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We develop a Liouville perturbation theory for weakly driven and weakly open quantum systems in situations
when the unperturbed system has a number of conservations laws. If the perturbation violates the conservation
laws, it drives the system to a new steady state which can be approximately but efficiently described by a
(generalized) Gibbs ensemble characterized by one Lagrange parameter for each conservation law. The value of
those has to be determined from rate equations for conserved quantities. Remarkably, even weak perturbations
can lead to large responses of conserved quantities. We present a perturbative expansion of the steady state density
matrix; first we give the condition that fixes the zeroth-order expression (Lagrange parameters) and then determine
the higher-order corrections via projections of the Liouvillian. The formalism can be applied to a wide range
of problems including two-temperature models for electron-phonon systems, Bose condensates of excitons or
photons, or weakly perturbed integrable models. We test our formalism by studying interacting fermions coupled
to nonthermal reservoirs, approximately described by a Boltzmann equation.

DOI: 10.1103/PhysRevB.97.024302

I. INTRODUCTION

In equilibrium many-particle systems can be efficiently
described by Gibbs ensembles, characterized by one Lagrange
parameter (inverse temperature, chemical potential) for each
exactly conserved quantity (energy, particle number). Such
a simple but powerful description is, in general, absent for
driven nonequilibrium systems. As long as weak perturbations,
which drive the system out of equilibrium, have small effects
one can resort to perturbation theory. Kubo formulas, for
example, describe the response to time-dependent Hamiltonian
perturbations. Also for open systems described by Lindblad
operators similar formulations of perturbation theory can be
developed [1–9]. If the density matrix of the unperturbed
system is not unique (as is the case for all Hamiltonian
systems) one has to use degenerate Liouville perturbation
theory [1,7].

There are many situations where even weak perturbations
of interacting many-particle systems can have large effects. A
famous example is the Bose-Einstein condensation of excitons
and polaritons [10–12]: irradiation by light creates more and
more excitons which equilibrate approximately and form a
Bose-Einstein condensate. Importantly, the exciton number
is approximately conserved; thus even weak pumping can
compensate for exciton losses and leads to large densities
of these excitations. Similarly, condensations of photons or
magnons have been observed [13–17].

This is a general phenomenon: whenever approximate
conservation laws exist, small perturbations which weakly
break those conservation laws can drive the system out of
equilibrium, to a steady state completely different from the
initial one. In the example given above, the approximately
conserved quantity is the exciton number. Other examples use
the approximate conservation of spin to induce large nuclear
spin polarization [18] for medical applications or use the weak
coupling of electrons and phonons to induce vastly different

temperatures in the two subsystems [19–23]. In all cases, the
long-time steady state—a Bose-Einstein condensate for the
exciton example—is very different from any thermal state.
Nevertheless, simple approximate theoretical descriptions can
be found, e.g., by introducing an effective chemical potential
for the excitons.

As we have argued recently in Ref. [24], this approach works
quite generally: generalized Gibbs ensembles characterized by
Lagrange parameters for approximately conserved quantities
give an approximate description of the steady state of weakly
perturbed driven systems. They describe situations where the
driven system is completely different from the initial one, with
Lagrange parameters determined by the perturbations. The
nearly conserved quantities—e.g., the exciton number in the
example discussed above—show a strong (nonlinear) response
to weak perturbations. In this paper we develop a perturbation
theory around these generalized Gibbs ensembles and show
that deviations remain small as long as the perturbations driving
the system out of equilibrium are small. This is, however, only
true if the correct zeroth-order approximation, i.e., the correct
generalized Gibbs ensemble, is chosen as the reference point of
the perturbative expansion. The formalism is developed both
for Lindblad and unitary time-periodic (Floquet) perturbations.

From this perspective our investigation is related to other
Floquet studies in the presence of interactions and/or coupling
to the environment [25–33]. For example, in Ref. [33] exper-
iments of the Esslinger group on a Floquet realization of the
Haldane model [34] have been modeled based on the derivation
of a Floquet-Boltzmann equation [31,33]. The concept of
a (time-dependent) temperature was used to describe the
heating of interacting Floquet systems for situations where
energy-conserving scattering processes dominate scattering
events, where the energy changes. A related approach is taken
when describing weakly coupled electron-phonon systems
out of equilibrium. Here one often associated two different
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temperatures with the two subsystems with energies that are
separately approximately conserved [19–23,35]. In Ref. [24]
we used generalized Gibbs ensembles to describe the steady
state of spin chains coupled to phonons and driven by an exter-
nal laser, modeled by a periodic driving. In these systems an
infinite number of approximately conserved quantities exists
due to the integrability of the underlying spin-1/2 Heisenberg
model. As the heat current is also approximately conserved,
one can realize large heat currents by weak driving.

From a more general point of view, our theoretical approach
is based on the idea to project the dynamics of the density
matrix on a few relevant degrees of freedom—in our case the
approximate conservation laws. Such projection formalisms
are widely used by many authors [36–43]. In contrast to these
studies, we will use generalized Gibbs ensembles as a reference
point and we focus our calculation on the computation of the
steady state.

The article is organized in the following way: Sec. II
prepares the perturbative setup; Sec. III gives the prescription
on how to find the zeroth-order approximation to the steady
state via the introduction of a superprojector. The latter is used
in Sec. IV to determine corrections around the approximate
description of the steady state both for Lindblad and unitary
time-periodic (Floquet) perturbations. The applicability of
our degenerate perturbation theory is tested in Sec. V on
an example of interacting fermions coupled to nonthermal
reservoirs which induce weak gain and loss of particles. We
first perform an exact calculation on a small system and then
use an approximate description by Boltzmann dynamics in the
thermodynamic limit.

II. MODEL

We consider a many-particle quantum system described
by the density operator ρ. Its dynamics is determined from
the Liouville equation ρ̇ = L̂ρ, where L̂ is the Liouvillian
superoperator. We consider situations where a Hamiltonian
system is weakly perturbed. Therefore we split L̂ = L̂0 + L̂1

into two parts, where L̂0 describes the dominant unitary
Hamiltonian evolution and L̂1 a weak perturbation of strength
ε which drives the system out of equilibrium,

L̂0ρ = −i[H0,ρ], L̂1ρ =
{

−i[εH1,ρ],

εD̂ρ.
(1)

Most importantly, the unperturbed system described by H0

has the property of having additional conserved quantities
Ci, [H0,Ci] = 0, i = 1, . . . ,Nc. We are interested both in
cases where Nc is small or when Nc is extensive as is the case
when H0 is integrable. The perturbation L̂1 is of the unitary
or/and of the Markovian Lindblad form. In H1 we consider both
static and time-dependent perturbations which are periodic in
time. The Lindblad dynamics is described by

D̂ρ =
∑

α

(
LαρL†

α − 1

2
{L†

αLα,ρ}
)

(2)

with Lindblad operators Lα . We consider only translationally
invariant perturbations and situations where a unique (Floquet)
steady state is obtained. We assume that the perturbations break
all conservation laws considered above. Remaining exactly

conserved quantities are fixed by initial conditions and can
easily be included in the theoretical description but are omitted
in the following to simplify notations.

We are mainly interested in the nonequilibrium steady
state. We split its density operator ρ∞ into the zeroth-order
approximation ρ0 and corrections δρ,

lim
t→∞ ρ(t) = ρ∞ = ρ0 + δρ (3)

with ρ0 = limε→0 limt→∞ ρ(t). Note that the limits t → ∞
and ε → 0 do not commute: as we will show, small perturba-
tions can completely change the density matrix in the long-time
limit.

For perturbations periodic in time, the density matrix is
periodically oscillating in the long-time limit but one can still
use the above formulas by interpreting them in Floquet space;
see Sec. III B. The higher-order corrections δρ are formally
given by

δρ = −L̂−1L̂1ρ0, L̂−1 → lim
η→0

(L̂ − η1̂)−1, (4)

where we used L̂ρ∞ = L̂1ρ0 + L̂δρ = 0 and L̂0ρ0 = 0. The
inverse L̂−1 should be interpreted using infinitesimal regular-
ization η; see Appendix A. Due to the conservation laws of
H0, L̂0ρ0 = 0 has no unique solution. While Eq. (4) is formally
valid for arbitrary ρ0 with L̂0ρ0 = 0, the correction δρ will
only be small if ρ0 is correctly chosen as discussed in the next
section.

III. ZEROTH ORDER: GENERALIZED GIBBS ENSEMBLE

We have defined ρ0 to fulfill the equation L̂0ρ0 = 0. In
the thermodynamic limit, generic steady states of interacting
many-particle system with (quasilocal) conservation laws Ci

approach states which can be described by a (generalized)
Gibbs ensemble (GGE)

ρ0 = e− ∑
i λiCi

Tr[e− ∑
i λiCi ]

. (5)

More precisely, the system as a whole may be in a different
ensemble (e.g., a canonical ensemble) but for the computation
of local observables one expects that the different ensembles
are generically equivalent in the thermodynamic limit. One
manifestation of this is the eigenstate thermalization hypoth-
esis [44,45] which argues that a generic pure state becomes
equivalent to a Gibbs state in the thermodynamic limit. Equa-
tion (5) has also been extensively tested for integrable models
[46–74] which appear to approach a state described by ρ0

after a quench. For certain local initial states (satisfying clus-
ter decomposition property) this has been shown rigorously
[74]. It has been argued recently that there exists a protocol
based on truncated GGEs, convergent in number of included
conservation laws [75].

Note that the parameters λi in Eq. (5) have not yet been
determined. Most importantly, they are not fixed by initial
conditions as the Ci are not conserved in the presence of the
perturbations described by L̂1. Instead the λi or, equivalently,
the expectation values of the Ci have to be determined from
rate equations governed by the weak perturbations. As we will
show next, these will lead to changes of the λi of order O(1).
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A. Determination of λi

All GGEs satisfy L̂0ρ0 = 0 by definition. Therefore the
perturbation L̂1 fixes the steady state parameters {λi}. Tech-
nically, we determine the {λi} from the condition that the
state is stationary in combination with the condition that
δρ should be small in the limit ε → 0. The first condition
ensures that 〈Ċi〉 = 0, which is evaluated using straightforward
perturbation theory:

〈Ċi〉 = Tr[CiL̂ρ∞]

= Tr[CiL̂1ρ0] + Tr[CiL̂1δρ] ≈ Tr[CiL̂1ρ0] (6)

for i = 1, . . . ,Nc. Above we used that Tr[CiL̂0δρ] = 0 due
to L̂†

0Ci = i[H0,Ci] = 0 and that δρ is small. Note that the
adjoined of a Liouvillian is defined by the equation Tr[AL̂ρ] =
Tr[(L̂†A)ρ]. We therefore obtain from 〈Ċi〉 = 0 the condition
fixing ρ0:

Tr[CiL̂1ρ0]
!= 0. (7)

If Tr[CiL̂1ρ0] = 0 is trivially fulfilled for all ρ0, one has to
consider higher-order perturbation theory; see below.

Assuming for the moment that Tr[CiL̂1ρ0] �= 0 for all
i = 1, . . . ,Nc and generic ρ0, then the Nc equations (7) can
be used to fix the Nc Lagrange parameters λi . These equations
can be viewed as rate equations, which describe how the
perturbations change the approximately conserved Ci . Within
the approximation used above, the size of the perturbation,
i.e., the value of ε, completely drops out of the equation for the
steady state. Therefore it fixes the Lagrange parameters (and,
accordingly, also ρ0) to order ε0. While to this order the size of
the perturbation is not important, its structure determines the
Lagrange parameters and induces changes of order 1.

We now consider situations where Tr[CiL̂1ρ0] = 0 for all
ρ0. In this case one has to use perturbation theory at least
to order ε2 to fix ρ0 to order ε0. This is always the case
for Hamiltonian perturbations where L̂1ρ0 = −i[εH1,ρ0] (this
follows from [Ci,ρ0] = 0 and the cyclic property of the trace).
It corresponds to the well-known fact that transition rates, e.g.,
calculated from Fermi’s golden rule, are always quadratic in
the perturbation. To calculate 〈Ċi〉 to order ε2, δρ has to be
expanded up to O(ε) using Eq. (4) and the relation

(X + Y )−1 = X−1 − (X + Y )−1YX−1, (8)

with X = L̂0 and Y = L̂1. All inverses here and in the
following are regularized as in Eq. (4). From this equation
we find that δρ = −L̂−1

0 L̂1ρ0 + L̂−1L̂1L̂−1
0 L̂1ρ0. A priori, it

is not obvious that the first term linear in L̂1 in this expression
is large compared to the second one quadratic in L̂1 due
to possible singularities in L̂−1 and we will indeed show
that this is in general not the case. Nevertheless, using the
machinery developed in Sec. IV, we can show that for the rate
equation under discussion, one can make this approximation;
see Appendix E 2. Therefore we obtain from Tr[CiL̂1δρ] = 0
the condition

Tr
[
CiL̂1L̂−1

0 L̂1ρ0
] != 0. (9)

As above, the size of ε drops out of this equation which
therefore fixes ρ0 to order ε0 in situations where (7) is trivially
fulfilled. For combined unitary and Markovian perturbations

terms from Eq. (7) and Eq. (9) have to be considered simulta-
neously.

There can be situations where there is no contribution of
order ε2 to the decay rate of a conservation law such that
the left-hand side of both Eq. (7) and Eq. (9) vanishes. This
happens, for example, for an integrable Heisenberg chain
perturbed by next-nearest-neighbor interactions as discussed
in Ref. [76] many years ago. Also in Refs. [77,78] where
the perturbed L-site Ising model and Heisenberg model with
strong magnetic field were studied, the boundary Lindblad
operators fix the density matrix completely only after terms
up to order L or L − 1 were included, for odd and even
system sizes, respectively. In such cases, one has to use Eq. (8)
recursively to obtain higher-order corrections.

A nontrivial test of the order of perturbation that fixes
ρ0 can be obtained by exact (numerical) calculation of the
Liouville gap, � ≡ min(|Re λ|; Re λ < 0), L̂ρ = λρ, on a
system of smaller size. If scaling � ∼ εk is obtained then ρ0 is
determined by the condition of order εk , which is for example
k = 1 for Eq. (7) and k = 2 for Eq. (9).

B. Periodic driving

Above we have discussed stationary states obtained for
t → ∞ in systems with time-independent Liouvillians. The
same approach can, however, also be used for systems with
periodic driving. Here we focus on a case where L̂0 and the
associated conservation laws Ci are time-independent, while
L̂1(t) = L̂1(t + T ) with period T . In this case only minor
modifications of the formulation given above are necessary. In
the long-time limit the density matrix always has oscillatory
(Floquet) components,

ρ(t) =
∑

n

e−inωtρ(n), n ∈ Z, (10)

where ρ(−n) = ρ(n)†, ω = 2π/T . The analog of the unique
stationary state of Eq. (3) is a state with time-independent
Floquet components ρ(n). Due to the limit ε → 0 the zeroth-
order ρ0 contains only the time-independent ρ(n=0) component.
It is useful to organize the Floquet components into a vector
ρ = {. . . ,ρ(−1),ρ(0),ρ(1), . . . } and promote the Liouvillian into
a (static) matrix

L̂ = L̂0 + L̂1, (11)

L̂nm

1 = L̂n−m
1 = 1

T

∫ T

0
L̂1(t)eiω(n−m)t dt, (12)

L̂nm

0 = (inω + L̂0)δnm. (13)

Then the condition for ρ0, Eq. (9), has to be reformulated
in the above sense: with ρ0 and Ci interpreted as vectors
with a nonzero n = 0 component and L̂1, L̂0 as matrices.
L̂1 contains off-diagonal terms due to periodic driving and
diagonal terms in case of static perturbations. L̂0 contains in
addition to diagonal terms due to L̂0 also inωδnm due to explicit
time dependence of ρ(t), ρ̇ = ∑

n e−inωt (−inωρ(n) + ρ̇(n)).
Stationarity of conserved quantities Ci , Eq. (9), in case of
periodic driving applies to their time averages.
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C. Projection operators and effective forces

When investigating corrections δρ of the steady state to
the zeroth-order approximation ρ0 [or when investigating the
time dependence of ρ(t)], one has to distinguish corrections
within the slow subspace with L̂0δρ‖ = 0 from those per-
pendicular to this subspace with L̂0δρ⊥ �= 0. Therefore it is
useful to introduce a superprojector P̂ρ0 which projects on the
(density-matrix) space tangential to the GGE manifold at the
expansion point ρ0. In the following, we will omit the argument
ρ0, using P̂ = P̂ρ0 to avoid a cluttering of notations.

Small changes within the manifold around ρ0 can be
parametrized by δρ‖ = ∑

i δλi ∂ρ0/∂λi where δλi are arbi-
trary infinitesimal changes of the Lagrange parameters. The
superoperator P̂ , projecting on these density matrices, and its
complement Q̂ are uniquely given by [37]

P̂X ≡ −
∑
i,j

∂ρ0

∂λi

(χ−1)ij Tr[CjX], (14)

Q̂X ≡ (1̂ − P̂ )X = X − P̂X, (15)

where χij = −Tr[Ci ∂ρ0/∂λj ] = 〈CiCj 〉0,c is a matrix of gen-
eralized susceptibilities. We use the notation Tr[Aρ] = 〈A〉
and Tr[Aρ0] = 〈A〉0 for expectation values with respect to
ρ0. In addition, 〈AB〉0,c

= 〈AB〉0 − 〈A〉0〈B〉0 stands for the
connected correlation function. Q̂ and P̂ have the property
Q̂2 = Q̂ and P̂ 2 = P̂ with P̂ δρ‖ = δρ‖ and are therefore
projectors. By construction, P̂ δρ is for arbitrary δρ a linear
combination of ∂ρ0/∂λi and therefore an element of the
tangential space. Note that P̂ ρ0 �= ρ0 as P̂ is a not a projector
on the space of GGE density matrices but instead a projector on
the tangential space at ρ0. Note that Ref. [38] uses an alternative
projector, which adds an extra term to guarantee P̂ ρ0 = ρ0.

The superoperator P̂ †, adjoint to P̂ , has also a direct
physical interpretation. The natural scalar product within our
approach is Tr[Aδρ], where A is an operator and δρ a density
matrix, and therefore Tr[(P̂ †A)δρ] = Tr[A(P̂ δρ)]. We obtain

P̂ †A = −
∑
ij

Ci (χ−1)ji Tr

[
A

∂ρ0

∂λj

]
. (16)

P † acts on operators and maps each operator onto the space
of conserved operators. It gives the part of an operator A

which does not decay when the dynamics of the system is
described by L̂0 only. The superoperator P̂ † naturally shows
up when studying the dynamics of systems with conservation
laws Ci . For example, the projection operator used in the
memory matrix formalism [76,79–82] can (in this case) be
identified with P̂ †. The operator can also be used to express
the Drude weight of conductivities using the seminal results of
Mazur [83] and Suzuki [84]. The Drude weight D(T ) is defined
as the prefactor of a δ function in the optical conductivity,
Re[σ (ω)] = πD(T )δ(ω) + σreg(ω). At finite temperatures T ,
the Drude weight is finite in situations where conservation
laws Ci prohibit the decay of the current. Therefore the Drude
weight in a thermal state [83–85] can simply be written in
terms of the static cross susceptibility of J and P̂ †J , D(T ) =
β

L
〈(P̂ †J )J 〉c, where β = 1/T and L is the system size.
Below, we will heavily rely on P̂ when deriving perturbation

theory for the stationary state. P̂ can, however, also be used

to define generalized forces allowing us to track the changes
of the Lagrange parameters during time evolution [36]. This
allows us to calculate, e.g., the heating of a driven system, and
thus to obtain an intuitive picture on the dynamics. Assuming
that a state ρ0(t) with time-dependent Lagrange parameters
λi(t) describes the system approximately, we can use

P̂ ρ̇ ≈
∑

i

∂ρ0

∂λi

∂λi

∂t
=

∑
i

∂ρ0

∂λi

Fi,

λ̇i = Fi ≈ −
∑

j

(χ−1)ij Tr[Cj ρ̇] = −
∑

j

(χ−1)ij 〈Ċj 〉,

(17)

to obtain generalized forces Fi governing to leading order
the dynamics of the Lagrange parameters. Depending on the
studied case it is enough to include only the dominant contri-
bution, e.g., Fi = −∑

j (χ−1)ij Tr[Cj L̂1ρ0]. In this paper, we
will mainly focus on corrections to the stationary state, but we
will discuss dynamics briefly in the context of the Boltzmann
equation.

The stationarity condition (7) can be then rewritten as

P̂ (L̂1ρ0) = 0. (18)

Geometrically it means that L̂1ρ0 must be perpendicular (⊥)
to the slow manifold. Similarly the condition for unitary
perturbation, Eq. (9), can be transcribed as

P̂
(
L̂1L̂−1

0 L̂1ρ0
) = 0. (19)

In both cases we require that the forces driving the system have
effectively to be perpendicular to the GGE manifold.

Note also that in the case of periodic driving P̂ should
be understood as a projector on the slow modes within the
n = 0 Floquet sector, Eq. (10). Therefore P̂ L̂1ρ0 = 0 and
P̂ L̂1L̂−1

0 L̂1ρ0 = P̂ L̂1Q̂(Q̂L̂0Q̂)−1Q̂L̂1ρ0.

D. Numerical construction of ρ0

In cases where the relevant conservation laws are not known,
one can construct for finite systems also the zeroth-order result
by brute force using exact diagonalization [24].

Using the exact eigenstates of H0,H0|n〉 = E0
n|n〉, the set

of conservation laws is given by

Q = {|n〉〈m| with E0
n = E0

m

}
. (20)

To use these conservation laws in Eq. (14) which is written for
Hermitian conservation laws, one has to construct the corre-
sponding Hermitian operators |n〉〈m| + |m〉〈n| and (|n〉〈m| −
|m〉〈n|)/i for n �= m. Denoting elements of Q by Qi ∈ Q,
one can write ρ0 = ∑

αiQi which fulfills by construction the
condition L̂0ρ0 = 0. In this case Eq. (7) is a linear equation for
the parameters αi which can be solved by finding the kernel of
the matrix

L̂Q
nm = Tr [Q†

nL̂1Qm]. (21)

Similarly, the exact solution of Eq. (9) is obtained by finding
the eigenvector with eigenvalue 0 of

L̂Q
nm = −Tr

[
Q†

nL̂1L̂−1
0 L̂1 Qm

]
. (22)
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Note that the dimension of L̂Q
nm is much smaller than the

dimension of the full Liouvillian superoperators. For a spin-
1/2 XXZ Heisenberg chain with L sites in the presence of
an external magnetic field, we found in Ref. [24] that the
dimension of Q is approximately 2 × 2L (the factor 2 arises
from degeneracies in the spectrum), to be compared with
(2L)2 = 4L, the dimension of density matrices on which the
Liouville superoperators act.

A tricky, unresolved question is under what condition the
construction above converges in the thermodynamic limit.
For example, there could in principle be situations where a
conservation law exists only in the thermodynamics limit but
not in the finite-size system. A related question is whether the
limits ε → 0 and L → ∞ commute or not.

When using the set Q of conserved quantities, the projector
P̂ has to be replaced by P̃ ,

P̃X =
∑
n,m

〈n|X|m〉δE0
n,E0

m
|n〉〈m| (23)

projecting on the density operator subspace spanned by
|n〉〈m|, E0

n = E0
m. This type of projector has been used also in

other perturbative studies of Liouville dynamics [1,7] imple-
menting degenerate perturbation theory for superoperators in
the case of weak openness.

IV. PERTURBATION THEORY

Projectors P̂ ,Q̂ are necessary to develop the perturbation
theory of corrections to ρ0, given to all orders by δρ in Eq. (4).
Below we present a controlled expansion of the inverse L̂−1,
which removes possible singularities and separates different
orders O(εn) within the steady state. With ‖ and ⊥ we denote
the density matrix subspaces, which are in the image of P̂

and Q̂, respectively, δρ = P̂ δρ + Q̂δρ = δρ‖ + δρ⊥. Note that
only the tangential component is relevant for the expectation
values of conserved operators Ci ,

〈Ci〉 = Tr[Ci(ρ0 + δρ)] = Tr[Ci(ρ0 + δρ‖)], (24)

as Q̂†Ci = 0 for conserved quantities. δρ⊥ does, however,
affect expectation values of other operators.

A. Markovian perturbation

First we consider Liouvillians where the perturbations break
all relevant conservation laws already to linear order in L̂1

such that P̂ L̂1P̂ has no zero modes. Otherwise the procedure
explained in Sec. IV C is needed.

Our goal is to expand δρ = −L̂−1L̂1ρ0, Eq. (4), using that
we determined ρ0 from the condition P̂ L̂1ρ0 = 0, Eq. (18).
With this definition, we obtain

δρ = −L̂−1Q̂L̂1ρ0, (25)

where the Liouville inverse has to be interpreted using a regu-
lator as in Eq. (4); see also Appendix A. Due to its conservation
laws, L̂−1

0 is singular. To avoid these singularities, we expand
L̂−1 around L̂0 + P̂ L̂1P̂ using L̂1 = (P̂ + Q̂)L̂1(P̂ + Q̂) and

that P̂ L̂1P̂ is invertible in P subspace,

L̂−1Q̂ = (L̂0 + L̂1)−1Q̂ = (L̂0 + P̂ L̂1P̂ )−1

×
∞∑

n=0

[−(P̂ L̂1Q̂ + Q̂L̂1P̂ + Q̂L̂1Q̂)

× (L̂0 + P̂ L̂1P̂ )−1]nQ̂. (26)

For power counting in ε, it is important to realize that

(L̂0 + P̂ L̂1P̂ )−1P̂ = (P̂ L̂1P̂ )−1P̂ ∼ O(1/ε),

(L̂0 + P̂ L̂1P̂ )−1Q̂ = (Q̂L̂0Q̂)−1Q̂ ∼ O(1), (27)

where we have used P̂ L̂0 = L̂0P̂ = 0. This reflects that the
dynamics in the subspace of approximately conserved quanti-
ties is slow, while it is fast in the perpendicular space. Note that
(P̂ L̂1P̂ )−1 and (Q̂L̂0Q̂)−1 in Eq. (27) should be interpreted as
inverses within the P and Q subspaces, respectively, where
L̂0 and L̂1 are invertible. One first performs projection and
then the inversion within the subspace that the dynamics was
projected on. Moreover, Eq. (27) gives an alternative derivation
of Eq. (18): the steady state ρ0 has to fulfill P̂ L̂1ρ0 = 0,
otherwise corrections δρ ∼ L̂−1P̂ L̂1ρ0 ∼ 1 which contradicts
our perturbative approach in the limit ε → 0; see Appendix E 2.

The combination of Eqs. (25), (26), and (27) allows us
to obtain a straightforward expansion of δρ in powers of ε.
The steady state density matrix has a distinct structure in the
tangential (‖) and the perpendicular (⊥) subspace in all orders;
therefore one has to consider the contributions from the two
subspaces separately. To linear order in ε we obtain

δρ ≈ δρ1,‖ + δρ1,⊥ + O(ε2),

δρ1,‖ = (P̂ L̂1P̂ )−1 P̂ L̂1Q̂ L̂−1
0 Q̂L̂1ρ0, (28)

δρ1,⊥ = −L̂−1
0 Q̂L̂1ρ0. (29)

For brevity we use the notation Q̂(Q̂L̂0Q̂)−1Q̂ = Q̂L̂−1
0 Q̂,

where L̂−1
0 should be understood as an inverse within Q

subspace only. We would like to stress again that ρ0 already
contains effects of order ε0. But after ρ0 has been correctly
chosen, δρ does indeed vanish for ε → 0, δρ ∼ ε. In the ‖
space, one has, however, to expand to second order in L̂1 to
obtain the correction of order ε due to the presence of the
(P̂ L̂1P̂ )−1 term. This contributes as a 1/ε factor, resulting in
a term proportional to ε2/ε = ε. In the perpendicular space no
such issue arises. The fact that perturbation theory for steady
states has a different structure compared to perturbation theory
in thermal equilibrium is well known, see, e.g., Ref. [86], and
can simply be understood from the fact that rate equations
determining the steady state have to be readjusted in the
presence of perturbations.

Note that the change δρ‖ can in principle be absorbed in a
redefinition of the Lagrange parameters, while δρ⊥ describes
contributions which cannot be captured by a GGE ensemble.

For concrete calculations one needs to compute

(P̂ L̂1P̂ )−1P̂X = −
∑
pr

∂ρ0

∂λp

(M−1)pr Tr[CrX], (30)
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22

33

FIG. 1. Diagrammatic depiction of the structure of corrections to
the zeroth-order density matrix ρ0. One draws all possible combina-
tions of open and filled circles starting to the right with a filled circle
connected to a small square representing ρ0. Then one eliminates all
diagrams with a direct connection of two open circles. The order of the
diagram is given by the number of filled circles, the sign by the total
number of lines. The number of terms to order εn is given by 2n. Note
that the corrections to order n in the perpendicular and parallel sector
are simply related by the relation δρn,‖ = −(P̂ L̂1P̂ )−1(P̂ L̂1Q̂) δρn,⊥.

where M−1 is the inverse of matrix M with components Mpr =
−Tr[Cp L̂1(∂ρ0/∂λr )]; see Appendix B. Then, for example, the
change of the expectation value of a conserved operator Ci is
given linearly in ε by δ〈Ci〉 ≈ 〈Ci〉1:

〈Ci〉1 = Tr
[
Ci(P̂ L̂1P̂ )−1P̂ L̂1Q̂L̂−1

0 Q̂L̂1ρ0
]

(31)

=
∑
jk

χij (M−1)jk Tr
[
CkL̂1Q̂L̂−1

0 Q̂L̂1ρ0
]
. (32)

Higher-order corrections can be obtained in a straightfor-
ward way from the Taylor expansion, Eq. (26), in combination
with the rules of Eq. (27) which show how the inverse (L̂0 +
P̂ L̂1P̂ )−1 has to be evaluated. Equation (31) and its higher-
order generalization can be rewritten in terms of standard
correlation functions as we discuss in Appendix D where
concrete formulas for 〈Ci〉1 and 〈Ci〉2 ∼ O(ε2) are given.

In Fig. 1 we give a graphical representation of the relevant
terms in the tangential (‖) and the orthogonal (⊥) subspace.
As written on the left of the figure, the two types of inverse
Liouville superoperators in P and Q space are shown as
white and black circles, respectively. There are three types of
links, Q̂L̂1Q̂, P̂ L̂1Q̂, and Q̂L̂1P̂ , connecting black and black,
white and black, and black and white circles, respectively. This
simply follows from the rule that P̂ Q̂ = 0 = Q̂P̂ .

Starting from Q̂L̂1ρ0 (small square with thin line) to the
right, one attaches circles and lines in all allowed combinations.
The color of the last circle on the left determines whether the
density matrix operator is in P or Q space. The power in ε

is determined by the number of lines minus the number of
white circles as (P̂ L̂1P̂ )−1 ∼ 1/ε. The sign is simply given by
(−1)NL where NL is the number of lines.

We have checked that the formulas discussed above can al-
ternatively be derived starting from projection-operator-based
time-dependent perturbation theories in the version discussed
by Breuer and Petruccione [42,43].

As a remark we should point out that there is no need for any
additional normalization since Tr δρ = 0 which is guaranteed
by the regularization of the inverse operators; see Appendix A.

B. Missing conservation laws

Above, we have assumed that all relevant conservation laws
of the unperturbed system are known and have been included
in the construction of the GGE (or that ρ0 has been constructed
numerically; see Sec. III D). It may, however, happen that either
not all conservation laws are known or that it is just technically
impossible to include them all. This might, for example, be
the case in integrable systems where an infinite number of
conservation laws exists.

In this case one may try to approximate the system by a
truncated GGE,

ρ
[t]
0 = exp

[− ∑
i λ

[t]
i C

[t]
i

]
Tr

[
e− ∑

i λ
[t]
i C

[t]
i

] , (33)

considering only a finite subset of conserved operators. We
denote by P̂t the projector on the space tangential to the
truncated GGE, and by χ [t t] the matrix of susceptibilities, all
defined as above.

A selection criterion for the truncated space could be, for
example, to consider only the most local conservation laws,
containing less than a certain number of derivatives in a
continuum model or having a support of less than a certain
number of sites for a lattice model. A truncated GGE was, for
example, used in Ref. [24]. In the following we will consider
two questions: (i) How can one compute perturbatively the
effects of the “other” conservation laws? (ii) How does the
perturbation theory developed above signal the presence of
missing conservation laws?

In the following we denote the missing conservation laws
not included in the truncated GGE by C

[m]
i . Similarly, we de-

fine susceptibility matrices χ
[mm]
ij = 〈C[m]

i C
[m]
j 〉0,c and χ

[mt]
ij =

〈C[m]
i C

[t]
j 〉0,c , where 〈·〉0 stands for expectation values with

respect to ρ
[t]
0 . Without loss of generality, we assume that

they are orthogonal to the C
[t]
i , χ

[mt]
ij = 0 for all i,j (if this

is not the case, one can simply replace them by Q̂
†
t C

[m]
i where

Q̂t = 1̂ − P̂t ). We define the projector on the tangential space
corresponding to the missing conservation laws by

P̂m X = −
∑
i,j

∂ρ0

∂λ
[m]
i

∣∣∣∣
ρ

[t]
0

[(χ [mm])−1]ij Tr
[
C

[m]
j X

]
(34)

with (∂ρ0/∂λ
[m]
i )|ρ[t]

0
= −(C[m]

i − 〈C[m]
i 〉0 )ρ0. The sum P̂ =

P̂t + P̂m is then the projector on the tangential space spanned
by all conservation laws.

Assuming that the missing conservation laws give only a
small correction to the Lagrange parameters λi , we can Taylor
expand in δλk = λk − λ

[t]
k using

ρ0 = ρ
[t]
0 + δρ0,

δρ0 = −ρ
[t]
0

∑
k

δλkC̄k, C̄k = Ck − 〈Ck〉0 , (35)

where the k sum includes both the C
[t]
i and C

[m]
i . From Eq. (7),

we obtain directly a matrix equation Aδλ = a for δλi solved
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by δλ = A−1a which is written in components as(
δλ[t]

δλ[m]

)
=

(
A[t t] A[tm]

A[mt] A[mm]

)−1( 0

a[m]

)
,

(a[m])i = Tr
[
C

[m]
i L̂1ρ

[t]
0

] = 〈
Ċ

[m]
i

〉
0
,

A
[IJ ]
ij = Tr

[
C

[I ]
i L̂1

(
C̄

[J ]
j ρ

[t]
0

)] = 〈
Ċ

[I ]
i C̄

[J ]
j

〉
0,c

. (36)

Note that A[mm] is equivalent to matrix M in Eq. (30).
From the change of the Lagrange parameters, one can also

directly calculate the change of observables. We are mainly
interested in the change of 〈δC[t]

i 〉0 :

〈
δC

[t]
i

〉
0
= −[χ [t t](A−1)[tm] a[m]]i

≈ [χ [t t](A[t t])−1A[tm](A[mm])−1 a[m]]i . (37)

In the last line we did an extra approximation, assuming that
the relevant matrix elements between included and missing
conservation laws, C

[t]
i and C

[m]
j , are small, allowing us to

expand A−1 in A[tm]. We conclude that the effect of the missing
conservation laws is small if either 〈Ċ[m]

i 〉0 , the changes of
missing conservation laws, are small and/or if the dynamical
couplingA

[tm]
ij = 〈Ċ[t]

i C̄
[m]
j 〉0,c is small. The latter susceptibility

describes how a change of the Lagrange parameter λ
[m]
j induces

a finite 〈Ċ[t]
i 〉0 .

Fully equivalent to Eq. (37), one can write everything using
projection superoperators P̂t ,P̂m:

〈
δC

[t]
i

〉
0
= −Tr

[
C

[t]
i P̂t (P̂ L̂1P̂ )−1P̂mL̂1ρ

[t]
0

]
≈ Tr

[
C

[t]
i (P̂t L̂1P̂t )

−1(P̂t L̂1P̂m)(P̂mL̂1P̂m)−1

× P̂mL̂1ρ
[t]
0

]
. (38)

Above, we have calculated effects which occur in cases
when the problem was not solved accurately to order ε0 because
not all conservation laws of H0 had been considered. If a theory
is not treated correctly to order ε0, any perturbative treatment
in ε should signal this by the presence of divergencies. In the
following, we will show that this is the case within our approach
and we will identify directly the origin of these divergencies.

Technically, the divergence in the perturbative formula (31)
arises from the inverse superoperator Q̂t (Q̂t L̂0Q̂t )−1Q̂t when
only a truncated set of conservation laws is used. As P̂m is the
projection operator on the missing conservation laws, we can
calculate the divergent contribution from

Q̂t (Q̂t L̂0Q̂t )
−1Q̂t = − P̂m

η
+ O(η0), (39)

where η is the regulator used to define L̂−1
0 ; see Appendix A.

We note that exactly the same divergences lead to the occur-
rence of infinities in the current response of, e.g., integrable
systems. As already discussed in Sec. III C, the latter are
described by Drude weights [83–85] obtained from 〈(P̂ †J )J 〉

c
.

The divergent contribution to 〈δC[t]
i 〉 within O(ε) pertur-

bation theory around the truncated GGE is obtained from

Eqs. (31) and (39) as

〈
δC

[t]
i

〉 ≈ − Tr

[
C

[t]
i (P̂t L̂1P̂t )

−1(P̂t L̂1P̂m)
1

η
P̂mL̂1ρ0

]

+ O(η0). (40)

This contribution is of order ε/η. Comparing Eq. (40) and the
second line of Eq. (38) one observes that the two terms are
identical if one replaces (−η) by P̂mL̂1P̂m which is linear in
ε. Divergences in perturbation theory can therefore be used to
detect missing conservation laws. If, however, the weight of
the divergent contribution is small, one can expect that adding
the missing conservation laws will have little effect.

C. Unitary driving, P̂L̂1 P̂ = 0

In the discussion given above, we assumed that P̂ L̂1P̂ is
finite and invertible within P subspace. For an important class
of perturbations, arising from a (Floquet) Hamiltonian H1, this
is not the case as Tr(Ci[H1,∂ρ0/∂λj ]) = 0 due to the cyclic
property of the trace and one therefore finds P̂ L̂1P̂ = 0. In
this case, the rates with which the Ci change are second order
in ε, as is well known from Fermi’s golden rule.

For P̂ L̂1P̂ = 0 the exact inverse of the Li-
ouvillian in the P̂ sector is given by P̂ ˆL−1P̂ =
−P̂ (P̂ L̂1Q̂(Q̂L̂Q̂)−1Q̂L̂1P̂ )−1P̂ ; see Appendix E 1. In
the limit of small ε, we therefore find

P̂ L̂−1P̂ = P̂ (P̂ L̂2P̂ )−1P̂ + O(ε−1), (41)

where

L̂2 = −L̂1Q̂ (Q̂L̂0Q̂)−1 Q̂L̂1. (42)

P̂ L̂2P̂ ∝ ε2 is an effective Lindblad superoperator acting in
the P space. With this notation the condition for ρ0, Eq. (9),

takes the form Tr[CiL̂2ρ0] = 0, or, equivalently, Eq. (19) is
written as

P̂ L̂2ρ0 = 0, (43)

where one should keep in mind that P̂ project onto nonoscil-
latory density matrices only. Perturbation theory can now be
derived in a straightforward way by a Taylor expansion of

(L̂0 + L̂1)−1 = [(L̂0 + P̂ L̂2P̂ ) + (L̂1 − P̂ L̂2P̂ )]−1 (44)

in the second term, with the inverse applied as in Eq. (4) for
δρ.

One can, again, derive diagrammatic rules to calculate cor-
rections to order εn; see Fig. 2. Compared to the previous case,
shown in Fig. 1, there are only two changes. First, (P̂ L̂1P̂ )−1 ∼
O(ε−1) (open circle) is replaced by (P̂ L̂2P̂ )−1 ∼ O(ε−2) and,
second, two sets of diagrams do not contribute any more as they
either cancel due to the −P̂ L̂2P̂ in Eq. (44) or are set to zero by
the condition (43) for ρ0. Explicitly, there are no diagrams with
neighboring open circles, with the combination open-filled-
open, and finally also the combination open-fillled-ρ0 (small
square). The cancellation of these diagrams is also a necessary
condition for the series expansion in ε to be valid. In Fig. 2,
we show all remaining diagrams up to O(ε3) and describe in
the figure caption the corresponding diagrammatic rules.

We would like to finish the section by pointing out that there
can be more complex situations [76,77] where perturbation
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FIG. 2. Diagrammatic depiction of the corrections δρ to the
zeroth-order density matrix ρ0 for cases where P̂ L̂1P̂ = 0 (unitary
driving). One first draws all possible combinations of open and filled
circles starting to the right with a filled circle connected to ρ0 (small
square). Then one eliminates all diagrams with neighboring open
circles, all with the combination open-filled-open, and finally also
the combination open-filled-ρ0 (small square). The order is given by
the number of filled minus the number of open circles, the sign by the
total number of circles. The number of terms to order εn is 2n. Some
diagrams do, however, vanish for monochromatic perturbations; see
Appendix E 3.

theory to order ε2 does not fix ρ0 and where accordingly
P̂ L̂2P̂ vanishes; see discussion at the end Sec. III A. Or even
more generally, there can be cases where Hamiltonian and
Lindblad perturbations occur on equal footing or where some
approximate conservation laws change by processes to order
ε and others by order ε2. We believe that in all these cases,
one can generalize the approach described above: one defines
projectors on subspaces governed by similar time scales (same
power of ε), identifies the leading-order dynamics (P̂ L̂2P̂ in
the case discussed above) in each subsector perturbatively, uses
this to fix ρ0 in analogy to Eq. (43), and performs then a Taylor
expansion using the analog of Eq. (44) as a starting point.

V. EXAMPLE: INTERACTING FERMIONS WITH
PARTICLE GAIN AND LOSS

In the following we will give two examples where the
perturbation theory developed above applies. We consider
interacting fermions driven out of equilibrium by a weak
coupling to the environment. As perturbation we choose
processes which lead to a particle loss with rate εln and a
gain of particles with rate εgn. In quantum optics experiments,
the quasiparticles could be excitations of atoms (or cavities)
and gain and loss is realized by emission and absorption
of light. The same situation arises in experiments on exci-
ton condensation, magnon condensation, or in photon BECs
[10–17]. Also in experiments with ultracold atoms, loss
processes arise when atoms absorb photons from external
laser beams, kicking them out of their trap. However, most
cold-atom experiments do not include processes where the
lost atoms are replenished and therefore a true steady state,
the main focus of our study, cannot be reached. We first
study in Sec. V A a small finite-size system where we can
compare directly perturbation theory and exact solution. Here
it is important to realize that the applicability of perturbation
theory for small systems (in the limit where perturbations
are small compared to the level spacing) does not guarantee
the validity of perturbation theory for systems close to the
thermodynamic limit (perturbations large compared to the level
spacing but small compared to internal equilibration rates).

We therefore study in Sec. V B the thermodynamic limit by
considering a regime where the Boltzmann equation can be
applied. A numerical investigation of the thermodynamic limit
in a quantum approach is beyond the scope of the present paper
and is left for future studies.

A. Lindblad dynamics in a small system

We consider a model where the Hamiltonian dynamics of
the unperturbed system is given by

H0 =
L∑

n=1

enc
†
ncn + U

∑
n1>n2,n3<n4

c†n1
c†n2

cn3cn4 (45)

with en = n/L. Gain and loss processes are described by the
Lindblad operators L

g
n = c

†
n and Ll

n = cn such that

L̂1 = ε(D̂g + Dl),

D̂g =
∑

gn

(
Lg

nρLg
n
† − 1

2

{
Lg

n
†
Lg

n,ρ
})

,

D̂l =
∑

ln

(
Ll

nρLl
n

† − 1

2

{
Ll

n

†
Ll

n,ρ
})

, (46)

with

gn = 1
4 , ln = en. (47)

The loss rate εln depends on energy. This mimics a situ-
ation where high-energy states have a higher probability to
evaporate than low-energy states, thus implementing a cooling
mechanism. Note that ε, the common prefactor of D̂i , controls
the overall strength of both the heating and cooling terms. The
conservation laws of the small system are just projectors on
the eigenstates of H0, |n〉〈n| with H0|n〉 = E0

n|n〉. Using the
formulas of Secs. III, IV we can easily solve for the 0th-order
steady state and determine the perturbations around it. In Fig. 3
we show the expectation values of particle and energy density

FIG. 3. Expectation values of (a) particle and (b) energy density as
a function of perturbation strength ε, calculated from the exact steady
state density matrix (solid line) or using our perturbation theory up to
kth order in ε on system size L = 4 and interaction strength U = 0.3.
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TABLE I. Comparison of semiclassical open Boltzmann dynamics for level occupation function and quantum Liouvillian formulation for
the density matrix.

Boltzmann Liouvillian

Occupation function fe Density matrix ρ
dfe

dt
= M[f ]e + ε D[f ]e

dρ

dt
= L̂0ρ + L̂1ρ

fe(t → ∞) = f 0
e + δfe ρ(t → ∞) = ρ0 + δρ

Fermi function: f 0
e = 1

1+eβ(e−μ) GGE: ρ0 = e−λiCi

Tr[e−λiCi ]

Conservation laws and scalar product:
ci(e) and q

β,μ

i Ci and ∂ρ0/∂λi∫
de ci(e)fe Tr[Ciρ] = 〈Ci〉

χij (β,μ) = − ∫
de ci(e) q

β,μ

j (e) χij = −Tr[Ci∂ρ0/∂λj ]

Zeroth-order perturbation theory:∫
de ci(e)εD[f 0]e = 0 Tr[CiL̂1ρ0] = 0

P̂ [D[f 0]] = 0 P̂ (L̂1ρ0) = 0

First-order corrections:
f 1

⊥ = −(QM (0)Q)−1QD[ f 0] δρ1,⊥ = −(Q̂L̂0Q̂)−1 Q̂L̂1ρ0

f 1
‖ = (PD(1)P )−1PD(1)Q × (QM (0)Q)−1QD[ f 0] δρ1,‖ = (P̂ L̂1P̂ )−1P̂ L̂1Q̂ × L̂−1

0 Q̂L̂1ρ0

as a function of perturbation strength ε, calculated from the
exact steady state density matrix (solid line) or using our
perturbation theory up to kth order in ε on systems size L =
4, k = 2,4,10, and interaction strength U = 0.3. The figures
show that for this small system with finite level spacing the
perturbation theory works for small ε. For the chosen model we
find both from the exact result and from the perturbation theory
that the variations of particle number and energy are tiny. The
perturbation theory breaks down for rather small ε, of the order
of the level spacing. This is a phenomenon well known from
standard perturbation theory where perturbative corrections are
inversely proportional to the level spacing. This is, however,
different when correlation functions are evaluated in the
thermodynamics limit by taking first the limit L → ∞ and then
the limit η → 0, where η is the regulator defined in Eq. (4); see
also Appendix D. While the perturbative correction linear in ε

vanishes for the finite system (η smaller than level spacing), it is
finite in the thermodynamics limit (η larger than level spacing).

B. Boltzmann dynamics

Now we consider a similar example in the thermodynamic
limit where the unperturbed system H0 has only two local
conservation laws, energy and particle number. Interactions
lead to an equilibration of all other conservation laws. We
assume that the system can be described by weakly interacting
quasiparticles with energies en, such that the collision term of
a Boltzmann equation captures their equilibration dynamics.
As above we consider fermions with a constant density of
states, which we discretize using L single-particle states
with energies en equally spaced between 0 and 1 with en =
n/L, n = 1, . . . ,L. The Boltzmann equation takes the form

dfe

dt
= M[f ]e + ε D[f ]e, (48)

M[f ]e =
∫ 1

0
de1de2de3 δ(e + e1 − e2 − e3)

× (f̄ef̄e1fe2fe3 − fefe1 f̄e2 f̄e3 )

= 1

L2

∑
i,j,l

(f̄ef̄ei
fej

fel
− fefei

f̄ej
f̄el

)δe+ei ,ej +el
,

D[f ]e = − lefe + gef̄e, (49)

where fen
is the occupation function as a function of the energy

en and f̄e = (1 − fe). The Kronecker δ guarantees energy
conservation in each collision process of the discretized model.
Note that we consider a model where momentum conservation
does not play a role. For simplicity, we also set all transition
rates due to collisions to unity. We keep the same type of
perturbations as in the previous example, i.e., particle gain
and loss. Instead of Lindblad operators these are now encoded
directly in Boltzmann equation through D[f ]e, Eq. (49). Rates
for particle gain and loss are the same as in Eq. (47), i.e.,
ge = 1/4,le = e. Note that ε, the prefactor of D[f ]e, controls
the overall strength of both the heating and cooling terms.
Numerical calculations are performed for L = 41.

The perturbation theory derived in the main text can be
with some straightforward modifications also applied to the
open Boltzmann dynamics. Before we proceed we collect in
Table I all analogies with the formulation for the Liouvillian
dynamics, developed in the main part of the article. Note that
some objects are defined later within this section.

The collision integral M preserves the total energy
E = ∑

n enfen
and the particle number N = ∑

n fen
and these

are the only conserved quantities in the absence of loss/gain
terms. In the following we expand the level occupations fe in
orders of ε,

fe(t → ∞) =
∑
m

εmf m
e . (50)

In correspondence with L̂0ρ0 = 0 now any Fermi-Dirac
distribution f 0

e satisfies M[f 0] = 0,

f 0
e (β,μ) = 1

1 + eβ(e−μ)
↔ ρ0,

M[f 0(β,μ)]e = 0 ↔ L̂0ρ0 = 0, (51)
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ZALA LENARČIČ, FLORIAN LANGE, AND ACHIM ROSCH PHYSICAL REVIEW B 97, 024302 (2018)

and only the perturbation D fixes the parameters β and μ,
where β is the Lagrange parameter of the energy and −βμ is
the Lagrange parameter of the particle number.

Zeroth order. The parameters β and μ of the steady state in
the ε → 0 limit, f 0

e (β,μ), are determined by the stationarity of
conserved quantities (total energy and particle number) from
a set of coupled equations corresponding to Eq. (7),

1

L

dE

dt
≈ ε

∫
de e

[−lef
0
e + ge

(
1 − f 0

e

)] != 0,

1

L

dN

dt
≈ ε

∫
de

[−lef
0
e + ge

(
1 − f 0

e

)] != 0. (52)

For our model we find β = 2.328 and μ = 0.288.
Projection operator. The two slow modes qi , corresponding

to ∂ρ0/∂λi in the main text, are defined as

q
β,μ

1 (e) = ∂f 0
e

∂β
, q

β,μ

2 (e) = ∂f 0
e

∂(−βμ)
, (53)

where we identified λ2 = −βμ. Denoting the conserved quan-
tities by

c1(e) = e, c2(e) = 1, (54)

the analog of the projector superoperator defined by Eq. (14)
is simply given by

P̂ [X] = −
2∑

i,j=1

q
β,μ

i (e)(χ−1)ij

∫
de[cj (e)X(e)],

χij (β,μ) = −
∫

de ci(e) q
β,μ

j (e). (55)

With these notations, the steady state condition, Eq. (52), is the
analog of Eq. (7),∫

de ci(e)D[f 0]e = 0 ↔ Tr[CiL̂1ρ0] = 0,

or, equivalently,

P̂ [D[f 0]] = 0 ↔ P̂ (L̂1ρ0) = 0.

Relaxation towards the steady state. While the main focus
of this paper is the computation of the steady state, we briefly
discuss the relaxation towards the steady state, which can easily
be computed exactly by solving the Boltzmann equation.

Similarly as GGEs are expected to be a fairly good de-
scription shortly after the system has prethermalized [87–107]
to the GGE manifold, also here the Fermi-Dirac distribution
describes approximately not only the steady state but also
the approach to it. After a few collisions level occupations
can be approximately described by a Fermi distribution with
time-dependent parameters {β(t),μ(t)}, whose evolution is
determined by the forces introduced in Eq. (17).

In this case the force field, see Eq. (17), has only two
components,

Fi(β,μ) = −(χ−1)ij

∫
de cj (e) εD[f 0]e, (56)

and can be used to propagate parameters β and μ,

dβ

dt
(t) = F1(t),

d(−βμ)

dt
(t) = F2(t), (57)

FIG. 4. Time evolution of the occupation function fen
shown for

n = 1,6,11, . . . ,41 (L = 41) and ε = 0.01 starting from an initial
state with fen

= 1 (fen
= 0) for states with even (odd) n, respectively.

(a) On short time scales the system relaxes towards a state with β ≈ 0
and equal occupation of all levels. (b) The time evolution toward
the steady state occurs on a time scale set by 1/ε and therefore the
time axis has been rescaled by a factor ε. The points are obtained by
solving the time evolution of the Lagrange parameters using Eq. (57)
which then determines a Fermi distribution function. The comparison
with the exact solution of the Boltzmann equation (lines) shows that
this allows for a quantitative description of the slow dynamics for
small ε.

as soon as our system is approximately described by a Fermi-
Dirac distribution. These equations are only valid to leading
order in ε.

Figure 4 shows the time evolution obtained from a nu-
merical solution of the Boltzmann equation for ε = 0.01.
We initialize our system with the nonequilibrium state fen

=
1 for states with even and fen

= 0 for states with odd n.
Collisions lead to a rapid relaxation of this nonequilibrium
state to a thermal state. We find that within our model this
time scale is τ0 ∼ 5, independently of ε for small ε. As the
collision processes conserve energy and particle number, the
approximate thermal state is determined by the initial values of
energy and particle number, which leads to an initial relaxation
towards a state with β = 0 and βμ = 0 (in the thermodynamic
limit). The subsequent dynamics is driven by the processes
violating particle number and energy conservation (the gain
and loss terms) and occurs on a time scale set by 1/ε. We find
that these processes are quantitatively described by Eq. (57),
as can be seen by comparing the dots and the solid line in the
lower panel of Fig. 4.

Figure 5 shows the force fields calculated according to
Eq. (56) and the resulting dynamics in the space of Lagrange
parameters.
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FIG. 5. Force fields calculated using Eq. (56) shown for L =
41. The force fields determine the time evolution of the Lagrange
parameters according to Eq. (57). The red solid line shows the
trajectory for the initial conditions used in Fig. 4, where a comparison
to the exact solution of the Boltzmann equation is shown. The unique
stationary state is indicated by a black circle.

Perturbation theory for the steady state. As a next step,
we compare the exact steady state solution of the Boltzmann
equation for finite ε to the result of perturbation theory to
linear order in ε. We expand around the Fermi functions
f 0

e (β,μ) with parameters β and μ obtained from the “zeroth
order” described above. To linear order in ε, we obtain using
fe = f 0

e + εf 1
e to O(ε)

0 = ε(M (0) + εD(1))[f 1] + εD[f 0]

⇔ f 1 = −(M (0) + εD(1))−1D[f 0], (58)

which has precisely the same form as Eq. (4) in the Liouville
case. For the discrete case matrices M (0),D(1) are defined
using a straightforward Taylor expansion

M[f ]en
≈ ε

∑
n′

M
(0)
n,n′f

1
en′ ,

(−len
fen

+ gen
f̄en

) ≈ D[f 0]en
+ ε

∑
n′

D
(1)
n,n′f

1
e′
n
. (59)

FIG. 6. Level occupation fen
as a function of perturbation strength

ε. Solid lines are obtained from the exact calculation using the
Boltzmann equation, Eq. (48), while dashed lines are obtained from
our perturbative approach, including zeroth and first order in ε. Only
every third n is shown for the system with L = 41 single-particle
states.

FIG. 7. (a) Particle and (b) energy density as a function of per-
turbation strength ε. The dashed line shows the result of perturbation
theory, including zeroth and first order in ε.

Note that D(1) is a diagonal matrix in our example. To obtain
f 1 = {f 1

e1
,f 1

e2
, . . . ,f 1

eL
} corrections we can use the perturba-

tion theory developed in Sec. IV A. As before we need to treat
the (‖) and (⊥) subspaces separately. Following Eqs. (28), (29),

f 1 = f 1
‖ + f 1

⊥, f 1
⊥ = −(QM (0)Q)−1 D[ f 0],

f 1
‖ = (PD(1)P )−1 PD(1)Q (QM (0)Q)−1 D[ f 0], (60)

where P,Q are written as matrices after evaluating Eq. (55)
for discretized energies and Q̂ = 1̂ − P̂ . Figure 6 shows
steady state level occupation fen

as a function of perturbation
strength ε. In the limit ε → 0 Fermi functions obtained from
condition Eq. (52) give the exact steady state occupation
distributions. For finite ε � 0.05 the corrections linear in ε

describe well the exact result. In Fig. 7 we show similar results
for the total energy and particle number of the system, which
for the chosen model change only slightly.

It is also straightforward to calculate higher-order cor-
rections using perturbation theory applied to the Boltzmann
equation. However, here one has to take into account that the
Boltzmann equation is a nonlinear equation in the occupation
functions fe while the Liouville equation is a linear equation
in the density matrix ρ. Therefore the equations used to obtain
higher-order corrections differ in the two cases but the overall
structure of perturbation theory (separation into parallel and
perpendicular sector) remains the same.

VI. CONCLUSIONS

The main observation, which is the basis of our study, is
that many driven systems can be approximately but efficiently
described by generalized Gibbs ensembles built from approx-
imately conserved quantities. Such approximate conservation
laws are important for many different systems. For example,
in almost all solids, the coupling of electrons and phonons
is weak due to the large mismatch of ionic and electronic
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masses. Therefore the difference of the electron and phonon
Hamiltonians, He − Hph, is an approximate conservation law
widely used in two-temperature models [19–23] which effi-
ciently describe nonequilibrium states of solids. A more exotic
example is the description of spin-chain materials using as
the approximate conservation laws those of the underlying
integrable Heisenberg model [24]. For such situations, we
developed in this paper a perturbation theory for the steady
state by perturbing around generalized Gibbs ensembles. Here
it was essential to treat perturbations perpendicular and parallel
to the manifold of generalized Gibbs states separately.

To show the validity of our concepts we studied a small
finite-size quantum system with Lindblad dynamics. For the
future we plan to test numerically our approach also for larger
quantum systems close to the thermodynamic limit. In this
paper we considered as an example for a large system only
a model described by the Boltzmann equation. From a more
general point of view, one can consider the Boltzmann equation
also as a rate equation for approximately conserved quantities,
the quasiparticle occupations c

†
kck , thus fixing the parameters

of the appropriate generalized Gibbs ensemble e− ∑
k gkc

†
kck (as

in our paper, we assume a translationally invariant system
here). Therefore it would be interesting to use our formalism
to calculate corrections to the nonequilibrium steady state not
captured by the Boltzmann approach. A comparison of the two
formalisms and a systematic calculation of beyond-Boltzmann
corrections for weakly interacting quantum systems is left
for further studies. In the classical context such a formalism
has been developed by Gurarie [108]. It would be in general
interesting to test the validity of our approach in purely classical
systems, for example, those described by the Fokker-Planck
equation.

An obvious question is whether our perturbation theory
in ε, where ε is the prefactor of driving terms breaking the
conservation laws, has a finite radius of convergence and/or
whether all expansion coefficients are finite. Similarly to many
other (highly successful) perturbative expansions in physics,
the radius of convergence is formally expected to be zero. This
is obvious in the case when the perturbation arises from a
Lindblad operator, where negative ε correspond to negative
friction and therefore an unstable situation for arbitrarily small
ε, which implies a vanishing radius of convergence. The
expansion in ε should therefore be viewed as an asymptotic
expansion similar to, e.g., the expansion in the fine-structure
constant α in quantum electrodynamics. A more difficult ques-
tion is whether one can expect that all expansion coefficients
in powers of ε are finite or not. This is an open question
which requires further studies. There is, however, a possible
mechanism which can induce nonanalytic corrections: in the
presence of exact symmetries, hydrodynamic modes exist
which enforce long-ranged correlations and, for example, the
presence of long-time tails after quenches [109–111]. These
hydrodynamic modes obtain masses proportional to ε or ε2

when the relevant conservation laws are weakly violated. A
perturbative expansion in these masses can lead to nonanalytic
corrections even when perturbing around a GGE.

For the future it will be interesting to generalize our pertur-
bative expansion for the steady state to dynamical questions.
For example, we have already shown for a simple example

based on the Boltzmann equation that time-dependent gener-
alized Gibbs ensembles are a good starting point to investigate
the approach of the steady state. It will be interesting to develop
a perturbative expansion for such situations which will also
allow us to describe the dynamical response of driven systems
and/or situations where instead of a unique steady state a limit
cycle (time crystal) is realized.
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APPENDIX A: REGULARIZATION OF INVERSE

Since L̂ has a zero mode, L̂−1 is singular; therefore formally
one has to regularize it as in Eq. (4), which at the same time also
avoids solution δρ = −ρ0 that satisfies L̂(ρ0 + δρ) trivially. If
we write ρ0 = ∑

α cαρα in terms of L̂ (right) eigenstates ρα ,
L̂ρα = λαρα , then the regularization

δρ = − lim
η→0

(L̂ − η1)−1L̂1ρ0 = − lim
η→0

(L̂ − η1)−1L̂ρ0

= − lim
η→0

(L̂ − η1)−1
∑

α

λαcαρα

= − lim
η→0

∑
α

λα

λα − η
cαρα = −

∑
α,λα �=0

cαρα (A1)

gives the correct result, ρ0 + δρ = ∑
α,λα=0 ρα . The sign η > 0

is obtained from the property that Re λα � 0 guaranteeing the
absence of exponentially growing solutions.

The regularization also guarantees that Tr δρ = 0. From
Tr ρ̇ = Tr[L̂ρ] = 0, it follows that λαTr ρα = 0 and therefore
Tr ρα = 0 for all α with λα �= 0. Using (A1), we therefore find
Tr δρ = 0.

APPENDIX B: IDENTITIES FOR SUPEROPERATORS

Below we check the properties of the superprojector defined
in Eq. (14).

Projection property:

P̂ 2X =
∑
i ′j ′ij

∂ρ0

∂λi ′
(χ−1)i ′j ′ Tr

[
Cj ′

∂ρ0

∂λi

]
(χ−1)ij Tr[CjX]

= −
∑
i ′j ′ij

∂ρ0

∂λi ′
(χ−1)i ′j ′ χj ′i(χ

−1)ij Tr[CjX]

= −
∑
i ′j ′j

∂ρ0

∂λi ′
(χ−1)i ′j ′ δj ′j Tr[CjX] = P̂X. (B1)

Inverse within P subspace:
Since (P̂ L̂1P̂ )−1 is essential for building up the perturbation

theory we confirm the validity of Eq. (30),

(P̂ L̂1P̂ )−1P̂X = −
∑
pr

∂ρ0

∂λp

(M−1)pr Tr[CrX], (B2)
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with Mpr = −Tr[CpL̂1
∂ρ0

∂λr
] = 〈ĊpCr〉0,c

, by calculating

(P̂ L̂1P̂ )−1(P̂ L̂1P̂ )X

= −
∑

pr,kl,ij

∂ρ0

∂λp

(M−1)pr χrk(χ−1)klMli (χ−1)ij Tr[CjX]

= −
∑

pr,kl,ij

∂ρ0

∂λp

(M−1)pr δr,lMli (χ−1)ij Tr[CjX] = P̂X.

APPENDIX C: PROPERTIES OF PROJECTORS AND
INVERSION OF PROJECTED LINDBLAD OPERATORS

In this Appendix we discuss the relation of the projectors
P̂ and P̃ and describe how projected Lindblad operators can
be inverted.

We first note that any projected density matrix is traceless,

Tr[P̂ ρ] = 0, (C1)

which follows from Tr[ρ0]=1 and therefore ∂Tr[ρ0]/∂λi = 0.

If we consider all conservation laws from the set Q =
{|n〉〈m| with E0

n = E0
m},H0|n〉 = E0

n|n〉, then we obtain

P̂X = P̃X − Tr[X]

Tr[1]
1, (C2)

where P̃X is the part of X that can be written in terms of
elements of Q (for the nondegenerate case simply the diagonal
part). Therefore P̂ projects on conservation laws and subtracts
the trace.

Assuming that P̂ L̂1ρ0, Eq. (18), has a unique solution with
trace 1, then one can easily show that P̂ L̂1P̂ is invertible in
P̂ space. Assuming that P̂ L̂1P̂ ρ1 = 0, it follows immediately
that P̂ L̂1(ρ0 + P̂ ρ1) = 0. As ρ0 is by assumption a unique
solution, we find P̂ ρ1 = 0. Therefore ρ1 has no component in
P̂ space.

As P̂1 = 0, the identity matrix is in the Q̂ space, Q̂1 = 1.
This seems to be a problem as we have to invert Q̂L̂0Q̂ and
L̂01 = 0 for all L̂0 describing unitary evolution. In all of our
formulas, however, the inverse of Q̂L̂0Q̂ is only applied to
traceless density matrices; therefore no singularity arises from
this zero mode. For numerical implementations one can simply
add a “mass term” m0 to this zero mode by replacing L̂0 →
L̂0 + m0P̂1 where P̂1 is the superoperator projecting onto the
identity matrix defined by P̂1X = 1Tr[X]/Tr[1].

APPENDIX D: CORRELATION FUNCTIONS

Higher-order corrections δρ to ρ0, as derived from our perturbation theory, can also be expressed in terms of multiple-time
correlation functions. In the main text we have already introduced

χij = −Tr[Ci∂ρ0/∂λj ] = 〈CiCj 〉0,c, Mij = −Tr[CiL̂1(ρ0/∂λj )] = 〈ĊiCj 〉0,c; (D1)

however, to express higher-order O(εn) contributions one needs also more complicated correlation functions:

N
(n)
i =Tr

[
CiL̂1

(
L̂−1

0 L̂1
)n

ρ0
] = Tr

[
Ċi

(
L̂−1

0 L̂1
)n

ρ0
]
, M

(n)
ij = −Tr

[
Ċi

(
L̂−1

0 L̂1
)n

(∂ρ0/∂λj )
]
. (D2)

In order to write them in a compact form with an explicit time ordering we introduce a general notation of Lindblad superoperators
in the interacting picture,

L̂1(t)ρ = Lα(t)ρL†
α(t) − 1

2 {L†
α(t)Lα(t),ρ}, (D3)

where Lindblad operators Lα(t) = eiH0t Lα e−iH0t are evolved with respect to H0.
Using this notation the lowest-order correlation functions can be, according to Eq. (A1), written as regularized time integrals

N
(1)
j = Tr

[
Cj L̂1

(
L̂−1

0 L̂1
)
ρ0

] = −
∫ ∞

−∞
dt1 θ (t1)e−ηt1 Tr[Ċj (t1)L̂1(0)ρ0], (D4)

N
(2)
j = Tr

[
Cj L̂1

(
L̂−1

0 L̂1
)2

ρ0
] =

∫ ∞

−∞
dt1dt2 θ (t1)θ (t2)e−η(t1+t2)Tr[Ċj (t1 + t2)L̂1(t1)L̂1(0)ρ0], (D5)

M
(1)
jk = −Tr

[
Cj L̂1

(
L̂−1

0 L̂1
) ∂ρ0

∂λk

]
=

∫ ∞

−∞
dt1 θ (t1)e−ηt1 Tr

[
Ċj (t1)L̂1(0)

∂ρ0

∂λk

]
, (D6)

M
(2)
jk = −Tr

[
Cj L̂1

(
L̂−1

0 L̂1
)2 ∂ρ0

∂λk

]
= −

∫ ∞

−∞
dt1dt2 θ (t1)θ (t2)e−η(t1+t2)Tr

[
Ċj (t1 + t2)L̂1(t1)L̂1(0)

∂ρ0

∂λk

]
. (D7)

Note that the time ordering of (super)operators is such that it is most naturally represented using Keldysh formalism.

a. First order

Using the correlation functions defined above and the equality Tr[CkL̂1Q̂L̂−1
0 Q̂L̂1ρ0] = Tr[CkL̂1L̂−1

0 L̂1ρ0], following from
P̂ L̂1ρ0 = 0 for properly chosen ρ0, the linear contribution to the expectation values of conserved quantities, Eq. (32), gets the
form

〈Ci〉1 =
∑
jk

χij (M−1)jk Tr
[
CkL̂1Q̂L̂−1

0 Q̂L̂1ρ0
] =

∑
jk

χij (M−1)jkN
(1)
k . (D8)
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b. Second order

Second order O(ε2) in the tangential part of δρ (relevant for expectation values of conserved quantities) has two contributions,
δρ2,‖ = δρ

(1)
2,‖ + δρ

(2)
2,‖:

δρ
(1)
2,‖ = − (P̂ L̂1P̂ )−1 P̂ L̂1Q̂L̂−1

0 Q̂L̂1Q̂L̂−1
0 Q̂L̂1ρ0

= − (P̂ L̂1P̂ )−1 P̂ L̂1L̂−1
0 L̂1L̂−1

0 L̂1ρ0 + P̂ L̂−1
0 P̂ L̂1L̂−1

0 L̂1ρ0, (D9)

δρ
(2)
2,‖ = (P̂ L̂1P̂ )−1 P̂ L̂1Q̂ L̂−1

0 Q̂L̂1P̂ (P̂ L̂1P̂ )−1P̂ L̂1Q̂L̂−1
0 Q̂L̂1ρ0

= (P̂ L̂1P̂ )−1 P̂ L̂1L̂−1
0 L̂1P̂ (P̂ L̂1P̂ )−1P̂ L̂1L̂−1

0 L̂1ρ0 − P̂ L̂−1
0 P̂ L̂1L̂−1

0 L̂1ρ0, (D10)

which we obtain by inserting Q̂ = 1̂ − P̂ under the condition P̂ L̂1ρ0 = 0 and using that L̂−1
0 cannot change the subspace, i.e.,

P̂ L̂−1
0 = L̂−1

0 P̂ = P̂ L̂−1
0 P̂ . The two contributions then add up to

δρ2,‖ = − (P̂ L̂1P̂ )−1 P̂ L̂1L̂−1
0 L̂1L̂−1

0 L̂1ρ0 + (P̂ L̂1P̂ )−1 P̂ L̂1L̂−1
0 L̂1P̂ (P̂ L̂1P̂ )−1P̂ L̂1L̂−1

0 L̂1ρ0. (D11)

Using this expression it is straightforward to write the O(ε2) contribution to the expectation value of conserved quantities in
the steady state in terms of correlation functions. One should notice that each P̂ “cuts” the expression in the sense that content
between two consequential P̂ corresponds to one correlation function. The inverses (P̂ L̂1P̂ )−1 are treated as in Eq. (B2) and
contribute M−1 components to the final expression. Using the definition of projector P̂ , Eq. (14), the definition of the inverse
(P̂ L̂1P̂ )−1, Eq. (B2), and definitions of multiple-time correlation functions, Eq. (D2), one obtains the following expression:

〈Ci〉2 = Tr[Ciδρ2,‖] = −
∑
j,k

χij (M−1)jk N
(2)
k +

∑
j,k,l,m

χij (M−1)jk M
(1)
kl (M−1)lm N (1)

m . (D12)

c. Lehmann representation

All expressions obtained from our perturbation theory can be calculated in a straightforward way using eigenstates and
eigenenergies of H0. As Lehmann representations are perhaps less common in the case of a Lindblad dynamics we show, for
example, the Lehmann representation of N

(1)
j , Eq. (D4), needed to calculate 〈Ci〉1. By inserting the identity operator

∑
m |m〉〈m|

between all operators and superoperators one obtains

N
(1)
j =

∑
mnpr

∑
αβ

i(
E0

n − E0
p − iη

)[
C(j )

r L(β)
rn L(β)†

pr − 1

2

(
C(j )

p + C(j )
n

)
L(β)†

pr L(β)
rn

][
L(α)

nmL(α)†
mp ρ0

m − 1

2

(
ρ0

p + ρ0
n

)
L(α)†

nm L(α)
mp

]
, (D13)

where m,n,p,r run over the eigenstates |m〉, H0|m〉 = E0
m|m〉, while α,β run over the Lindblad operators defined in Eq. (2).

We use the notation 〈m|Lα|n〉 = L(α)
mn and 〈m|ρ0|m〉 = ρ0

m, 〈m|Cj |m〉 = C
(j )
m where we assume that the conserved quantities Ci

are diagonal operators in the eigenbasis of H0. As L̂0|n〉〈m| = −i(E0
n − E0

m)|n〉〈m|, the inverse is obtained as L̂−1
0 |n〉〈m| =

i
E0

n−E0
m−iη

|n〉〈m| using the regularization of Appendix A. Note that η should always be chosen to be larger than the level spacing
if one is interested in systems in the thermodynamic limit.

APPENDIX E: UNITARY DRIVING

In the case of unitary driving, the projection of the pertur-
bation onto the P space vanishes, P̂ L̂1P̂ = 0, and therefore
also P̂ (L̂0 + L̂1)P̂ = 0. In this case, the formulas fixing the
density matrix to zeroth order in the perturbations, Eq. (9),
and the perturbation theory presented in Sec. IV C have to be
modified compared to the Lindblad dynamics where the inverse
of P̂ L̂1P̂ within P space is well defined.

1. Projections of the inverse

Different projections of full inverse (P̂ + Q̂)L̂−1(P̂ + Q̂)
can, for example, be obtained using the transformations

Û = P̂ + Q̂ − (P̂ L̂1Q̂) (Q̂L̂Q̂)−1Q̂,

V̂ = P̂ + Q̂ − Q̂(Q̂L̂Q̂)−1 Q̂L̂1P̂ , (E1)

where Û and V̂ are chosen in such a way that they transform
L̂ into a block-diagonal form (in P̂ and Q̂ space),

Û L̂V̂ = Q̂L̂Q̂ − (P̂ L̂1Q̂)(Q̂L̂Q̂)−1(Q̂L̂1P̂ ). (E2)

The inverse L̂−1 is then obtained from

L̂−1 = V̂ (Û L̂V̂ )−1Û

= V̂ (P̂ (P̂ L̂2P̂ )−1P̂ + Q̂(Q̂L̂Q̂)−1Q̂)Û , (E3)

where

L̂2 = −L̂1Q̂ (Q̂L̂Q̂)−1 Q̂L̂1. (E4)

Using the definition of Û and V̂ we obtain for perturbations
with P̂ L̂1P̂ = 0 the following expressions for the projections:

P̂ L̂−1P̂ = P̂ (P̂ L̂2P̂ )−1P̂ ∼ 1

ε2
,

P̂ L̂−1Q̂ = −P̂ (P̂ L̂2P̂ )−1(P̂ L̂1Q̂) (Q̂L̂Q̂)−1Q̂ ∼ 1

ε
,
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Q̂L̂−1P̂ = −Q̂(Q̂L̂Q̂)−1 (Q̂L̂1P̂ )(P̂ L̂2P̂ )−1P̂ ∼ 1

ε
,

Q̂L̂−1Q̂ = 0. (E5)

(P̂ L̂2P̂ )−1 and (Q̂L̂Q̂)−1 should be interpreted as inverses
within P and Q subspace, respectively, while the left-hand
sides of Eqs. (E5) correspond to the projections of the
full (properly regularized) Liouville inverse onto P and Q

subspace. Note that the last equation does not imply that
Q̂(Q̂L̂Q̂)−1Q̂ vanishes (which is finite for ε → 0).

A direct consequence of the equations given above is that in
the limit of small ε, the inverse in the P sector is given through
L̂2 defined in Eq. (42),

P̂ L̂−1P̂ = P̂ (P̂ L̂2P̂ )−1P̂ ≈ (P̂ L̂2P̂ )−1[1 + O(ε)]. (E6)

Note that L̂2 is obtained from L̂2 just by replacing Q̂L̂Q̂ by
Q̂L̂0Q̂ in the inverse. P̂ L̂2P̂ takes over the role of an effective
Lindblad superoperator in P space.

2. Zeroth-order expansion point

Here we show that the condition (9),

P̂
(
L̂1L̂−1

0 L̂1ρ0
) = 0, (E7)

does give the correct reference point ρ0 for situations where
P̂ L̂1P̂ = 0. One way to show this is to use the perturbative
analysis provided in Sec. IV C where the power counting
of diagrams worked only if the correct reference point was
chosen. Below we give a more direct argument.

As described in the main text, Eq. (E7) is obtained from
the requirement that the dominant contribution to the time-
averaged expectation value of conserved quantities must van-
ish,

〈Ċi〉 = Tr[CiP̂ L̂1(ρ0 + δρ)] = Tr[CiP̂ L̂1δρ]
!= 0, (E8)

where P̂ is used to extract the nonoscillatory component and
Tr[CiP̂ L̂1ρ0] = 0 due to the cyclicity of the trace. As discussed
in the main text, the starting point is the exact formula for δρ,
Eq. (4), and the formula Eq. (8), which directly lead to

δρ = δρ(I ) + δρ(II )

= −L̂−1
0 L̂1ρ0 + L̂−1L̂1L̂−1

0 L̂1ρ0. (E9)

If we use only δρ(I ) in Eq. (E8), then Eq. (E7) follows
immediately. Equivalently, the condition Eq. (E7) implies

that the contribution from δρ(I ) vanishes in Eq. (E8). In the
following we will show that Eq. (E7) also implies that the
contribution from δρ(II ) to Eq. (E8) vanishes, which is less
obvious, and a useful consistency check.

Plugging δρ(II ) into Eq. (E8) one finds

Tr[CiP̂ L̂1δρ
(II )]

= Tr
[
CiP̂ L̂1L̂−1L̂1L̂−1

0 L̂1ρ0
]

= Tr
[
CiP̂ L̂1Q̂L̂−1Q̂L̂1L̂−1

0 L̂1ρ0
] = 0, (E10)

where the third line differs from the first one by two extra
Q̂ superoperators enclosing L̂−1. The first one can be inserted
because we consider the case P̂ L̂1P̂ = 0 and therefore P̂ L̂1 =
P̂ L̂1Q̂. The second one can be used as a consequence of
Eq. (E7), which states that the P̂ projection of the operator to
the right of L̂−1 vanishes. Finally, we can use that Q̂L̂−1Q̂ = 0,
see Eq. (E5), to prove that the whole expression vanishes.

To finish our argument, we still have to show that δρ is
small for ε → 0 provided that Eq. (E5) holds, which can be
done using arguments similar to those above. First, the combi-
nation L̂−1

0 L̂1ρ0 = L̂−1
0 Q̂L̂1ρ0 is nonsingular for P̂ L̂1P̂ = 0

which implies that δρ(I ) ∼ O(ε). Second, we used already
above that δρ(II ) = L̂−1L̂1L̂−1

0 L̂1ρ0 = L̂−1Q̂L̂1L̂−1
0 L̂1ρ0. As

Q̂L̂−1Q̂ = 0 and P̂ L̂−1Q̂ ∼ O(1/ε) it follows immediately
that also δρ(II ) ∼ O(ε) which concludes the derivation of
Eq. (E7).

3. Monochromatic driving

Some of the diagrams depicted in Fig. 2 vanish when a
perturbation which contains only oscillations with a single
frequency ω is considered. In this case P̂ (L̂1)3P̂ = 0 since
each application of L̂1 changes the Floquet index n of ρ(n),
Eq. (10), by ±1. Consequently, for example, the O(ε) diagram
in the (‖) sector vanishes and conservation laws are only
changed by processes of order O(ε2), represented by the
diagram in the second line of Fig. 2 (note that the third one
vanishes as well). The situation is different in the presence
of driving with higher harmonics, e.g., cos(ωt) and cos(2ωt),
when P̂ (L̂1)3P̂ �= 0. In this case the dominant stationary
correction to the expectation value of Ci is of O(ε), as shown
by the diagram in the first line in the (‖) sector.
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Žnidarič, Phys. Rev. B 80, 035110 (2009).
[79] D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and

Correlation Functions (W. A. Benjamin, Inc., Reading, MA,
1975).

[80] H. Mori, Prog. Theor. Phys. 33, 423 (1965).
[81] R. Zwanzig and R. Balescu, J. Chem. Phys. 33, 1338 (1960).

024302-16

https://doi.org/10.1126/science.1140990
https://doi.org/10.1126/science.1140990
https://doi.org/10.1126/science.1140990
https://doi.org/10.1126/science.1140990
https://doi.org/10.1038/nature09567
https://doi.org/10.1038/nature09567
https://doi.org/10.1038/nature09567
https://doi.org/10.1038/nature09567
https://doi.org/10.1103/PhysRevLett.108.160403
https://doi.org/10.1103/PhysRevLett.108.160403
https://doi.org/10.1103/PhysRevLett.108.160403
https://doi.org/10.1103/PhysRevLett.108.160403
https://doi.org/10.1103/PhysRevLett.112.030401
https://doi.org/10.1103/PhysRevLett.112.030401
https://doi.org/10.1103/PhysRevLett.112.030401
https://doi.org/10.1103/PhysRevLett.112.030401
https://doi.org/10.1038/nature05117
https://doi.org/10.1038/nature05117
https://doi.org/10.1038/nature05117
https://doi.org/10.1038/nature05117
https://doi.org/10.1103/PhysRevLett.102.187205
https://doi.org/10.1103/PhysRevLett.102.187205
https://doi.org/10.1103/PhysRevLett.102.187205
https://doi.org/10.1103/PhysRevLett.102.187205
https://doi.org/10.1103/RevModPhys.69.629
https://doi.org/10.1103/RevModPhys.69.629
https://doi.org/10.1103/RevModPhys.69.629
https://doi.org/10.1103/RevModPhys.69.629
https://doi.org/10.1103/PhysRevB.23.883
https://doi.org/10.1103/PhysRevB.23.883
https://doi.org/10.1103/PhysRevB.23.883
https://doi.org/10.1103/PhysRevB.23.883
https://doi.org/10.1103/PhysRevB.33.2144
https://doi.org/10.1103/PhysRevB.33.2144
https://doi.org/10.1103/PhysRevB.33.2144
https://doi.org/10.1103/PhysRevB.33.2144
https://doi.org/10.1103/PhysRevLett.59.1460
https://doi.org/10.1103/PhysRevLett.59.1460
https://doi.org/10.1103/PhysRevLett.59.1460
https://doi.org/10.1103/PhysRevLett.59.1460
https://doi.org/10.1142/S0217979210055366
https://doi.org/10.1142/S0217979210055366
https://doi.org/10.1142/S0217979210055366
https://doi.org/10.1142/S0217979210055366
https://doi.org/10.1038/ncomms15767
https://doi.org/10.1038/ncomms15767
https://doi.org/10.1038/ncomms15767
https://doi.org/10.1038/ncomms15767
https://doi.org/10.1103/PhysRevB.90.195429
https://doi.org/10.1103/PhysRevB.90.195429
https://doi.org/10.1103/PhysRevB.90.195429
https://doi.org/10.1103/PhysRevB.90.195429
https://doi.org/10.1103/PhysRevE.91.030101
https://doi.org/10.1103/PhysRevE.91.030101
https://doi.org/10.1103/PhysRevE.91.030101
https://doi.org/10.1103/PhysRevE.91.030101
https://doi.org/10.1103/PhysRevB.91.235133
https://doi.org/10.1103/PhysRevB.91.235133
https://doi.org/10.1103/PhysRevB.91.235133
https://doi.org/10.1103/PhysRevB.91.235133
https://doi.org/10.1103/PhysRevB.91.144301
https://doi.org/10.1103/PhysRevB.91.144301
https://doi.org/10.1103/PhysRevB.91.144301
https://doi.org/10.1103/PhysRevB.91.144301
https://doi.org/10.1103/PhysRevB.94.184304
https://doi.org/10.1103/PhysRevB.94.184304
https://doi.org/10.1103/PhysRevB.94.184304
https://doi.org/10.1103/PhysRevB.94.184304
https://doi.org/10.1088/1367-2630/18/5/053008
https://doi.org/10.1088/1367-2630/18/5/053008
https://doi.org/10.1088/1367-2630/18/5/053008
https://doi.org/10.1088/1367-2630/18/5/053008
https://doi.org/10.1103/PhysRevX.5.041050
https://doi.org/10.1103/PhysRevX.5.041050
https://doi.org/10.1103/PhysRevX.5.041050
https://doi.org/10.1103/PhysRevX.5.041050
https://doi.org/10.1103/PhysRevA.95.043621
https://doi.org/10.1103/PhysRevA.95.043621
https://doi.org/10.1103/PhysRevA.95.043621
https://doi.org/10.1103/PhysRevA.95.043621
https://doi.org/10.1103/PhysRevA.92.062108
https://doi.org/10.1103/PhysRevA.92.062108
https://doi.org/10.1103/PhysRevA.92.062108
https://doi.org/10.1103/PhysRevA.92.062108
https://doi.org/10.1038/nature13915
https://doi.org/10.1038/nature13915
https://doi.org/10.1038/nature13915
https://doi.org/10.1038/nature13915
https://doi.org/10.1103/PhysRevX.3.041033
https://doi.org/10.1103/PhysRevX.3.041033
https://doi.org/10.1103/PhysRevX.3.041033
https://doi.org/10.1103/PhysRevX.3.041033
https://doi.org/10.1103/PhysRev.144.151
https://doi.org/10.1103/PhysRev.144.151
https://doi.org/10.1103/PhysRev.144.151
https://doi.org/10.1103/PhysRev.144.151
https://doi.org/10.1103/PhysRev.160.175
https://doi.org/10.1103/PhysRev.160.175
https://doi.org/10.1103/PhysRev.160.175
https://doi.org/10.1103/PhysRev.160.175
https://doi.org/10.1103/PhysRev.166.206
https://doi.org/10.1103/PhysRev.166.206
https://doi.org/10.1103/PhysRev.166.206
https://doi.org/10.1103/PhysRevA.8.2048
https://doi.org/10.1103/PhysRevA.8.2048
https://doi.org/10.1103/PhysRevA.8.2048
https://doi.org/10.1103/PhysRevA.8.2048
https://doi.org/10.1103/PhysRevA.9.1343
https://doi.org/10.1103/PhysRevA.9.1343
https://doi.org/10.1103/PhysRevA.9.1343
https://doi.org/10.1103/PhysRevA.9.1343
https://doi.org/10.1007/BF01669871
https://doi.org/10.1007/BF01669871
https://doi.org/10.1007/BF01669871
https://doi.org/10.1007/BF01669871
https://doi.org/10.1143/PTP.107.525
https://doi.org/10.1143/PTP.107.525
https://doi.org/10.1143/PTP.107.525
https://doi.org/10.1143/PTP.107.525
https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1103/PhysRevLett.98.050405
https://doi.org/10.1103/PhysRevLett.98.050405
https://doi.org/10.1103/PhysRevLett.98.050405
https://doi.org/10.1103/PhysRevLett.98.050405
https://doi.org/10.1088/1742-5468/2007/06/P06008
https://doi.org/10.1088/1742-5468/2007/06/P06008
https://doi.org/10.1088/1742-5468/2007/06/P06008
https://doi.org/10.1103/PhysRevLett.100.030602
https://doi.org/10.1103/PhysRevLett.100.030602
https://doi.org/10.1103/PhysRevLett.100.030602
https://doi.org/10.1103/PhysRevLett.100.030602
https://doi.org/10.1103/PhysRevLett.100.100601
https://doi.org/10.1103/PhysRevLett.100.100601
https://doi.org/10.1103/PhysRevLett.100.100601
https://doi.org/10.1103/PhysRevLett.100.100601
https://doi.org/10.1103/PhysRevLett.109.247206
https://doi.org/10.1103/PhysRevLett.109.247206
https://doi.org/10.1103/PhysRevLett.109.247206
https://doi.org/10.1103/PhysRevLett.109.247206
https://doi.org/10.1088/1742-5468/2013/07/P07003
https://doi.org/10.1088/1742-5468/2013/07/P07003
https://doi.org/10.1088/1742-5468/2013/07/P07003
https://doi.org/10.1088/1742-5468/2013/07/P07012
https://doi.org/10.1088/1742-5468/2013/07/P07012
https://doi.org/10.1088/1742-5468/2013/07/P07012
https://doi.org/10.1103/PhysRevB.87.245107
https://doi.org/10.1103/PhysRevB.87.245107
https://doi.org/10.1103/PhysRevB.87.245107
https://doi.org/10.1103/PhysRevB.87.245107
https://doi.org/10.1088/1742-5468/2014/03/P03016
https://doi.org/10.1088/1742-5468/2014/03/P03016
https://doi.org/10.1088/1742-5468/2014/03/P03016
https://doi.org/10.1103/PhysRevB.89.125101
https://doi.org/10.1103/PhysRevB.89.125101
https://doi.org/10.1103/PhysRevB.89.125101
https://doi.org/10.1103/PhysRevB.89.125101
https://doi.org/10.1103/PhysRevLett.113.117202
https://doi.org/10.1103/PhysRevLett.113.117202
https://doi.org/10.1103/PhysRevLett.113.117202
https://doi.org/10.1103/PhysRevLett.113.117202
https://doi.org/10.1103/PhysRevLett.113.117203
https://doi.org/10.1103/PhysRevLett.113.117203
https://doi.org/10.1103/PhysRevLett.113.117203
https://doi.org/10.1103/PhysRevLett.113.117203
https://doi.org/10.1088/1742-5468/2014/07/P07024
https://doi.org/10.1088/1742-5468/2014/07/P07024
https://doi.org/10.1088/1742-5468/2014/07/P07024
https://doi.org/10.1103/PhysRevA.90.043625
https://doi.org/10.1103/PhysRevA.90.043625
https://doi.org/10.1103/PhysRevA.90.043625
https://doi.org/10.1103/PhysRevA.90.043625
https://doi.org/10.1088/1742-5468/2014/12/P12009
https://doi.org/10.1088/1742-5468/2014/12/P12009
https://doi.org/10.1088/1742-5468/2014/12/P12009
https://doi.org/10.1088/1742-5468/2014/10/P10045
https://doi.org/10.1088/1742-5468/2014/10/P10045
https://doi.org/10.1088/1742-5468/2014/10/P10045
https://doi.org/10.1103/PhysRevE.90.031301
https://doi.org/10.1103/PhysRevE.90.031301
https://doi.org/10.1103/PhysRevE.90.031301
https://doi.org/10.1103/PhysRevE.90.031301
https://doi.org/10.1088/1742-5468/2015/04/P04001
https://doi.org/10.1088/1742-5468/2015/04/P04001
https://doi.org/10.1088/1742-5468/2015/04/P04001
https://doi.org/10.1038/nphys3215
https://doi.org/10.1038/nphys3215
https://doi.org/10.1038/nphys3215
https://doi.org/10.1038/nphys3215
https://doi.org/10.1088/1742-5468/2016/06/063101
https://doi.org/10.1088/1742-5468/2016/06/063101
https://doi.org/10.1088/1742-5468/2016/06/063101
https://doi.org/10.1103/PhysRevB.94.054313
https://doi.org/10.1103/PhysRevB.94.054313
https://doi.org/10.1103/PhysRevB.94.054313
https://doi.org/10.1103/PhysRevB.94.054313
https://doi.org/10.1103/PhysRevLett.106.227203
https://doi.org/10.1103/PhysRevLett.106.227203
https://doi.org/10.1103/PhysRevLett.106.227203
https://doi.org/10.1103/PhysRevLett.106.227203
https://doi.org/10.1088/1742-5468/2012/07/P07016
https://doi.org/10.1088/1742-5468/2012/07/P07016
https://doi.org/10.1088/1742-5468/2012/07/P07016
https://doi.org/10.1088/1742-5468/2012/07/P07022
https://doi.org/10.1088/1742-5468/2012/07/P07022
https://doi.org/10.1088/1742-5468/2012/07/P07022
https://doi.org/10.1103/PhysRevLett.110.257203
https://doi.org/10.1103/PhysRevLett.110.257203
https://doi.org/10.1103/PhysRevLett.110.257203
https://doi.org/10.1103/PhysRevLett.110.257203
https://doi.org/10.1088/1742-5468/2016/06/064002
https://doi.org/10.1088/1742-5468/2016/06/064002
https://doi.org/10.1088/1742-5468/2016/06/064002
https://doi.org/10.1088/1742-5468/aa53f4
https://doi.org/10.1088/1742-5468/aa53f4
https://doi.org/10.1088/1742-5468/aa53f4
https://doi.org/10.1088/1742-5468/2016/06/064008
https://doi.org/10.1088/1742-5468/2016/06/064008
https://doi.org/10.1088/1742-5468/2016/06/064008
https://doi.org/10.1103/PhysRevLett.115.157201
https://doi.org/10.1103/PhysRevLett.115.157201
https://doi.org/10.1103/PhysRevLett.115.157201
https://doi.org/10.1103/PhysRevLett.115.157201
https://doi.org/10.1088/1742-5468/aa82c1
https://doi.org/10.1088/1742-5468/aa82c1
https://doi.org/10.1088/1742-5468/aa82c1
https://doi.org/10.1103/PhysRevLett.96.067202
https://doi.org/10.1103/PhysRevLett.96.067202
https://doi.org/10.1103/PhysRevLett.96.067202
https://doi.org/10.1103/PhysRevLett.96.067202
https://doi.org/10.1103/PhysRevE.91.030103
https://doi.org/10.1103/PhysRevE.91.030103
https://doi.org/10.1103/PhysRevE.91.030103
https://doi.org/10.1103/PhysRevE.91.030103
https://doi.org/10.1103/PhysRevB.80.035110
https://doi.org/10.1103/PhysRevB.80.035110
https://doi.org/10.1103/PhysRevB.80.035110
https://doi.org/10.1103/PhysRevB.80.035110
https://doi.org/10.1143/PTP.33.423
https://doi.org/10.1143/PTP.33.423
https://doi.org/10.1143/PTP.33.423
https://doi.org/10.1143/PTP.33.423
https://doi.org/10.1063/1.1731409
https://doi.org/10.1063/1.1731409
https://doi.org/10.1063/1.1731409
https://doi.org/10.1063/1.1731409


PERTURBATIVE APPROACH TO WEAKLY DRIVEN MANY- … PHYSICAL REVIEW B 97, 024302 (2018)

[82] P. Jung and A. Rosch, Phys. Rev. B 75, 245104 (2007).
[83] P. Mazur, Physica 43, 533 (1969).
[84] M. Suzuki, Physica 51, 277 (1971).
[85] X. Zotos, F. Naef, and P. Prelovsek, Phys. Rev. B 55, 11029

(1997).
[86] A. Rosch, J. Paaske, J. Kroha, and P. Wölfle, Phys. Rev. Lett.

90, 076804 (2003).
[87] J. Berges, S. Borsányi, and C. Wetterich, Phys. Rev. Lett. 93,

142002 (2004).
[88] G. Aarts, G. F. Bonini, and C. Wetterich, Phys. Rev. D 63,

025012 (2000).
[89] M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Rauer,

M. Schreitl, I. Mazets, D. Adu Smith, E. Demler and J.
Schmiedmayer, Science 337, 1318 (2012).

[90] T. Langen, S. Erne, R. Geiger, B. Rauer, T. Schweigler, M.
Kuhnert, W. Rohringer, I. E. Mazets, T. Gasenzer, and J.
Schmiedmayer, Science 348, 207 (2015).

[91] T. Langen, T. Gasenzer, and J. Schmiedmayer, J. Stat. Mech.
(2016) 064009.

[92] M. Moeckel and S. Kehrein, Phys. Rev. Lett. 100, 175702
(2008).

[93] C. Kollath, A. M. Läuchli, and E. Altman, Phys. Rev. Lett. 98,
180601 (2007).

[94] M. Kollar, F. A. Wolf, and M. Eckstein, Phys. Rev. B 84, 054304
(2011).

[95] J. Marino and A. Silva, Phys. Rev. B 86, 060408
(2012).

[96] A. Mitra, Phys. Rev. B 87, 205109 (2013).

[97] M. Marcuzzi, J. Marino, A. Gambassi, and A. Silva, Phys. Rev.
Lett. 111, 197203 (2013).

[98] B. Bertini, F. H. L. Essler, S. Groha, and N. J. Robinson, Phys.
Rev. Lett. 115, 180601 (2015).

[99] M. Babadi, E. Demler, and M. Knap, Phys. Rev. X 5, 041005
(2015).

[100] M. Buchhold and S. Diehl, Phys. Rev. A 92, 013603 (2015).
[101] M. Marcuzzi, J. Marino, A. Gambassi, and A. Silva, Phys. Rev.

B 94, 214304 (2016).
[102] R. Barnett, A. Polkovnikov, and M. Vengalattore, Phys. Rev.

A 84, 023606 (2011).
[103] N. Nessi, A. Iucci, and M. A. Cazalilla, Phys. Rev. Lett. 113,

210402 (2014).
[104] B. Nowak, J. Schole, and T. Gasenzer, New J. Phys. 16, 093052

(2014).
[105] E. Canovi, M. Kollar, and M. Eckstein, Phys. Rev. E 93, 012130

(2016).
[106] D. Golež, P. Werner, and M. Eckstein, Phys. Rev. B 94, 035121

(2016).
[107] A. Chiocchetta, A. Gambassi, S. Diehl, and J. Marino, Phys.

Rev. Lett. 118, 135701 (2017).
[108] V. Gurarie, Nucl. Phys. B 441, 569 (1995).
[109] J. Lux, J. Müller, A. Mitra, and A. Rosch, Phys. Rev. A 89,

053608 (2014).
[110] A. Bohrdt, C. B. Mendl, M. Endres, and M. Knap, New J. Phys.

19, 063001 (2017).
[111] E. Leviatan, F. Pollmann, J. H. Bardarson, D. A. Huse, and E.

Altman, arXiv:1702.08894.

024302-17

https://doi.org/10.1103/PhysRevB.75.245104
https://doi.org/10.1103/PhysRevB.75.245104
https://doi.org/10.1103/PhysRevB.75.245104
https://doi.org/10.1103/PhysRevB.75.245104
https://doi.org/10.1016/0031-8914(69)90185-2
https://doi.org/10.1016/0031-8914(69)90185-2
https://doi.org/10.1016/0031-8914(69)90185-2
https://doi.org/10.1016/0031-8914(69)90185-2
https://doi.org/10.1016/0031-8914(71)90226-6
https://doi.org/10.1016/0031-8914(71)90226-6
https://doi.org/10.1016/0031-8914(71)90226-6
https://doi.org/10.1016/0031-8914(71)90226-6
https://doi.org/10.1103/PhysRevB.55.11029
https://doi.org/10.1103/PhysRevB.55.11029
https://doi.org/10.1103/PhysRevB.55.11029
https://doi.org/10.1103/PhysRevB.55.11029
https://doi.org/10.1103/PhysRevLett.90.076804
https://doi.org/10.1103/PhysRevLett.90.076804
https://doi.org/10.1103/PhysRevLett.90.076804
https://doi.org/10.1103/PhysRevLett.90.076804
https://doi.org/10.1103/PhysRevLett.93.142002
https://doi.org/10.1103/PhysRevLett.93.142002
https://doi.org/10.1103/PhysRevLett.93.142002
https://doi.org/10.1103/PhysRevLett.93.142002
https://doi.org/10.1103/PhysRevD.63.025012
https://doi.org/10.1103/PhysRevD.63.025012
https://doi.org/10.1103/PhysRevD.63.025012
https://doi.org/10.1103/PhysRevD.63.025012
https://doi.org/10.1126/science.1224953
https://doi.org/10.1126/science.1224953
https://doi.org/10.1126/science.1224953
https://doi.org/10.1126/science.1224953
https://doi.org/10.1126/science.1257026
https://doi.org/10.1126/science.1257026
https://doi.org/10.1126/science.1257026
https://doi.org/10.1126/science.1257026
https://doi.org/10.1088/1742-5468/2016/06/064009
https://doi.org/10.1088/1742-5468/2016/06/064009
https://doi.org/10.1088/1742-5468/2016/06/064009
https://doi.org/10.1103/PhysRevLett.100.175702
https://doi.org/10.1103/PhysRevLett.100.175702
https://doi.org/10.1103/PhysRevLett.100.175702
https://doi.org/10.1103/PhysRevLett.100.175702
https://doi.org/10.1103/PhysRevLett.98.180601
https://doi.org/10.1103/PhysRevLett.98.180601
https://doi.org/10.1103/PhysRevLett.98.180601
https://doi.org/10.1103/PhysRevLett.98.180601
https://doi.org/10.1103/PhysRevB.84.054304
https://doi.org/10.1103/PhysRevB.84.054304
https://doi.org/10.1103/PhysRevB.84.054304
https://doi.org/10.1103/PhysRevB.84.054304
https://doi.org/10.1103/PhysRevB.86.060408
https://doi.org/10.1103/PhysRevB.86.060408
https://doi.org/10.1103/PhysRevB.86.060408
https://doi.org/10.1103/PhysRevB.86.060408
https://doi.org/10.1103/PhysRevB.87.205109
https://doi.org/10.1103/PhysRevB.87.205109
https://doi.org/10.1103/PhysRevB.87.205109
https://doi.org/10.1103/PhysRevB.87.205109
https://doi.org/10.1103/PhysRevLett.111.197203
https://doi.org/10.1103/PhysRevLett.111.197203
https://doi.org/10.1103/PhysRevLett.111.197203
https://doi.org/10.1103/PhysRevLett.111.197203
https://doi.org/10.1103/PhysRevLett.115.180601
https://doi.org/10.1103/PhysRevLett.115.180601
https://doi.org/10.1103/PhysRevLett.115.180601
https://doi.org/10.1103/PhysRevLett.115.180601
https://doi.org/10.1103/PhysRevX.5.041005
https://doi.org/10.1103/PhysRevX.5.041005
https://doi.org/10.1103/PhysRevX.5.041005
https://doi.org/10.1103/PhysRevX.5.041005
https://doi.org/10.1103/PhysRevA.92.013603
https://doi.org/10.1103/PhysRevA.92.013603
https://doi.org/10.1103/PhysRevA.92.013603
https://doi.org/10.1103/PhysRevA.92.013603
https://doi.org/10.1103/PhysRevB.94.214304
https://doi.org/10.1103/PhysRevB.94.214304
https://doi.org/10.1103/PhysRevB.94.214304
https://doi.org/10.1103/PhysRevB.94.214304
https://doi.org/10.1103/PhysRevA.84.023606
https://doi.org/10.1103/PhysRevA.84.023606
https://doi.org/10.1103/PhysRevA.84.023606
https://doi.org/10.1103/PhysRevA.84.023606
https://doi.org/10.1103/PhysRevLett.113.210402
https://doi.org/10.1103/PhysRevLett.113.210402
https://doi.org/10.1103/PhysRevLett.113.210402
https://doi.org/10.1103/PhysRevLett.113.210402
https://doi.org/10.1088/1367-2630/16/9/093052
https://doi.org/10.1088/1367-2630/16/9/093052
https://doi.org/10.1088/1367-2630/16/9/093052
https://doi.org/10.1088/1367-2630/16/9/093052
https://doi.org/10.1103/PhysRevE.93.012130
https://doi.org/10.1103/PhysRevE.93.012130
https://doi.org/10.1103/PhysRevE.93.012130
https://doi.org/10.1103/PhysRevE.93.012130
https://doi.org/10.1103/PhysRevB.94.035121
https://doi.org/10.1103/PhysRevB.94.035121
https://doi.org/10.1103/PhysRevB.94.035121
https://doi.org/10.1103/PhysRevB.94.035121
https://doi.org/10.1103/PhysRevLett.118.135701
https://doi.org/10.1103/PhysRevLett.118.135701
https://doi.org/10.1103/PhysRevLett.118.135701
https://doi.org/10.1103/PhysRevLett.118.135701
https://doi.org/10.1016/0550-3213(95)00108-5
https://doi.org/10.1016/0550-3213(95)00108-5
https://doi.org/10.1016/0550-3213(95)00108-5
https://doi.org/10.1016/0550-3213(95)00108-5
https://doi.org/10.1103/PhysRevA.89.053608
https://doi.org/10.1103/PhysRevA.89.053608
https://doi.org/10.1103/PhysRevA.89.053608
https://doi.org/10.1103/PhysRevA.89.053608
https://doi.org/10.1088/1367-2630/aa719b
https://doi.org/10.1088/1367-2630/aa719b
https://doi.org/10.1088/1367-2630/aa719b
https://doi.org/10.1088/1367-2630/aa719b
http://arxiv.org/abs/arXiv:1702.08894



