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Volkov basis for simulation of interaction of strong laser pulses and solids
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An efficient and accurate basis comprised of Volkov states is implemented and tested for time-dependent
simulations of interactions between strong laser pulses and crystalline solids. The Volkov states are eigenstates
of the free electron Hamiltonian in an electromagnetic field and analytically represent the rapidly oscillating
time-dependence of the orbitals, allowing significantly faster time propagation than conventional approaches.
The Volkov approach can be readily implemented in plane-wave codes by multiplying the potential energy matrix

elements with a simple time-dependent phase factor.
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I. INTRODUCTION

New subfemtosecond pump probe experiments have
brought “an era of control of the quantum world” enabling
scientists to observe electron dynamics in molecules and
solids directly on their natural length (angstrom) and time
(attosecond) scales [1,2]. The availability of superintense laser
pulses [3,4] allows for direct control of electric and optical
properties of materials. New experimental approaches—for
example, coherent extreme-ultraviolet pulse production with
high harmonics generation [5,6] and attosecond streaking
[7]—lead to enhanced control over light—matter interactions.

These unprecedented capabilities call for vigorous theo-
retical and computational studies of the dynamics of laser-
matter interactions in the strong field regime. Semiclassical ap-
proaches describing the coupled light-field induced interband
and intraband dynamics in the framework of the optical Bloch
equations are very popular in interpreting experimental re-
sults [8—10]. More recently, time-dependent density-functional
theory (TDDFT) [11] coupled with classical electromagnetic
fields have also been used to simulate the effect of laser pulses
in electron and nuclear dynamics [12-17].

In this paper, we introduce the Volkov states as an efficient
and accurate basis for time-dependent simulation of interaction
between strong laser pulses and solids. To simulate the effect
of strong, rapidly oscillating electric fields, one needs a very
fine time mesh to represent the temporal change of the wave
function. The Volkov state, the eigenstate of a free electron in
electromagnetic field, absorbs the oscillatory time-dependence
in a phase factor and allows for the use of a coarser time grid.
Using the TDDFT Hamiltonian description of solids, we will
show that using the Volkov state basis allows for significantly
faster time propagation than conventional representations.
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II. FORMALISM

The Volkov states may be expressed as
1 ikr  —idk _ipk
(10 = eV = gl me 0, )

where ¢f ¥ (r) is a plane wave, € is the normalizing volume of
the computational space and the time-dependent Volkov phase
is described by

OK(1) = / Lkt APae P
-[1 .

These states satisfy the time-dependent Schrodinger equation
(TDSE) for a free electron subject to an external vector
potential, A:

0 1
i) = H (O${(r.0),  H' () =3p+ANI O)
[atomic units (a.u.) of i =m, =e = 1/4mey = 1 are used

throughout].
Defining the Hamiltonian as

H=H"0)+VEn=3ip+A0F+ V), 4

where V(r,t) may be the Kohn—Sham potential in TDDFT
calculations, the TDSE takes the form

.0
i W = [HY (0 + Vel 0. ©)
Using the Volkov states as the basis,

Y, =Y a®’ey .0, 6)
k

the TDSE, in matrix representation, becomes

ieVit) = VvV @). (7)
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FIG. 1. Time-dependent phase factors at k = 3.9 a.u. (top) and
k = 0.8 a.u. (middle) included in the analytic solution of the TDSE
using the Volkov Hamiltonian with electric field amplitudes of Ey =
0.1 au. and Ey = 0.5 a.u, respectively. The shape of the vector
potential is presented for arbitrary units (bottom).

Here, the matrix elements of VV are defined as

V() = (o 0| V()| (1), ®)

Vv

and the notation of  column vector c
(e, (),e (0), ..., (1)) has been employed. It is useful at
this point to compare Eq. (7) to the plane-wave representation
of the TDSE:

i) = H V)PV (), )
where
HEY @) = (82 0| H|opY 1) (10)

The difference between the two equations is that in the
Volkov basis representation the matrix elements of the potential
governs the evolution, while in the case of the plane-wave
representation the driving term is the whole Hamiltonian.

In the Volkov basis representation, the stiff %[p +A®D)
operator is removed from the Hamiltonian and absorbed into
the basis as a phase factor. This phase factor is illustrated
for a sample external vector potential in Fig. 1. It is shown
that this time-dependent behavior of the expansion coefficients
occurs on a time scale which may be much shorter than that
of the causal vector potential. The advantage of the Volkov
expansion, then, is clear as this phase factor may be analytically
included rather than numerically propagated.

In the case of a differential equation of the form found in
Egs. (9) and (7),

ié(t) = H(r)e(t), (11)

one may determine a formally exact solution for the expansion
coefficients at some desired time, ¢(¢), as

c(t) = U(t,0)c(0), (12)

where U (¢,0) is known as the time evolution operator

Ul(t,ty) = Texp{—i/ H(t’)dt’}, (13)
0

which includes time ordering, 7. A common method for
approximating this operator is to take discrete small time
steps, At, which allow the Hamiltonian to remain nearly
constant, i.e., H(r) &~ H(¢ + At). In this way, the integral and
time ordering may be satisfied approximately. One may, thus,
rewrite Eq. (12) as

N;
c(t) ~ []‘[ Un}c(ox (14)

n=0

where
Un — e*l’H(tn)Al. (15)

This matrix exponential may be approximated using popular
techniques such as Taylor expansion or the Crank—Nicolson
method.

To illuminate the difference between time propagation on
the Volkov state and plane-wave representations, we present
a model calculation of one electron in a one-dimensional,
periodic Mathieu potential, V(x) = —Vy[1 + cos(2mx/L)],
subject to an oscillating external electric field in Fig. 2. The
parameters of the potential were set to be V, = 0.37 Hartree
and L = 8 Bohr. The electric field used followed the form

Egsin (Z-) sin(wt), if0<t < T,
=

(16)
Ey sin(wt),

otherwise,

which provided a vector potential determined by the
relationship

A(t) = — / E(¢)dt'. (17)
0

Figures 2(a) and 2(b) indicate the oscillatory nature of
the expansion coefficients by plotting the metric (¢) =
f (|IRe{ck}]),dk for a range of field strengths and frequencies.
This metric is related to the time-averaged rate of change of
these coefficients over time, which is indicative of the difficulty
in using Eq. (15) to numerically propagate the wave function.

In this case, where the Hamiltonian is of the form HY + V,
the Volkov state expansion is expected to perform best when
the frequency and, thus, the energy, of the external field is
high enough so that the perturbation of the Mathieu potential
becomes negligible. This is due to the fact that, in this region,
the solution approaches being analytically described by this
representation. Similarly, for the plane-wave representation,
higher frequency fields are easier to describe as the additional
complexity of including a perturbation is minimized. For
both cases, higher field strengths result in more oscillatory
expansion coefficients, indicating a heightened difficulty when
attempting to propagate the wave function. Most importantly,
the Volkov state coefficients are seen to vary significantly
more smoothly overall, which speaks to that representation’s
advantage.

Instead, via inductive reasoning, one may also assess the
two representations by comparing the resulting final den-
sities, p(x) = |w(x,tﬁna])|2, of large time step simulations
to the small time step, converged solutions by the metric
Ap = f | Oconverged (X) — p(x)|dx. These results are presented
in Figs. 2(c) and 2(d) for the same range of field strengths
and frequencies and provide a more straightforward depiction
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FIG. 2. (a), (b) Time-averaged, k-integrated expansion coefficients and (c), (d) density difference for both plane wave and Volkov state
representations over arange of laser frequencies and amplitudes. The influence of the static Mathieu potential results in resonances corresponding
tothe Ey — E; and E| — E; transitions at 0.428 a.u. and 0.154 a.u., respectively, and the £y — E, double photon transition at 0.291 a.u. In
plots (a) and (b), a time step size of 0.005 a.u. has been used, while plots (c) and (d) show the density difference between runs using 0.05 a.u.

and 0.005 a.u.

of the Volkov state expansion’s ability to better represent
laser-induced dynamics. The trends match those found by
analyzing the average change in coefficients. We conclude that
the advantage of the Volkov state basis is best realized for field
strengths above ~0.3 a.u., corresponding to ~1.5V/AA or,
equivalently, an intensity of ~3.0 x 10> W/cm'2.

III. RESULTS FOR TDDFT

Next, we present results for the real-time TDDFT propaga-
tion of a laser-excited diamond using the Volkov state basis for
a variety of laser intensities and frequencies. For this case, we

solve the time-dependent Kohn—Sham equation

B _
ar

where
VE[p1(r) = VH[plx) + V¥[plr) + VI'(r).  (19)

Here, VY is the Hartree potential,

ViLplr) = /

VXC is the exchange-correlation potential, described in this
paper by the adiabatic local density approximation, and V'*"

. 2, yKs
[5[—1V+A(t)] +V [p](l‘)}m(l‘,t), (18)

PI) (20)
[r —r'|
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represents the potential due to the nuclei and core electrons,
described using norm-conserving Troullier and Martins pseu-
dopotentials [18]. In each simulation, the vector potential is si-
multaneously propagated via the Verlet algorithm as explained
in Ref. [19]. The external vector potential was evaluated at
each time step using the analytical integral of the electric field,
Eq. (17), which was defined using a squared sine envelope with
pulse length 7':

2
E(t) = Eysin (”?t) sin (w?). 1)

The results were compared to benchmark real-space grid
calculations employing a Taylor expansion for the discrete time
step time propagator, Eq. (14). Note that the upper limit of the
time step in Taylor propagation is about At = 0.005 a.u.—
larger time steps make the approach unstable. Other time prop-
agation approaches, e.g., Crank—Nicolson, are prohibitively
expensive in grid-based approaches. The Volkov state basis
propagation, in each of the following simulations, was em-
ployed via the split operator description discussed in Ref. [20].
The potential exponential was splitin order to treat the nonlocal
pseudopotential term in the fashion described by Ref. [21].
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FIG. 3. Energy and current results for real-space grid and Volkov
state bases corresponding to laser energy 6.05 eV, intensity 1 x
10" W /cm?, and width 30 fs. The real-space grid representation has
been propagated using the Taylor expansion of the discrete time step
propagator and a time step size of 0.005 a.u. (black). Volkov state basis
results are shown for time step sizes of 0.005 a.u. (blue) and 0.05 a.u.
(cyan). Insets highlight oscillation in early energies and later currents
for Volkov propagations. These calculations were performed using an
8 x 8 x 8 k-point mesh.

For each Volkov state basis simulation, the initial state was
prepared self-consistently using conjugate gradient method for
the plane-wave basis Kohn—Sham Hamiltonian, as opposed to
converging the ground state using a real-space finite difference
approach and Fourier transforming to a plane-wave basis once
finished. This detail is important as the nonlinearity of the
Kohn-Sham equations leads to enhanced sensitivity to the
choice of initial state, and by preparing our system in this
manner, we avoid a small perturbation at ¢ = 0 attributed to the
two different representations of the kinetic energy operator.

In the example calculation, we choose a high intensity laser,
I > 3 x 10'3 W /cm?, because, in this regime, one expects the
Volkov state basis propagation to display significant accuracy
improvement as compared to full Hamiltonian discrete time
step propagation methods. In the case of intense lasers applied
to systems using pseudopotentials to describe frozen core elec-
trons, the upper bound on the range of considered intensities
should be around 10> W / cm? [22]. In the following tests, the
diamond unit cell is impacted by a laser pulse of intensity
1 x 10" W/cm?.

The Volkov state propagated energy and current, shown in
Fig. 3, behave well for large time step sizes. The results for
both 0.005 a.u. and 0.05 a.u. time step sizes nearly overlap.
While the overall features of these results are well represented
by the Volkov propagation, one notices the effect of nonlinear
elements occurring in the Hamiltonian, namely the Hartree
and exchange-correlation potentials. These terms lead to
unavoidable small oscillations in the early energy. While these
nonphysical features cannot be completely eliminated, they
are significantly diminished by choosing a smaller time step
size, see the energy inset of Fig. 3. These oscillations lead to
growing noise in the resulting current, shown in the current
inset of Fig. 3.

Here, the increased magnitude of the current lessens the
impact of the oscillations related to the Volkov state basis
propagation. Figure 4 shows the spectral response in which
the first few harmonic resonance peaks are pronounced. Even
when using a time step size of 0.05, the Volkov state basis
propagation is capable of distinguishing modes related to the

Taylor At = 0.005

et

Volkov At = 0.005

intensity (arb. units)

Volkov At = 0.05

i i i i N I T N S B I I T N S N |
0 2 4 6 8§ 10 12 14 16 18 20 22 24
harmonic order

FIG. 4. High harmonic generation results for both real-space grid
and Volkov state bases corresponding to the current results shown in
Fig. 3. The employed window function is the pulse envelope.
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third and fifth harmonics. This example illustrates that, for
high intensities, the Volkov state basis representation is capable
of accurately describing complex electron-density dynamics
using time step sizes roughly an order of magnitude greater
than that of the real-space Taylor propagation method.

It is important to note that the Volkov potential matrix
elements are easily related to the plane-wave potential matrix
elements by the relation

sk pk
Vo = Vel @ =), (22)

where VY (1) represents (¢f" |V (1)|gp" ) and does not carry
any direct contributions from the vector potential. This rep-
resentation makes clear the simplicity of calculating Volkov
state matrix elements. One may transform existing plane-
wave basis programs into Volkov state basis programs in
a straightforward manner by calculating the Volkov phase
difference via integration of the vector potential and applying
the resulting phase factor to existing plane-wave potential
matrix elements, which are readily available and employed in
many popular codes—examples include VASP [23], ABINIT
[24], and QUANTUM ESPRESSO [25]. Furthermore, due to the
fact that this Volkov phase difference equals zero at t = 0, one
may calculate the time-independent field-free ground state by
use of existing plane-wave basis methods. Note, however, that
plane-wave codes typically cut off the plane waves above a
preset kinetic energy value to suppress the basis dimension.
In time-dependent calculations of systems subjected to strong

laser pulses, the inclusion of high kinetic energy plane waves
may be necessary.

IV. CONCLUSION

In conclusion, the Volkov state basis was implimented
and tested for representing periodic structures in both one-
and three-dimensional cases against the plane-wave basis and
real-space grid representations, respectively. In either scenerio,
the Volkov state basis propagation was capable of besting the
conventional methods by allowing for a significant increase
in time step size when describing interactions with fields
of intensity greater than 3 x 10'* W/cm?. For the case of
representing bulk diamond, the Volkov state basis propagation
successfully produced current oscillation modes related to
the third and fifth harmonics, even at large time step sizes.
This approach may be easily implemented within existing
plane-wave codes by the straightforward calculation of the
time-dependent Volkov phase factors.
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