM-II reactor at the MLZ (Germany). A
magnetic field up to 5 T was applied along Qy perpendicular
to the neutron beam. The [110] axis of the single crystals
was oriented parallel to the applied field with accuracy of 5◦.
Background intensity maps were taken for all samples at low
temperature (T = 5 K) and high magnetic field (H = 5 T)
when both the elastic magnetic peak and spin-wave scattering
are fully suppressed. These background maps were subtracted
from the other scattering maps of the given sample. We used
the data-reduction software GRASP developed at the ILL,
Grenoble [26].

III. RESULTS

Figure 3 shows typical SANS maps exhibiting the spin-
wave scattering for the sample with x = 0.03 taken at the

FIG. 3. Maps of the SANS intensities for the single crystal
Mn1−xFexSi with x = 0.03 taken at T = 10 K at the field above HC2

(a) H = 0.7 T, (b) H = 0.9 T, (c) H = 1.1 T, and (d) H = 1.8 T. The
arrows show the direction of the field.

different fields above Hc2 at T = 10 K, i.e., below Tc = 17 K.
These scattering patterns appear as two round spots centered
at the wave vector positions ±k directed along the applied
magnetic field. The size of these spots shrinks remarkably with
the field, being limited by the value Qc = knθC , where θC is
the cut-off angle related to the spin-wave stiffness [Figs. 3(a)–
3(d)].

The evolution of a scattering pattern with the field is
not trivial and is worthy of discussion. As the field exceeds
Hc2 ≈ 0.6 T, the elastic magnetic peak disappears and only
the inelastic scattering centered at Q = ±ks remains. This
scattering intensity consists of two contributions: the strong
diffuse part in the vicinity of the former magnetic peak at
Q = ±ks and the round spot limited by the critical angle
θC . The diffuse contribution is maximal at H ≈ Hc2 and is
strongly suppressed by further increase of the field: I (θ =
θB) ∼ I0/(H − Hc2) (see inset in Fig. 4). The round spots
caused by the spin-wave scattering are less affected by the
magnetic field. According to Eq. (2) the spin-wave part of
the scattering becomes narrower with increase of the field and
should vanish at a certain Hoff well above Hc2. Using Eq. (2),
we define this value as Hoff = θ0Ei .

To improve the statistics, the scattering intensity of the
SANS maps was azimuthally averaged over the angular sector
of 120 deg with the center positioned at Q = ±ks . An example
of the profile transformation with the field is shown in Fig. 4.

The measured intensity can be fitted by the product of a
sigmoid function and a Lorentz function, which captures the
main features of the scattering:

I (θ ) = I0

(θ − θB)2 + κ2

{
1

2
−

(
1

π
arctan

[
2(θ − θC)

δ

])}
.

(3)

Here the Lorentz function describes the contribution of the
diffuse scattering and its parameter κ2 ≈ (θ0/Ei)(H − Hc2)
reflects the closeness of the system to the critical field Hc2.
The sigmoid serves as a steplike function with cut-off angle
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FIG. 4. The radially averaged scattering intensity centered at the
Bragg peak position I vs scattered angle θ − θB for the single crystal
Mn1−xFexSi with x = 0.03 taken at T = 10 K and at H = 1.1 T and
H = 1.8 T. The broken lines are the results of the fit using Eq. (3).
The inset shows the field dependence of the scattering intensity at the
Bragg position I (θB ) at H > Hc2.

θC , which is smeared over by its width δ. It is related to the
spin-wave damping as 
 ≈ δEi .

A sharp cutoff of the intensity was not observed for any
measured field due both large contribution of the diffuse
scattering and/or the spin-wave damping. Nevertheless the
application of the field that is strong enough to suppress the
diffuse scattering (case of H = 1.8 T in Fig. 4) allows one to
clearly determine the cut-off angle θC .

Figure 5 shows typical SANS maps of the spin-wave
scattering for the sample with x = 0.03 taken at different
temperatures in the field H = 1.8 T, i.e., when the diffuse
scattering is practically suppressed. The position and size of

FIG. 5. Maps of the SANS intensities for the single crystal
Mn1−xFexSi with x = 0.03 taken at the field 1.8 T and (a) T = 4 K,
(b) T = 10 K, (c) T = 15 K, and (d) T = 17 K. The arrows show a
field direction.
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FIG. 6. The radially averaged scattering intensity I (θ − θB ) for
the single crystal Mn1−xFexSi with x = 0.03 taken at the field 1.8 T
and T = 4, 10, and 15 K. The solid lines are the results of the fit using
Eq. (3). The inset shows temperature dependencies of the cut-off angle
θC and the width δ obtained from the fit to data at H = 1.8 T.

the spots change little with the temperature, as one can see
from Figs. 5(a)–5(d). The radially averaged scattering intensity
I as a function of the scattered angle θ − θB at different
temperatures and H = 1.8 T is shown in Fig. 6. The intensity
profile at low temperature (T = 4 K) is well reproduced by the
steplike function with an abrupt step. Although it is smeared
by the resolution function and contaminated by pour statistics.
The smearing of a step becomes noticeable with temperature
increase. Moreover, the width of smearing δ is comparable to
the cut-off angle θC in a high-temperature range, close and
above Tc, where the magnetic system enters the critical regime
ruled by the thermal fluctuations. Thus, we describe all sets of
data using the spin-wave concept based on a low-temperature
approximation. Nevertheless, the spin-wave concept can be
applied to the system close to Tc subjected to the strong
magnetic field, which suppresses critical fluctuations.

The experimental data were fitted by the expression given
by Eq. (3). The cut-off angle θC and the width δ were extracted
from the fit and plotted as a function of temperature as inset
in Fig. 6. The following three facts are worthy to be noted:
First, the spin-wave stiffness can be determined even above Tc

up to TDM since the magnetic system can be polarized in this
temperature range. Although the value of the cut-off angle θ0

is comparable to the the smearing width δ in the vicinity of
Tc. Second, it stays practically constant at low temperatures as
well as in the critical range. Third, the spin waves experience
damping, which increases linearly with temperature 
 ∼ T .
The mechanism of the spin-wave damping remains unclear.

In the similar way taken and treated data for the compound
with x = 0.108 are shown in Figs. 7 and 8. The maps of
the scattering intensities taken at field 1.8 T and temperature
T = 3, 5, and 7 K are shown in Figs. 7(a)–7(c), respectively.
Although all these maps were taken at temperatures above
Tc ≈ 1 K, the detected scattering intensity concentrated in the
vicinity of Q = ±ks is limited by the critical angle θC . The

024409-4



SPIN-WAVE STIFFNESS IN THE DZYALOSHINSKII- … PHYSICAL REVIEW B 97, 024409 (2018)

FIG. 7. Maps of the SANS intensities for the single crystal
Mn1−xFexSi with x = 0.108 taken at the field 1.8 T and (a) T = 3 K,
(b) T = 5 K, and (c) T = 7 K. The arrows show a field direction.

radially averaged scattering intensity I vs θ − θB , given in
Fig. 8, is well fitted by the steplike function of Eq. (3).

Using Eq. (2) one can determine the value of θ0 and the
spin-wave stiffness A. The temperature dependence of the
spin-wave stiffness obtained from the detection of the cut-off
angle of the different compounds is presented in Fig. 9. We
observe a weak dependence of the spin-wave stiffness A with
temperature and the finite values of A at Tc for the compounds
under study. For completeness we added the temperature
dependence of the stiffness A for the pure MnSi measured
by the same method as in [8]. In order to extrapolate the
measured values of the stiffness to T = 0, the temperature
dependencies A(T ) for all compounds were fitted by the power
law: A(T ) = A0[1 − c(T/TC)z] with the fixed index z = 5/2,
as it can be expected for the ferromagnets. The value of z

has little influence on the parameter A0 since the temperature
dependence of A is weak. It could be expected for second-order
transition that the spin waves soften near Tc, what is not
observed. In opposite, the phase transition in all Mn1−xFexSi
compounds can be classified as an abrupt change in the spin
state caused, most probably, by the features of an electronic
band structure [27,28].
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FIG. 8. The radially averaged scattering intensity I (θ − θB ) for
the single crystal Mn1−xFexSi with x = 0.108 taken at the field 1.8 T
and T = 3, 5, and 7 K. The solid lines are the results of the fit using
Eq. (3).
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FIG. 9. Temperature dependence of the spin-wave stiffness A.
Dashed lines are fits to a power law (see text).

Although the value of A changes little with temperature, it
apparently decreases remarkably from one sample to another,
i.e., with increase of x. In order to reveal the link between the
spin-wave stiffness and the critical temperatures, we plotted
A0 for the different Mn1−xFexSi compounds against the
characteristic temperatures Tc and TDM in Fig. 10. As seen
from the plot, the spin-wave stiffness is linearly proportional
to Tc for small x and to TDM for the compounds with large
x, i.e., close to the QCP. This observation implies that the
long range helical order limited by Tc is determined by the
isotropic exchange A for pure MnSi and compounds with small
doping concentration x < 0.05. The phase transition in these
compounds is well described by the concept developed for
pure MnSi in [22–24]. As to the compounds with large x, i.e.,
close to the QCP, the long range helical order is additionally
destabilized by another mechanism. This additional source of
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FIG. 10. The spin-wave stiffness A of the Mn1−xFexSi com-
pounds versus the characteristic temperatures Tc and TDM.
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the instability can naturally be the DM interaction, the strength
of which can be roughly estimated via the helix wave vector
ks .

Recently the influence of spin fluctuations on the ther-
modynamic properties the pure MnSi has been investigated
in the framework of the Hubbard model with the electronic
spectrum determined from the first-principles LDA + U +
SO calculation, which was extended taking into account the
Hund coupling and the Dzyaloshinskii Moriya antisymmetric
exchange [27,28]. Going beyond the Brazovskii model [25],
it has been shown that the ground state of the magnetic
material is characterized by large zero-point fluctuations. The
evaluations showed that the total amplitude of zero-point
and thermal spin fluctuations is large compared with the
amplitude of the magnetization and varies little in a fairly
wide temperature range. They disappear in the vicinity of
Tc only. In this case, the entropy abruptly increases, causing
thermal fluctuations which, in turn, lead to the disappearance
of the local moment. A competition between the increase in
entropy due to paramagnon excitations and its decrease as
a result of the reduction in the amplitude of local magnetic
moments, under the conditions of strong Hund exchange,
is responsible for in the appearance of the peculiar critical
phenomena observed in MnSi. Among these phenomena are
an anomalous sharp lambda-shaped maxima and minima in
the temperature dependencies of the heat capacity and thermal
expansion coefficient of the MnSi ferromagnet [29,30].

Thus, the first-principles calculations [27,28] demonstrate
that coupling between the electronic structure and the spin
state can explain, first, the magnetic state of MnSi with two
characteristic features near the transition temperature that
are related to the suppression of magnetic moments of the

helicoidal ferromagnetic state at TDM and the vanishing of
helicoidal ordering at Tc. Second, these calculations explain
stability of the magnetic state in a wide range and its abrupt
change at Tc.

As was noted in [28], these calculations can be applied to
the Mn1−xFexSi compounds as soon as the chemical potential
level is located in the region of energies of nondegenerate
orbital states although their electronic structure requires further
investigation. In view of the concept discussed above an
intriguing question remains unsolved: Are the fluctuations
Mn1−xFexSi compounds of a quantum or thermal nature? How
can they be distinguished experimentally? These questions are
to be answered in the forthcoming studies.

IV. CONCLUSION

In conclusion, we have experimentally determined the spin-
wave stiffness in the Mn1−xFexSi compounds. We have found
that the spin-wave stiffness A for the Fe-doped compounds is
weakly dependent on temperature. This finding shows that the
criticality at Tc is not related to the value of the ferromagnetic
interaction but is significantly modified by the Dzyaloshinskii-
Moriya interaction. The spin-wave stiffness A decreases with
x duplicating the TDM dependence on x, rather than Tc(x). This
points out the remarkable role of the Dzyaloshinskii-Moriya
interaction as the destabilizing factor for the magnetic order in
these compounds.
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