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The search for flat-band solid-state realizations is a crucial issue to verify or to challenge theoretical
predictions for quantum many-body flat-band systems. For frustrated quantum magnets flat bands lead to
various unconventional properties related to the existence of localized many-magnon states. The recently
synthesized magnetic compound Ba,CoSi,O¢Cl, seems to be an almost perfect candidate to observe these
features in experiments. We develop a theory for Ba,CoSi,O¢Cl, by adapting the localized-magnon concept
to this compound. We first show that our theory describes the known experimental facts and then we propose new
experimental studies to detect a field-driven phase transition related to a Wigner-crystal-like ordering of localized

magnons at low temperatures.
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I. INTRODUCTION

Destructive interference in quantum mechanics can lead
to a disorder-free localization of particles. In the one-particle
energy spectrum this is related to the existence of flat bands.
Such a single-particle flat band can substantially influence
the many-body physics of interacting quantum systems. For
two-dimensional (2D) electronic systems in a magnetic field
this scenario may lead to so-called Aharonov-Bohm cages [1,2]
as well as to the celebrated fractional quantum Hall effect [3].
In correlated-electron systems with a flat band the interaction
energy may dominate over the kinetic energy, thus a flat band
may lead to ferromagnetic instability in the Hubbard model.
Remarkably, here the existence of a flat band allows for exact
results in this highly nontrivial many-body system [4-7].

Nowadays, flat-band (FB) physics is extensively discussed
in the recent literature with a special focus on topological FB
models, and many interesting phenomena related to flat bands
have been observed; see, e.g., [8—12] and references therein.
Realizations of FB systems can be achieved, e.g., with cold
atoms in optical lattices [13,14] and photonic lattices [15-17].
On the other hand, solid-state realizations of ideal FB systems
are notoriously rare, since a strictly flat band requires a perfect
FB geometry providing immaculate Hamiltonian parameters.

Among the numerous FB systems, the highly frustrated
quantum antiferromagnets (AFMs) play a particular role in
solid-state physics. These FB spin systems exhibit several
prominent features in high magnetic fields, such as a plateau
and a subsequent magnetization jump at the saturation field
[18,19], a magnetic-field driven spin-Peierls instability [20],
a finite residual entropy at the saturation field [21-23], and
an unconventional low-temperature thermodynamics [22-25].
These unconventional features are related to the existence
of a huge manifold of exactly known many-body low-lying
eigenstates (the so-called independent localized many-magnon

2469-9950/2018/97(2)/024405(7)

024405-1

states) which (i) allow an exact description of the low-energy
physics and (ii) the calculation of the low-temperature thermo-
dynamic properties by mapping of the localized many-magnon
states of the initial quantum spin system onto classical lattice-
gas models of hard-core objects; for areview, see, e.g., [10,26].

An interesting consequence of the localized-magnon states
for 2D Heisenberg FB systems is the prediction of a finite-
temperature order-disorder phase transition which should oc-
cur at low temperatures in a finite field region just below
the saturation field and is related to an ordering of the
independent localized magnons [22,24,25]. The first prediction
of such a transition [22] refers to the quantum kagome AFM
where the compact localized states (located on hexagons) can
be mapped onto the classical hard-hexagon problem [27].
However, a specific problem for the kagome AFM is the
existence of additional noncompact independent localized-
magnon (LM) states [26] which are not taken into account by
the corresponding hard-hexagon problem, and, therefore the
prediction of the phase transition is to some extent problematic.
More promising is the fully frustrated square-lattice bilayer
quantum Heisenberg AFM (see Fig. 1, top), since for this
model the compact localized states (located on the vertical
interlayer bonds) are the only existing independent LM states.
For this model the ordering of localized magnons falls into
the 2D Ising universality class [24]. Remarkably, for this
system one can take into account an additional class of exact
low-energy localized states (interacting/non-independent LM
states) which allows a comprehensive study of the “high
field—low temperature” phase diagram of the fully frustrated
square-lattice bilayer spin-1/2 Heisenberg AFM [25]. Very
recently, a specific feature of this model, namely the existence
of local conservation laws, has been exploited to develop a new
sign-problem-free Monte Carlo method [28] that confirms the
finite-temperature Ising transition in the square-lattice bilayer
quantum spin system in a magnetic field predicted in [24,25].
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FIG. 1. (Top) Frustrated square-lattice bilayer. Red bonds, in-
tradimer bonds J,; black bonds, interdimer bonds J;. (Bottom)
Magnetization curvesat 7 = Ofor J, = 5, J; = 1 and several uniform
anisotropy parameters A; = A, = A: ED for the initial model (N =
16, thin) vs the effective model (N = 8, thick). Blue lines, A = 0.5;
green lines, A = 0.1; red lines, A = 0. The solid lines correspond to
h = (0,0,4) and the dashed lines to h = (4,0,0).

The question of the experimental observation of the par-
ticular LM physics in solid-state magnets is crucial for its
relevance in material science. Fortunately, there is a plethora
of one-, two-, and three-dimensional frustrated spin models
hosting independent localized magnons [10,18,23,26]. Except
the above mentioned kagome and bilayer AFMs, prominent
examples are, e.g., the pyrochlore and the checkerboard AFMs
as well as the diamond spin chain. On the other hand, the
LM physics requires a certain fine-tuning of the Hamiltonian
parameters and it takes place near the saturation field, that
is often not accessible in experimental setups to measure
thermodynamic quantities such as the specific heat. So far the
most promising candidate was the natural mineral azurite [29],
which represents a one-dimensional frustrated diamond-chain
Heisenberg AFM. Although, its Hamiltonian parameters do
not obey ideal FB conditions [30-32], it exhibits indeed a
wide magnetization plateau ending in an almost perfect jump
to saturation.

A very interesting candidate for 2D LM physics is
Ba;CoSi,06Cl; [33]. Recently, Tanaka et al. [33] have found
that the magnetic Co®* ions of this compound can be described
as a 2D fully frustrated square-lattice bilayer spin-1/2 AFM
(see Fig. 1, top) with an antiferromagnetic vertical interlayer
(intradimer) coupling J, dominating the nearest-neighbor
intralayer couplings and the frustrating interlayer couplings.

Thus, the exchange pattern of Ba,CoSi,OsCl, perfectly fits
to the LM (FB) conditions. Since the underlying magnetic
model is 2D, the magnetic properties of Ba;CoSi,OgCly
are expected to be even more diverse than for the one-
dimensional azurite. The most spectacular experimental results
are the magnetization curves m(h) measured at 1.3 K for two
field orientations until about 70 T, that exceeds noticeably
the saturation field. The magnetization curve m(h) exhibits
a stepwise shape with a plateau at half of the saturation
magnetization, irrespective of the field direction which is
typical for the fully frustrated bilayer AFM [24,25]. Although,
the reported magnetic properties of Ba;CoSi;O¢Cl, strongly
resemble the theoretical predictions of [24,25] obtained for
the fully frustrated isotropic Heisenberg bilayer AFM, there
are several important differences in the appropriate spin model
for Ba;CoSi,0¢Cl,. First, the model is an anisotropic XX Z
spin model close to the XY limit [33]. Second, the g factor
for the field applied in the XY plane is almost 2 times larger
than the g factor for the field applied along the z axis, and,
therefore, the corresponding saturation fields are quite differ-
ent, namely Hg, = 41.0 T (in XY plane) and Hy, = 56.7 T
(along the z axis) [33].

II. EFFECTIVE THEORY FOR Ba,CoSi,04Cl,

In the present paper we develop a theory for Ba;CoSi» OCl,
that is based on the LM picture for the bilayer model, see
[24,25]. Using this theory we want to describe the reported
experimental magnetization curves and to propose new exper-
iments to detect specific features of the LM physics, such as
an extra low-temperature singularity in the specific heat and
a magnetic-field driven order-disorder phase transition. Let us
first mention that the LM scenario also holds for X X Z models
with magnetic fields along the z direction [18,20], whereas the
case when the Zeeman term does not commute with the X X Z
interactions (e.g., with a magnetic field along the x direction)
was not studied so far.

Extending the theory of [24,25] we consider an anisotropic
spin-1/2 X X Z square-lattice bilayer AFM of N = 2\ sites
as shown in Fig. 1 and introduce different values of the g factor
for the field directed along the x axis and along the z axis,

N
H = Z Jij(sisT +s]'s] + AyjsisT) — Zh -si, (D)
(i) i=1

where J;; and A;; acquire either the values J, and A, (vertical
dimer bonds) or J; and A (interdimer bonds), cf. Fig. 1. Note
that the equality of all interdimer bonds corresponds just to
the ideal FB geometry. Moreover, a sufficiently large value
of J, is needed to establish LM physics (e.g., J» > 4J; for
A1 = Ay = 1[24,25]). In correspondence to [33] we consider
two particular orientations of the field, h = (0,0,A%) and h =
(h*,0,0), and corresponding g factors g° and g¥, i.e., h® =
g*ugH and 7* = g*ugH, where ug ~ 0.67171 K/T is the
Bohr magneton and H is the value (measured in Tesla) of the
applied magnetic field. According to [33], the g factors for
Ba;CoSi,06Cl; are g = 2.0 £ 0.1 and g* = 3.86.

Next we elaborate an effective low-energy theory for the
model (1) at high magnetic fields by using the strong-coupling
approach for both cases of the field direction. For that we
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assume that the main part of the Hamiltonian H,;, consists
only of the vertical bonds J, and the Zeeman term at the
field ho, where the two eigenstates, |u) and |d), of the spin
dimer are degenerate. Hence, at s a magnetization jump to
saturation (to almost saturation) takes place for the z-aligned
(x-aligned) field. The remaining terms in (1) are treated as
the perturbation V = H — Hp,i,. The effective Hamiltonian
is obtained by standard perturbation theory [34-36] H. =
PHP + ..., where P = |py){po| is the projector onto the
ground-state manifold of Hp,i, consisting of 2V states of
the N dimers. In addition, we use the (pseudo)spin-1/2 op-
erators T° = (|lu)(u| — |d)(d])/2, T* = |u){d|, T~ = |d){ul,
attached to each vertical dimer bond to represent Hegr in an easy
recognizable form. After some straightforward manipulations
(see Appendix) we obtain the effective model,

N
Hyr=C—hY Ti+J) T:Ty, 2
m=1 (

mny)

that corresponds to the square-lattice spin-1/2 antiferromag-
netic Ising model. The parameters C, h, and J are func-
tions of the Hamiltonian parameters J,, A, Ji, Aj, and
h. For the z-directed field these parameters are given by
simple formulas: C = (=h/2 — Jp/4+ A1J1/2N, h=h —
14+ Ax)Jr/2 —2A1J;, and J = AyJ;. In case of an x-
directed field, these expressions are more complicated (see
Appendix). Since the field h in (2) is a function of J;, A;, and,
of course, of the applied magnetic field H, for a certain value of
H the resulting effective field h is zero, i.e., the effective model
(2) is the exactly solvable zero-field square-lattice Ising model
[37]. For h = 0, there are high-precision numerical results
for the phase diagram in the “field-temperature” plane; see,
e.g., [38—42]. The ordered phase of the effective Ising model
corresponds to a Wigner-crystal ordering of localized magnons
in the initial quantum model.

II1. FIELD-DRIVEN PHASE TRANSITION IN
B32COSi206C12

In afirst step we check the quality of the elaborated effective
description. For that we perform full exact diagonalization
(ED) [43] for both the initial and the effective models on
finite lattices imposing periodic boundary conditions. For the
initial (quantum) model (1) thatisthe N = 16 = 2 x 8§ bilayer
and for the effective (classical) model (2) that is the N/ = 8§
square lattice. In Fig. 1, bottom, we compare the ground-state
magnetization curves taking as a representative the parameter
set: b =5,J1 =1, A, =A; = A with A =0.5,0.1, 0 and
z-aligned (solid curves) as well as x-aligned (dashed curves)
magnetic fields. For the z-aligned field the curves of both
models practically coincide, whereas for the x-aligned field
the agreement is still very good, in particular at the one-half
plateau, where the LM-crystal state is an exact eigenstate
of (1).

Now we turn to the specific situation of Ba;CoSi,OgCl,.
The strong intradimer interaction parameters, estimated as
J» =110 K, A, =0.149 [33], dictate the low-temperature
magnetization process. As mentioned above, all interdimer
bonds are practically equal, i.e., the ideal FB condition holds
in good approximation, and their values given in [33] are

m(TH,N)/N

0 10 20 30 40 50 60 70

FIG. 2. Magnetization curves for the model parameters of
Ba2CoSi206Clz (]2 =110 K, Az = 0149, 4]| =237 K, A] =
0.56) [33] at T =0 K (blue) and T = 1.3 K (red). ED data for the
initial model (N = 16, thin lines) are compared with corresponding
ones for the effective model (N = 8, thick lines). Note that corre-
sponding thin and thick lines widely coincide. Solid lines represent
data for h = (0,0,4%), g = 2.0 and dashed lines for h = (4*,0,0),
g* = 3.86, where H = h* /(g% up), @ = z,x.

4J; =23.7 K and A; = 0.56. We also recall the g factors
g*=12.0 and g* = 3.86 [33]. Putting all pieces together and
measuring the applied magnetic field H in Tesla, we arrive at
the following estimates for the parameters of Hcg, Eq. (2):
For the z-aligned field H we get C ~ (—0.67H — 25.84)N
K, h~ —(1.34H — 69.85) K, J ~ 3.33 K. In case of an x-
aligned field H the effective parameters are given by more
complicated formulas (see Appendix). However, in the field
range from 30 T to 45 T, relevant for the localized magnon
scenario, these parameters vary almost linearly with H as
follows: C ~ —53.70... — 7245K,h ~ —16.24...21.01 K,
and J ~ 5.43...5.70 K. Note, however, that for the results
discussed below we use the full formulas of the effective
parameters given in the Appendix.

In Fig. 2 we report ED results for magnetization curves for
both field directions. These curves fit well to the experimental
ones; see Fig. 3 in [33] (note, however, that the experimental
data are calibrated differently). We also mention that 7' =
1.3 K used to calculate the isothermal m(H) curve cannot
be identified as that temperature quoted in Fig. 3 of [33],
because in [33] a pulsed magnetic field was used to measure
m(H), i.e., the measurement process is rather adiabatic than
isothermal. The magnetization jumps in Fig. 2 are located
at the critical fields H, &~ 47.04 T and Hg, ~ 56.94 T for
the z-directed field and H, ~ 32.16 T and Hg ~ 41.14 T
for the x-directed field. These values agree well with the
corresponding experimental data [33] H. =46.8 T, Hy, =
56.7TandH, = 32.0 T, Hy,c = 41.0 T. Thus, we may conclude
that our theoretical approach provides an excellent description
of the measured magnetization process of Ba;CoSi,OCl,.

Next we analyze the specific heat ¢ in the plateau region
H. < H < Hy, predicted by theory, but not measured yet.
For the z-aligned field H~ 51.99 T and for the x-aligned
field H~ 36.61 T the effective field h in Eq. (2) vanishes,
and the corresponding effective coupling constants J yield
the transition temperatures 7, ~ 1.89 K (z-aligned field) and
T, ~ 3.17 K (x-aligned field).
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FIG. 3. (Top) ED (initial and effective model with N = 16 and
N = 8)and MC data (effective model with A up to 256 x 256) for the
temperature dependence of the specific heat for the model parameters
of Ba,CoSi,O¢Cl, (see text) at H = 47.5 T along the z axis (T, ~
0.46 K). (Bottom) MC data (effective model with A up to 256 x 256)
for the specific heat for the model parameters of Ba,CoSi,O¢Cl, (see
text) at 7 = 0.25, 0.5, 1, 1.5 K for the field applied along the z axis.

In the upper panel of Fig. 3 we show ED data for the specific
heat ¢(T) atH = 47.5 T along the 7 axis for the effective model
(N = 8 and 16) and for the initial model (N = 16) as well as
classical Monte Carlo (MC) data for the effective model of
N = L2 sites with £ up to 256. For large enough system size
the Ising-Onsager logarithmic singularity at 7. ~ 0.46 K is
evident. In contrast, no singularity is present for ¢(T) at H = 0.
It is also evident that the finite-size data for the effective and
the full initial model coincide up to about 7 =~ 10 K [cf. green
(N = 8) and magenta (N = 16) lines in the upper panel of
Fig. 3], i.e., far beyond T, ~ 0.46 K. Except the singularity
at T, we see clear signatures of a separation of energy scales
indicated by two maxima in the effective model, and even three
maxima in the full initial model, where the highest-temperature
one is related to the strength of J,. This scale is not present
in the effective model, where the interaction strength J o< J;.
The intermediate-temperature maximum is related to J, the
lowest-temperature one corresponds to the energy scale set
by the degenerated manifold of states being ground states at
H,a and H,.. The position of the lowest-temperature maximum
depends on the value of H, H. < H < Hg,, and it moves
to T =0 as H— Hgy as well as H — H.. Another way to
detect the phase transition is to fix 7 and use H as the driving
parameter. A corresponding plot is shown in the lower panel of
Fig. 3, where MC data of ¢(H) for the z-aligned field at fixed
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FIG. 4. (Top) ED (initial and effective model with N = 16 and
N = 8)and MC data (effective model with A/ up to 256 x 256) for the
temperature dependence of the specific heat for the model parameters
of Ba,CoSi,0¢Cl, (see text) at H=32.5 T along the x axis (7, ~
0.64 K). (Bottom) MC data (effective model with A/ up to 256 x 256)
for the specific heat for the model parameters of Ba,CoSi,O¢Cl, (see
text) at T = 0.25, 0.5, 1, 1.5 K for the field applied along the x axis.

T =0.25,0.5,1, 1.5 K are presented. Note that a very similar
behavior of ¢(T') and c(H) is found for the x-aligned field; see
Fig. 4. Thus corresponding measurements on Ba;CoSi,OCl,
are highly desirable to verify our predictions.
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FIG. 5. Theoretically  predicted  phase  diagram  for

Ba,;Co0Si,06Cl;, in the “field-temperature” plane for h = (0,0,A%)
(solid) and h = (h*,0,0) (dashed). The presented curves were
obtained from the results of [39,40]. The horizontal (vertical) lines
correspond to the lines of the same color in Fig. 3, bottom (Fig. 3,
top).
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The main result summarizing our findings is the phase
diagram for Ba;CoSi,O¢Cl; in the “field-temperature” plane
shown in Fig. 5. From this phase diagram one concludes that
applying an x-aligned (z-aligned) field H > 32.16 T (H >
47.04 T) to Ba;CoSi;O4Cl, one should observe an ordering
of localized magnons (magnon Wigner crystal), where the
corresponding phase transition belongs to the 2D Ising model
universality class. This phase transition can be detected by
measuring the specific heat ¢, which exhibits a logarithmic
singularity in its temperature dependence at Ti,,s(H) or in its
field dependence at Hy;,,5(T), both given by the transition lines
shown in Fig. 5.

IV. CONCLUSIONS

To conclude, we demonstrate that Ba,CoSi,OgCl, is a
promising candidate to realize FB physics in a highly frustrated
quantum magnet. Based on the concept of localized magnons
we provide a theory to describe experimental data in high
magnetic fields [33]. The most important result of our theory
is the prediction of a phase transition related to an ordering
of the localized magnons. This phase transition occurs in
high magnetic fields H > 32.16 T and can be driven either
by temperature or by magnetic field. To detect this transition
in experiment we propose low-temperature measurements of
the specific heat ¢ at H > 32.16 T to find the characteristic
singularity in c.
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APPENDIX: DERIVATION OF THE EFFECTIVE
MODEL (2)

In this Appendix, we present some technical details of cal-
culations leading to the effective theories, which are reported
in the main text.

Let us consider the spin-1/2 Heisenberg antiferromagnet
for a more general square-lattice bilayer of N = 2\ sites,

N
H =Y "Jy(s;s +s's] + Aysisi) = > h-si. (Al
(ij) im1
The first sum in Eq. (A1) runs over all bonds of the lattice and
hence J;; acquires either the value J, (dimer bonds) or Ji1, Ji2,
Ja1, J (all other bonds); see Fig. 6. The important limiting
case considered in the main text corresponds to the relation
Ji1 = Ji2 = Jo1 = Jpp = Jy. Thisideal frustration case for the
isotropic Heisenberg case (i.e., A;; = 1) was considered in
Refs. [24,25]. The crucial difference from the previous studies
[24,25] is the anisotropy of the exchange interaction controlled
by the parameter 0 < A;; < 1(A; =0.149and A = 0.56 are
the values relevant for Ba,CoSi;O¢Cl,; see Ref. [33]). More-

FIG. 6. Frustrated square-lattice bilayer. The sites are numerated
by the cell index m,,m, and the site index within a cell i = 1,2. The
exchange interaction for the vertical bond (thick red bonds) is J,,
whereas the exchange interaction for the bond connecting the sites
my,my,i and m, + 1,m,,j or the sites m,,m,,i and m,,m, + 1,
(thin bonds) is J;;.

over, the external magnetic field h = (h*,h”,h*) may have, in
principal, an arbitrary orientation. For the sake of simplicity,
we consider in what follows two particular orientations of the
field: h = (0,0,4%) (directed along the z axis) and h = (4*,0,0)
(directed along the x axis). While in the former case we start
with the Hamiltonian given in Eq. (A1) with h = (0,0,4%), that
is,

N
H =" Jij(s7sT 4875 + Aiysiss) —h* Y sf,
(i)

i=1

(A2)

in the latter case it is convenient to rotate the spin axes arriving
at the Hamiltonian,

N
H =Y Jjlsi-s;+ Ay — Dsisi]—h* ) 57 (A3)
(ij) i=l

We have also to take into account the difference in g factors
for the field applied along the z axis and the x axis. For this we
set

h* =g ugH, h* = g*ugH, (A4)

where g% and g* are the values of the g factor, ug =~
0.67171 K/T is the Bohr magneton, and H is the value (mea-
sured in Tesla) of the applied magnetic field in experiments.
According to Ref. [33], the g factors for Ba,CoSi,O¢Cl, were
determined as g = 2.0 £ 0.1 and g* = 3.86.

In general, the concept of localized magnons can be in-
troduced in the case when the z component of the total spin
commutes with the Hamiltonian [as for the Hamiltonian (A2)]:
Then the eigenstates of the Hamiltonian can be examined in
the subspaces with different values of §* = ZzN=1 57 separately.
However, even for the Hamiltonian (A3), the LM-crystal state
(but not the ground state in the extremely strong field limit) is
still an exact eigenstate.

Now we elaborate an effective low-energy theory of the
introduced model [Eq. (A1), Fig. 6] at high magnetic fields.
To achieve this goal, we use the strong-coupling approach. We
consider separately two cases: The field directed along the z
axis [see Eq. (A2)] and the field directed along the x axis [see
Eq. (A3)]. Within the strong-coupling approach, we assume
that the main part of the Hamiltonian Hp,,, consists of the
spins on vertical bond only at the “bare” saturation field /. At
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this field, 7 = hy, the energy of two states |u) and |d) of the
two-spin system on the vertical bond coincides. The rest terms
in the Hamiltonian (A2) or (A3) are treated as the perturbation
V = H — Hp,in. The wanted effective Hamiltonian follows
from the perturbation-theory formula [34-36],

|00} (Pa |
&) — &y

Heff—PHP—i—PVZ VP +....

a#0
Here P = |po)(¢p| is the projector onto the ground-state
manifold of Hi,, consisting of 2V states, and &o and g, are
the energies of the ground state and excited states of Hpain,
respectively. In what follows we restrict ourselves to the first
term in the right-hand side of Eq. (AS5) only. In addition, we
use the (pseudo)spin-1/2 operators T° = (|u){u| — |d){d])/2,
T = |u){d|, T~ = |d){u|, attached to each vertical bond to
represent the effective Hamiltonian (AS5) in an easy recogniz-
able form.

We begin with the case of the z-directed field; see
Eq. (A2). Two relevant states at each dimer, |u) = [11) and
Id) = (114) — [41))/+/2, have identical energies at hy = (1 +
Aj)J>/2. The effective Hamiltonian is given by the formula,

N

h J Ja
Hi=(—> -2+ 2 )N -n) 1}
off <2 4+2>N m

m=1

+ Y (ST + (1T + TUTY))-

m

(AS5)

(A6)

(mn)

Here the parameters of the effective Hamiltonian are defined
as follows:

ApJin 4+ Andip+ Ando + A dn

Js = .
heh—hy b= 22 0,

J° = Ja,

Jo Jit = Ji2 — Ja ~|-122' (A7)

2

Clearly, we have arrived at the square-lattice spin-1/2 XXZ
Heisenberg model in a z-aligned magnetic field. This model is
free of frustration and can be studied, for example, employing
the quantum Monte Carlo method.

It is worth noting that in the case J;; = Jjp = Joy = Jon =
J1, Egs. (A6) and (A7) correspond to the square-lattice spin-
1/2 antiferromagnetic Ising model in a field,

h J J
Heir = <—— ~ 24 —A)N

2 4 2
N
1+ A
_(h_ + 2J2—2JA)ZT,2+JAZTZTZ
m=1 (mn)
A A A A
Iy = 1+ 121‘ 21 + 22]1; (A8)

see also Eq. (A1). The obtained result is in agreement with
previous ones [25]. Really, Eq. (A8) at A, = A1 =... =
Ay = 1yields the lattice-gas model with finite repulsion given
in Eq. (6.7) of Ref. [25].

Next, we consider the case of the x-directed field; see
Eq. (A3). Now the two relevant states at each dimer and their

energies are [32]

lu) = alt?) + b)),
=

a =

C:ﬁ\/%ﬁ+h\/%ﬁ+hz+hz,

- \/(1 — AD2JE + 1612
€y = ,

4

11—-A,
J2 hZ b__
#ilo= gty

25

(A9)
and

1
d = — _
|d) ﬁ(IN) ).

24+ Ar)J.
@ = _%‘ (A10)
Furthermore, hy = /(1 + Ay)/2J,. The effective Hamilto-

nian has the following form:

\/(1 — A2JE 416k + (1 + A

Her = — 2
1
—h T: T\ =+ T;
i) (5r)
+Jdt (T T, T+ ITNTT + Tm_Tn‘)],
(A1)
where
) JU = 2073 4160 = B+ Ao,
= 1 ,
J = _bz)2J11 +Jio+ Ju + I
= 1 ,
g = I =T = Ty + T
4 9
JH = In=—Jn=In +In
4 9
—b)?A;; £ b)?

Thus, H.g represents the square-lattice spin-1/2 XY Z Heisen-
berg model in a z-aligned magnetic field. In the case
Ju=Jon=Jdu=Jn=Jrand A;; = Ay = Ay = Ap =
A1, important simplifications occur: J = (a> — b*)*J;,J*~ =
J** =0, and Egs. (A11) and (A12) transform into the Hamil-
tonian of the square-lattice spin-1/2 antiferromagnetic Ising
model in a field,

\/(1 — A2JE 16k + (1 + Ax)ds — 4J
g

—(h— 2J)ZTZ +JZTZT;,

m l‘l

Hep = —

J=(a* - b,

= 2023 + 16 — B+ Ay,
= 4 5

(A13)
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with @ and b given in Eq. (A9). If in addition A, =
1, we have a=1, b=0, h=h—-J,, J=J;, and

Eq. (A13) transforms into Eq. (A8) at A, = A1 =...=
Agz =1.
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