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Time-dependent variational principle in matrix-product state manifolds: Pitfalls and potential
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We study the applicability of the time-dependent variational principle in matrix-product state manifolds for
the long time description of quantum interacting systems. By studying integrable and nonintegrable systems for
which the long time dynamics are known we demonstrate that convergence of long time observables is subtle and
needs to be examined carefully. Remarkably, for the disordered nonintegrable system we consider the long time
dynamics are in good agreement with the rigorously obtained short time behavior and with previous obtained
numerically exact results, suggesting that at least in this case, the apparent convergence of this approach is reliable.
Our study indicates that, while great care must be exercised in establishing the convergence of the method, it may
still be asymptotically accurate for a class of disordered nonintegrable quantum systems.
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I. INTRODUCTION

The numerically exact simulation of the dynamics of
strongly interacting quantum systems is a grand challenge
in condensed matter science. For ground states of gapped
one-dimensional systems with short-range interactions, the
density matrix renormalization group (DMRG) proves to be
a powerful and efficient approach [1,2]. Its success is linked to
the fact that the ground states of these systems are optimally
representable by matrix product states (MPS), with a moderate
number of variational parameters, normally referred to as the
bond dimension. While DMRG has been extended into the
time domain, the time scales that may be reached are usually
quite short as a consequence of correlations that develop within
the propagated wave function [1,2]. Time evolution tends to
quickly displace states from the space efficiently representable
by MPS, leading to a rapid (typically exponential) growth
of the bond dimension. If the bond dimension of the wave
function is not dynamically adjusted to accommodate the grow-
ing correlations in the wave function, the dynamics quickly
becomes approximate and nonunitary. It is possible to construct
a unitary time-propagation scheme on the manifold of MPS
with a fixed bond dimension using the Dirac-Frenkel time-
dependent variational principle (TDVP) [3–6]. This principle,
which is rather generic, projects an infinitesimal time evolution
under the Hamiltonian to a variational manifold, which the
resulting wave function is restricted to occupy. An advantage
over conventional DMRG techniques is that the TDVP can be
applied to a more general class of states, such as tree tensor
network states, thus potentially opening the door to efficiently
simulating higher dimensional systems as well as systems with
long-ranged interactions.

The description of transport properties requires the inves-
tigation of large system sizes and long times, a limit which

*bk2576@columbia.edu
†yevgeny.barlev@weizmann.ac.il

is sometimes referred to as the hydrodynamic limit. While
this limit appears to be out of reach for numerically exact
methods, an approximate coarse-grained treatment might be
sufficient to obtain accurate macroscopic observables like
transport coefficients, analogous to the success of classical
hydrodynamics. In this respect, the TDVP is particularly attrac-
tive, since it generates effectively chaotic classical dynamics
in the space of variational parameters which obey a set of
macroscopic conservation laws, such as those associated with
the total number of particles and the total energy [7]. Indeed,
a surprisingly fast convergence of the heat diffusion constant
with respect to bond dimension has been very recently reported
for a nonintegrable spin chain [8].

In this paper, we examine the applicability of TDVP for the
long time description of quantum interacting systems. While
the method cannot be expected to work for quantum integrable
systems (cf generalization of hydrodynamic approaches to
such systems [9]), by utilizing the exact solvability of such
systems, we show that the long time limit, which is necessary
to obtain hydrodynamic observables, and the large bond-
dimension limit, where the method becomes numerically exact,
do not generically “commute.” In particular, the apparent
convergence of hydrodynamic observables with the bond
dimension does not guarantee the accuracy of the result, which
has to be established by other means. This problem persists also
for nonintegrable systems, although for the case of a disordered
nonintegrable quantum system that we consider, this problem
appears to be ameliorated.

II. THEORY

The Hilbert-space dimension of a quantum lattice system
scales exponentially with the size of the system. Any wave
function in the Hilbert space can be written as MPS:

|�[A]〉 =
d∑

{sn}=1

As1 (1)As2 (2) . . . AsN (N )|s1s2 . . . sN 〉, (1)
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where d is the local Hilbert space dimension, Asi (i) ∈ CDi−1×Di

are complex matrices, and D0 = DN = 1, such that the prod-
uct of matrices evaluates to a scalar coefficient for a given
configuration |s1s2 . . . sn〉. To be an exact representation of
the wave function, the dimension of the matrices, the bond
dimension, must scale exponentially with the system size.
Typically, one approximates the wave function by truncating
the dimension of the matrices to a predetermined dimension
with computationally tractable number of parameters. Exact
results are obtained when the approximate dynamics are
converged with respect to the bond dimension.

The TDVP allows one to obtain a locally optimal (in time)
evolution of the wave function on the manifold of MPS, Mr,

with some fixed bond dimension r. It amounts to solving a
tangent-space projected Schrödinger equation [6]:

d|�[A]〉
dt

= −iPMĤ |�[A]〉, (2)

where PM is the tangent space projector to the manifold
Mr.Equation (2) is solved using a Trotter-Suzuki decomposi-
tion of the projector (see Ref. [6] for details).

The dynamics generated by the TDVP can be viewed as
resulting from a classical, nonquadratic Lagrangian in the
space of variational parameters [5,8]. It can be shown that any
conserved quantity of the Hamiltonian will be also conserved
by TDVP if the corresponding symmetry group members of
the associated quantity applied to a state in the manifold Mr
do not take it out of the manifold [7]. The nonlinearity of
the equations of motion of TDVP disappears in the limit of
infinite bond dimension, since, in this limit, the action of the
Hamiltonian on the state keeps it on the manifold for all times.

III. RESULTS

We study transport properties of the one-dimensional XXZ
model,

Ĥ = Jxy

N−1∑
i=1

(
Ŝx

i Ŝx
i+1 + Ŝ

y

i Ŝ
y

i+1

) + �
∑

i

Ŝz
i Ŝ

z
i+1 +

N∑
i=1

hiŜ
z
i ,

(3)

where hi is uniformly distributed in the interval [−W,W ] and
Ŝ

(x,y,z)
i are the appropriate projections of the spin operators on

site i. In the following, we use Jxy = 1, which sets the time unit
of the problem. Using the Jordan-Wigner transformation, the
XXZ model can be mapped to a model of spinless fermions
[10]. For � = 0, the corresponding model is noninteracting
and can be solved exactly. In particular, for W �= 0, the
system becomes Anderson localized [11]. For � �= 0 and at
sufficiently high disorder, the system becomes many-body
localized and exhibits a dynamical phase transition [12,13]
which, for � = 1, occurs at W ≈ 3.5 [14,15].

To study the dynamical properties of this model in its
various limits, we calculate the spreading of a spin-excitation
as a function of time,

σ 2(t) =
L∑

i=1

(
L

2
− i

)2〈
Ŝz

i (t)Ŝz
L/2(0)

〉
. (4)

Here the expectation value is calculated at infinite tempera-
ture, namely 〈Ô〉 = Tr Ô/N , where N is the Hilbert space
dimension. The spread of the excitation is analogous to
the classical mean-square displacement (MSD). Transport is
characterized by assuming a power law scaling of the MSD,
σ 2(t) ∼ tα . For example, a dynamical exponent of α = 2
(α = 1) indicates ballistic (diffusive) transport. A dynamical
exponent 0 < α < 1 corresponds to subdiffusive transport,
and α = 0 for localized systems. We also define a time-
dependent diffusion constant D(t) as the time-derivative of
σ 2(t) [16–19]. Throughout this paper, the hydrodynamic vari-
able that we will consider will be the asymptotic spin diffusion
coefficient, limt→∞ D(t) → D.

To calculate the MSD, we numerically evaluate the
correlation function starting from a random configuration
of up and down spins and also a random configuration
of the disordered field, when appropriate. By sampling
simultaneously both spin configurations and disorder
configurations, we obtain the required infinite temperature
initial conditions and disorder average. The size of the system
is chosen to be L = 100 − 200, such that all finite size effects
are negligible on the simulated time scales, and the averages
are obtained using at least 100 realizations.

The integration time step is chosen such that no qual-
itative influence on the MSD is observed. For the models
studied in this paper, time steps of 0.05 − 0.2 were found
to satisfy this criterion. Because of the nonlinearity intro-
duced in Eq. (2) due to PM, chaos emerges on a time
scale, dubbed the Lyapunov time, which depends both on the
bond dimension, the realization studied, and the parameters
of the system. Beyond this time, it becomes exponentially
expensive (in time) to obtain convergence of the results on
the level of individual configurations. We note in passing
that the Lyapunov time becomes longer for larger bond
dimension [8].

To assess the convergence of the method, for each con-
figuration determined by the initial configuration of the spins
and the disorder configuration, we calculate the convergence
time, t∗(ω) (here ω designates the configuration). For times
t < t∗(ω) the dynamics generated starting from a given con-
figuration is converged within a required accuracy (2%) by
increasing the bond dimension. For the infinite temperature
initial condition we use in this paper, the convergence time,
t∗, is calculated by averaging t∗(ω). It is crucial to consider
individual configurations to assess the numerical convergence
of the method since averaging over realizations introduces a
fortuitous cancellation of errors; thus while t∗ demarcates a
strict, well-defined convergence metric, apparent convergence
of either transport coefficients or dynamics may occur after
this time. The averaged convergence times for which TDVP
is numerically exact are comparable to convergence times of
conventional DMRG or MPS techniques.

We first demonstrate that the long time limit essential for
the study of hydrodynamic properties and the large bond-
dimension limit, when the method becomes exact, do not
“commute,” in the sense that spurious, apparently converged,
long time behavior may emerge. For this purpose, we will
first consider two integrable models with a known dynamical
behavior. We stress that true hydrodynamic behavior (at least
in the usual sense) is not expected for such models.
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FIG. 1. Clean XX model (� = 0, W = 0). Upper panel: MSD as
a function of time for various bond dimensions (32, 64, 128) averaged
over 200–500 realizations of initial spin configurations and disorder.
More intense shades represent larger bond dimensions and shaded
areas indicate the standard deviation of the observables obtained
using a bootstrap procedure. The black solid line is an exact solution,
obtained numerically. The inset shows the log-log scale of the main
panel with the black dotted line corresponding to diffusion. Lower
panel: Time-dependent diffusion constant D(t). The dashed black
line on both plots represents the convergence time, t∗.

Ballistic regime (� = 0, W = 0, L = 200).

The expected ballistic transport is accurately reproduced
only up to t∗ � 12 for the largest bond-dimension employed
(see Fig. 1). While this system corresponds to free fermions, the
entanglement still grows, limiting the accessible times. Beyond
the convergence time, transport appears to be diffusive with a
diffusion constant of approximately 2.0. There is little variation
of this value across the different bond-dimensions.

Anderson localized regime (� = 0, W = 1, L = 150).

This system is also effectively noninteracting with a MSD
which saturates in time, indicating localization. TDVP fails
to reproduce the plateau for all studied bond dimensions and
displays growth of the MSD with time although the diffusion
coefficient is rather small (see Fig. 2). Results obtained using
the largest bond-dimension (128) follow the exact result
closely up to about t = 70, while those of smaller bond-
dimensions deviate significantly earlier, resulting in t∗ = 19.

Since, asymptotically, the nonlinear equations of TDVP are
expected to result in diffusion, the striking failure of the method
for the two integrable systems above is not surprising.

Diffusive XX-ladder (� = 0, L = 50).

This model is a generalization of Eq. (3) to a two leg
ladder. It is nonintegrable and shows convincing diffusion with
a diffusion coefficient of about D ∼ 0.95 [20,21]. As expected
for short times, the calculations based on the TDVP reproduce
this numerically exact results (see Fig. 3) However, for times
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FIG. 2. Same as Fig. (1) but for the disordered XX model (� =
0, W = 1) for 100 realizations of initial spin configurations and
disorder.

longer than the convergence time, t > t∗ = 8, a crossover to yet
another diffusive regime with much lower diffusion constant
appears (D ∼ 0.2). Moreover, this diffusion coefficient does
not appear to strongly depend on the bond dimension.

The above examples illustrate that the seemingly converged
transport coefficients and long time dynamics within the TDVP
framework can be highly misleading. After demonstrating the
pitfalls in determining the long time properties using TDVP,
we examine its potential as a hydrodynamic method for a
disordered nonintegrable system.
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FIG. 3. Same as Fig. (1) but for clean XX ladder of length L = 50
with isotropic coupling between the rungs. The results were obtained
by averaging 100 realizations of initial spin configurations. The black
dotted line in the bottom panel represents the previously reported
diffusion constant [20].
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FIG. 4. Same as Fig. (1) but for disordered XXZ model in the
subdiffusive regime (� = 1, W = 1.5) for 200 realizations of initial
spin configurations and disorder.

Subdiffusive regime (� = 1.0, W = 1.5, L = 100).

For moderate disorder 0 < W < 3.7, the system is noninte-
grable [19]. While the convergence time here is about t∗ = 18,
semiquantatively similar subdiffusive transport appears also
at much longer times (see inset in Fig. 4). Interestingly, the
exponent extracted from the long time behavior, α = 0.54,
is in excellent agreement with previously reported values,
extracted from the short time dynamics of the same system
using exact diagonalization [19,22–24]. This indicates that
for such a system, true asymptotic dynamical behavior may
indeed be uncovered using moderate numerical costs (small
bond dimensions).

IV. DISCUSSION

In this paper, we have examined how well TDVP captures
the long time behavior of quantum interacting systems. For any
finite time, the method is formally numerically exact, since it
can be converged with respect to the bond dimension and other
numerical parameters. For longer times, convergence cannot
be guaranteed generically, but one hopes that on average the
method will still produce the correct result, due to ergodicity
of the TDVP trajectories on the MPS manifold. This assumes

that the MPS ansatz captures all the relevant local correlations
that produce long time behavior.

By examining integrable and nonintegrable models for
which the asymptotic dynamics are known, we have shown that
the apparent convergence of long time observables, such as the
diffusion coefficient, obtained using TDVP is not indicative
of the accuracy of the method and may be very misleading.
While the dramatic failure of TDVP to reproduce ballistic and
localized dynamics is expected, it is quite unfortunate that the
method appears to fail also for a nonintegrable diffusive model.

Interestingly, the most promising results are obtained for the
nonintegrable disordered XXZ model in the ergodic subdiffu-
sive phase [19], which is the only presented example where the
short time and long time behavior appear to agree very well,
although the same caveats concerning convergence apply. This
is quite surprising, in light of the expectation of asymptotic
diffusion in TDVP-generated dynamics due to the underlying
nonlinearity of the equations of motion. Nevertheless, we
find that the MSD calculated by TDVP is strongly sublinear,
although we cannot rule out a slow approach of the dynamical
exponent to its diffusive value. We would like to point out a
possible connection between the nonlinearity introduced by
the tangent space projector into the TDVP equations of motion
and the nonlinear dependence on the wave function in the
self-consistent second Born approximation [12,25,26] and the
nonlinear Schrödinger equation (NLSE), both of which also
show subdiffusive transport in the presence of disorder [27].

In summary, we have shown that great care must be
exercised examining the apparent convergence of long time
properties within the TDVP approach, which appears to gener-
ically produce either qualitatively or quantitatively incorrect
results. Nevertheless, we have presented one nontrivial system
where the short time (numerically exact) dynamics and the
long time dynamics agree, and therefore hint at the possibility
of an accurate asymptotic description, obtained at a modest
computational effort. It is of great importance to further
investigate the origins of the apparent success of the method in
this case, as well as to extend this study to other nonintegrable
systems in one and two dimensions.
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