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Iterative neural-network-based three-dimensional structural optimization of atomic positions over tens of
nanometers is performed using transmission electron microscope (TEM) diffraction data simulated from density
functional theory (DFT) all-electron densities, thus retrieving parameter variations along the beam direction.
We first use experimental data to show that the GPAW DFT code’s all-electron densities are considerably
more accurate for electron diffraction calculations compared to conventional isolated-atom scattering factors,
and they also compare well to Wien2K DFT simulations. This DFT-TEM combination is then integrated into
an iterative neural-network-optimization-based algorithm (PRIMES, parameter retrieval and inversion from
multiple electron scattering) to retrieve nanometer-scale ferroelectric polarization domains and strain in theoretical
bulklike specimens from TEM data. DFT and isolated-atom methods produce substantially different diffraction
patterns and retrieved polarization domain parameters, and DFT is sufficient to retrieve strain properties from
a silicon specimen simulated using experimentally derived structure factors. Thus, we show that the improved
accuracy, fast computation, and intuitive integration make the GPAW DFT code well suited for three-dimensional
materials characterization and demonstrate this using an iterative neural-network algorithm that is verifiable on
the mesoscale and, with DFT integration, self-consistent on the nanoscale.
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I. INTRODUCTION

Experimental transmission electron microscopy (TEM)
and computational density functional theory (DFT) are both
well-established tools for nanoscale materials physics—TEM
characterizes materials with Angstrom-scale spatial resolution
[1,2], and DFT simulates electronic structure, including for
atomic-position relaxation into minimum-energy configura-
tions [3]. Conceptually, DFT and TEM are easily linked—
DFT-generated charge densities (all-electron charge densities
plus nuclei) can provide specimen models for TEM simulations
of images or diffraction patterns. This DFT-TEM combina-
tion can benefit both techniques. For TEM, DFT electronic
structure could replace isolated-atom-scattering-factor (IASF)
models, which are common but completely exclude chemical
bonding [4,5]. For DFT, experimental TEM data can map large
non-minimum-energy structures, including strain or ferroelec-
tric domains, that might be problematic for DFT alone [6,7].
Previous DFT-TEM combinations have been rare and, when
attempted, have generally assumed a depth-invariant bulklike
TEM specimen, or very thin crystals for high-resolution imag-
ing [8–13]. For example, DFT-TEM high-resolution image
simulations of picometer-scale atomic shifts in BaTiO3 showed
general consistency between experimental and DFT results, but
their simulations assumed depth invariance and they cautioned
about interpreting thin-crystal results as bulklike [9]. To be
widely used, a DFT-TEM combination must be not only
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more accurate than IASF models, but also easy to integrate
into TEM simulations, fast enough for applications using
iterative algorithms, and able to deal with non-depth-invariant
specimens (e.g., depth-dependent polarization domains). In
this paper, we first show that the GPAW (grid-based projector-
augmented wave) DFT code [14,15] is a good candidate
for TEM simulations; for TEM-relevant quantities, GPAW’s
all-electron densities are accurate and accessible, and we
directly compare GPAW to both the Wien2K DFT code
and experimental quantities. We then show that GPAW DFT
is fast enough to be integrated into PRIMES (parameter
retrieval and inversion from multiple electron scattering),
our iterative three-dimensional parameter-retrieval artificial-
neural-network algorithm [16–18], retrieving depth-direction
polarization variations on a BaTiO3 simulated specimen and
strain from a Si simulated specimen. This algorithm provides a
way to extend and benchmark DFT codes against a wide range
of large physical structures. In summary, we present both a
DFT-TEM-based three-dimensional characterization method
that is self-consistent on the nanoscale and verifiable on the
mesoscale and benefits both DFT and TEM research, and
we also present a straightforward way to use accurate DFT
electronic structure for TEM simulations.

TEM image and diffraction-pattern simulations are a natural
application for DFT-generated ground-state charge densities,
especially using the GPAW DFT code. There are good reasons
to pursue DFT for TEM applications: Electron-holographic
mean inner potentials (MIPs) from ground-state simulations
have been consistent both between different DFT codes and
experimental data [19–21]. The two main TEM simulation
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algorithms are multislice and Bloch-wave, which represent
the specimen as, respectively, real-space electrostatic po-
tentials or reciprocal-space structure factors [22–27]. The
open-source GPAW DFT code is ideal for TEM image and
diffraction pattern simulations, because GPAW easily pro-
vides the all-electron density on a real-space grid via the
get_all_electron_density() function, and the atomic
nuclei positions are DFT inputs via the atomic simulation
environment (ASE) [14,15,28]. The GPAW DFT code has
been previously used to generate MIPs, including showing
the MIP’s theoretical surface-state dependence [29] computa-
tionally using both thin-film and nanowire simulations [21].
We use the Bloch-wave approach and generate diffraction
patterns, but processing GPAW charge densities for multislice
would require only minor differences. For our Bloch-wave
approach, we assume a locally-regular crystal, which enables
both periodic boundary conditions on the DFT simulation
and fast-Fourier-transform conversion from real-space electron
density into reciprocal space. Converting between electron
density plus nuclei positions and TEM structure factors is
described in textbooks, using the Mott-Bethe equation [30].
Within the Bloch-wave formalism, multiple scattering means
that a matrix exponential is required to convert the structure
factors into an electron scattering matrix. The stacked-Bloch-
wave implementation represents the specimen as a sequence
of scattering matrices, enabling easy, small-unit-cell simu-
lation for specimens that change along the beam direction
[31,32]. Because these stacked scattering matrices do not
multiplicatively commute with each other, the stack order can
be retrieved from TEM measurement data (e.g., convergent-
beam electron diffraction [CBED] patterns)—meaning speci-
men properties that vary along the beam direction, including
strain and ferroelectric polarization, have been retrieved from
simulated CBED data with depth resolution down to 2.5 nm at
300 kV using the PRIMES algorithm [16–18]. However, this
algorithm relies on the simulation’s specimen charge density
model being close to the actual specimen; DFT provides a
self-consistent and realistic charge density model suitable for
three-dimensional specimens, unlike conventional techniques.

Conventional TEM simulation methods typically rely on
non-DFT charge density models that are unphysical or im-
practical, especially for unknown samples or advanced, three-
dimensional applications. The most common method uses
isolated-atom scattering factors (IASFs), which represent the
specimen as a set of noninteracting isotropic atoms. IASFs
are unphysical because they completely neglect chemical
bonding between atoms; this leads to inaccuracies like the
IASF silicon 〈222〉 structure factor being zero due to symmetry,
disagreeing with both experimental measurements and DFT
simulations [33,34]. In some cases, structure factors have
been directly fitted to experimental CBED and CBED-like
data from benchmark materials, leading to two-dimensional
charge density or potential maps from experimental TEM data
[8,34–37]. However, a specimen with three-dimensional fea-
tures is problematic for direct fitting, both because each
individual layer would require structure-factor fitting, requir-
ing many independent variables that are not self-consistent,
and also because individual structure factors will be depth-
sensitive, so direct fitting may not be equally accurate over the
entire specimen [38]. Therefore, in the rest of this paper, we

show that GPAW DFT is a logical fit for three-dimensional
TEM specimens because it is easy to use, accurate compared
to IASF, and fast enough to use in an iterative routine
like PRIMES. For DFT-focused research, our parameter-
retrieval algorithm is also one way for DFT platforms to
self-consistently explore nanoscale behavior unfolding on the
mesoscale, with possible experimental verification or bench-
marking against other codes.

II. RESULTS

In the following sections, we simulate silicon structure fac-
tors and electron diffraction data, and demonstrate silicon and
tetragonal BaTiO3 three-dimensional parameter retrieval. We
use GPAW version 0.10 and ASE version 3.8.1. Simulations
are performed both including and excluding isotropic Debye-
Waller factors and absorption; when absorption is excluded, the
total electron dose on the specimen and detector planes is equal.
For silicon, unless otherwise specified, we used a bulk unit cell
with the experimental lattice parameter a = 5.431 Å [39] and
100 kV accelerating voltage, for DFT simulations k = 43 k

points and g = 243 grid points, and, for IASF simulations, the
Lobato et al. IASF parametrization [5], which compared well
with other IASF parametrizations [40]. For tetragonal BaTiO3,
{a,c} = {3.9925,4.0365} Å [41], DFT k = 43 and g = 243,
with 289 beams (the zero- and first-order Laue zones for the
[111] zone axis with excitation error s � 1.00 nm−1 at 100 kV).
Our multi-CPU, multi-GPU code calculates scattering matrices
using GPU-accelerated matrix exponentials [32] and allocates
pattern subsections to different computational threads using
OpenMPI [42]. The PRIMES algorithm, described elsewhere,
uses optimization techniques from artificial neural network
theory to perform multiple-scattering inversion for crystalline
specimens [16], samples a region of reciprocal space without
tilting the specimen [17], and can efficiently retrieve ferroelec-
tric polarization and strain [18]. Consistent with a large-angle
rocking-beam electron diffraction (LARBED) pattern, we
sample a (2◦×2◦) reciprocal-space span (0.1◦ dot-pitch), cen-
tered on the [111] zone axis for a total of 441 reciprocal-space
points [43]. Other simulation conditions are used as noted.

A. Structure-factor generation methods, compared

In this section, IASF and DFT structure-factor generation
methods are compared against each other and against exper-
imental structure factors. We directly compare both structure
factors and electron-diffraction pattern intensities, both with
and without absorption, and, in the following section, including
two different DFT codes. Simulations without absorption
provide quantitative thickness-independent assessment of the
effect of DFT alone, while simulations with absorption provide
a test of the standard Bird-King absorption model combined
with DFT elastic scattering. We use patterns generated from
experimentally fitted structure factors instead of experimental
diffraction patterns because comparing structure factor models
requires knowing the correct “ground truth” values. We show
that DFT elastic structure factor models improve the accuracy
of both structure factors and electron diffraction patterns, and
that DFT models correspond to experimental data far better
than IASF elastic structure factors.
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TABLE I. Silicon structure factors |Vg| for elastic electron scatter-
ing, in volts: experiment compared with IASF and DFT. Experimental
values and parameters are from the literature [34], with the Debye-
Waller factor zeroed. IASF values use the Lobato et al. isotropic
parametrization [5]. DFT values use the GPAW-provided LDA (local
density approximation) [3], PBE (Perdew-Burke-Ernzerhof) [44],
revPBE [45], and RPBE [46] exchange-correlation functionals.

g Exp. IASF LDA PBE revPBE RPBE

〈111〉 5.215 5.510 5.204 5.201 5.201 5.201
〈220〉 4.486 4.457 4.495 4.500 4.504 4.505
〈311〉 2.583 2.531 2.585 2.586 2.587 2.587
〈222〉 0.112 0.0a 0.095 0.097 0.097 0.097
〈400〉 2.752 2.739 2.757 2.754 2.753 2.753
〈331〉 1.673 1.713 1.697 1.695 1.694 1.694
〈422〉 2.005 2.052 2.048 2.044 2.044 2.043

aZero due to IASF symmetry.

First, we compare the structure-factor values directly. We
demonstrate GPAW’s accuracy for elastic structure factors by
comparing against IASF and experimental structure factors
from the literature [34], shown in Table I and Table II.
Compared to IASF, DFT is a much more accurate match
to the experimental structure factors found via direct fitting.
In fact, DFT’s increasing mismatch at higher g could be an
artifact of the experimental data analysis, because Ogata et al.
fit both structure factors and the Debye-Waller factor [34];
Debye-Waller-factor misdetermination would be g dependent,
like this is. Thus, DFT could improve experimental Debye-
Waller fitting, as well, by providing a self-consistent model
for low-order structure factors. While the differences shown
in Table I and Table II appear small, Fig. 1 shows a Si CBED
pattern with IASF or DFT structure factors, where the choice
of structure factor substantially affects the pattern intensity,
including outside the central [000] disk. Using inaccurate
structure factors can easily lead to data misinterpretation. For
accurate, quantifiable simulations, DFT is a clear first resort
over IASF, both conceptually and practically, and improving
structure factors can yield substantial measurable effects.

Now, we compare CBED patterns generated using IASF,
DFT, and experimental structure factors, both with and without
inelastic structure factors to model beam attenuation. Inelastic
structure factors correspond to different physical properties

TABLE II. Differences between the experimental and simulated
|Vg| values shown in Table I. DFT |Vg| values are much closer
to experimental measurements than IASF |Vg| values are. 〈222〉
is nonzero both experimentally and with DFT, but zero in IASF
calculations due to symmetry.

g IASF LDA PBE revPBE RPBE

〈111〉 5.65% 0.21% 0.28% 0.26% 0.28%
〈220〉 0.65% 0.20% 0.32% 0.39% 0.41%
〈311〉 2.04% 0.05% 0.09% 0.13% 0.14%
〈222〉 (IASF zero, exp. & DFT nonzero)
〈400〉 0.48% 0.18% 0.06% 0.04% 0.03%
〈331〉 2.35% 1.43% 1.29% 1.25% 1.24%
〈422〉 2.33% 2.13% 1.95% 1.90% 1.89%

0.5-0.5
(b)-(a)

(c)

DFT
1.00.0

(b)

IASF
0.5-0.5

(b)-(a)

(c)

DFT
1.00.0

(b)

IASF
1.00.0

(a)

FIG. 1. Diffraction intensities for a simulated Si 100 nm [110]
CBED pattern without absorption at 100 kV, showing that differences
in elastic structure factor models can lead to substantial intensity
changes. (a) Intensities calculated using IASF models. (b) Intensities
calculated using DFT models. (c) Difference between (a) and (b);
maximum single-pixel intensity difference 29.8%.

than elastic ones, as discussed in Sec. III. The Bird-King
parameterized model for inelastic structure factors [47] yields
close but approximate values [34]. We also compensated
for total beam attenuation (which arises from the imaginary
part of the structure-factor matrix diagonal) when including
absorption by renormalizing all the patterns to the same
overall attenuation; this would also be done for experimental
data when calibrating the overall pattern intensity. Theoret-
ically, this compensation is also necessary when using DFT
because the DFT simulations have zero net charge (and,
without a region of free space included, an undefined mean
inner potential) [48] so the real part of the structure-factor
matrix diagonal is zero, so the Bird-King absorption model
doesn’t correctly calculate total beam attenuation; we used our
previous values for the Si mean inner potential to calculate
the total beam attenuation [21,48]. We generated patterns
using different structure factor models for visual comparison,
including with and without absorption, and with and without

FIG. 2. CBED patterns [(1◦×1◦) span, disk radius 3.7 mrad]
generated with different elastic structure factor models for 100
nm Si at 200 kV accelerating voltage (n = 261 beams). These
patterns are generated with elastic structure factors only; inelastic
scattering is shown in Fig. 3. (a) IASF model without Debye-Waller
factors; (b) DFT model without Debye-Waller factors; (c) IASF with
Debye-Waller factor (M = 0.463); (d) DFT with Debye-Waller factor
(M = 0.463); (e) as (d), but with experimentally derived structure
factors [34] for low-order scattering.
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FIG. 3. As Figs. 2(c)–2(e), but with inelastic scattering. The Bird-
King inelastic scattering factors are used [47], so the Debye-Waller
factors must be nonzero. Beam attenuation is calculated from the
scenario in (b), with the Bird-King inelastic scattering parameter
applied to a DFT-calculated mean inner potential [21]. (a),(b) As
Figs. 2(c) and 2(d), but with Bird-King inelastic scattering. (c) As
(b), but with experimental structure factors for low-order inelastic
and elastic scattering [34].

an experimentally derived Debye-Waller factor. Figure 2 and
Fig. 3 show simulated CBED patterns using IASF, DFT, and
experimental structure factors. When only elastic scattering is
included, compared to experimentally-derived-structure-factor
patterns, DFT yields much closer results than IASF; including
the Debye-Waller factor both reinforces this and substantially
changes the patterns. When inelastic scattering is included,
DFT is still noticeably better than IASF models. However,
these results mean that DFT-generated CBED patterns are
likely to be closer matches to experimental CBED patterns,
as long as a suitable Debye-Waller factor is used. We examine
this further in later sections of this paper using both zone-axis
thickness-determination comparisons and PRIMES retrieval
performance.

Thickness determination performance can be used as an-
other way of comparing different structure-factor models.
CBED patterns change as a function of thickness, and the
pattern differences visible in Figs. 1, 2, and 3 suggest that, for
a given target pattern, using the wrong structure factor model
might lead to the closest-match pattern being at the wrong
thickness. Therefore, we examined two questions: First, if the
thickness is known, what is the measurable intensity effect of
using different structure-factor models (Fig. 4); second, if the
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FIG. 4. Intensity mismatch across CBED patterns, compared
to the experimental-structure-factor silicon 200 kV CBED pattern
calculated using the same thickness without absorption.
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FIG. 5. Intensity mismatch against experimental-structure-factor
silicon 200 kV CBED patterns without absorption at (a) 100 nm and
(b) 200 nm. Lower mismatch means a closer pattern match.

thickness is unknown, how inaccurately would the thickness
be determined using the different models (Fig. 5)? Figure 4
compares patterns at the same thickness generated with dif-
ferent structure-factor models, yielding two main points—
first, Debye-Waller factors influence the diffraction patterns
enough to be necessary for comparisons with experiment,
and second, DFT performs much better than IASF. Figure 5
compares patterns across different thicknesses with the pattern
at one single thickness [either (a) 100 nm or (b) 200 nm],
reinforcing those two points and adding a third: The “best-fit”
IASF pattern is at the wrong thickness entirely, while the
best-fit DFT pattern is close. Extending this further, Fig. 6
compares best-fit thicknesses as a function of true thickness
for different techniques (the minima from each curve in Fig. 5
would yield the individual data points at 100 and 200 nm),
showing that including both the correct Debye-Waller factor
and a DFT simulation would yield a very close thickness
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FIG. 6. Thickness misdetermination against experimental-
structure-factor silicon 200 kV CBED patterns without absorption,
under the same conditions as Figs. 4 and 5. The result is the error in
the best-fit pattern’s thickness. (I.e., 0 represents a correct thickness
match.) This is a graph of the minima locations from Fig. 5 but
for more than just those two thicknesses. Including the correct
Debye-Waller factor greatly improves the fit; however, DFT provides
a noticeable improvement compared to IASF models, and the DFT
matches are almost all correct within 1 nm for thicknesses up to
400 nm.

determination. Thus, IASF methods may misdetermine the
specimen thickness, while DFT will be much closer. We
discuss inelastic structure factor effects in the next section,
when we compare different DFT codes.

B. Using different DFT codes for structure-factor generation

Because different DFT implementations are available, we
compared two different DFT codes—GPAW and Wien2K
[49]—by generating CBED patterns from different materials.
Both Wien2K and GPAW have been used for mean inner poten-
tial calculations on comparable materials [20,21]. Wien2K has
been used previously for comparisons with TEM experimental
data [20]; however, unlike GPAW, Wien2K is not freely
available and would be more difficult than GPAW to integrate
into TEM analysis, including PRIMES or other routines that
natively use the Python programming language, especially
those that depend on the ASE library. The Wien2K simulations
used the linearized augmented plane wave (LAPW) method
with the local density approximation (LDA) and later improved
using the modified Becke-Johnson potential (mBJ) for sili-
con and diamond. For the systems with strongly correlated
electronic states, strontium titanate (a = 3.905 Å) and barium
titanate, LDA+U has been used, which is based on a corrective
functional inspired by the Hubbard model; U corresponds to
an effective energy which is added to the more correlated
electronic states (d and f orbitals). The cutoff energy was set at
12 Ry to handle the maximum number of electronic states as
valence/semicore. For both Wien2K potentials, self-consistent
field (SCF) cycles of the crystal were performed until the total
energy was converged to 10−5 eV with 1000 k points.

The results from comparing GPAW and Wien2K using
electron diffraction simulations show that the two DFT

TABLE III. Elastic structure factors simulated using GPAW and
Wien2K, in volts, as in Table I. The first row corresponds to the LDA
column in Table I.

g 〈111〉 〈220〉 〈311〉 〈222〉 〈400〉 〈331〉 〈422〉
Si† 5.204 4.495 2.585 0.095 2.757 1.697 2.048
Si* 5.154 4.515 2.602 0.128 2.756 1.687 2.040
C† 6.552 5.149 2.831 0.095 2.840 1.693 1.949
C* 6.510 5.211 2.871 0.137 2.853 1.686 1.942

g 〈110〉 〈211〉 〈220〉 〈321〉 〈330〉 〈422〉
BaTiO3

‡ 7.845 4.362 6.276 2.589 2.190 2.952
BaTiO3

** 7.818 4.365 6.280 2.589 2.190 2.955
BaTiO3

† 7.749 4.354 6.275 2.590 2.190 2.952
SrTiO3

‡ 6.500 3.505 5.668 2.063 1.736 2.614
SrTiO3

** 6.469 3.508 5.671 2.061 1.735 2.615
SrTiO3

† 6.407 3.498 5.667 2.064 1.737 2.614

†GPAW, LDA.
*Wien2K, LDA.
‡GPAW, LDA+U (0.52 Ry).
**Wien2K, LDA+U (0.52 Ry).

codes largely agree. Table III shows that both DFT meth-
ods agree on their structure factors for multiple materials.
Table III also demonstrates that using a DFT+U method
(LDA+U exchange-correlation functional) influences primar-
ily the lowest-order structure factors, compared to a LDA
functional. Thus, TEM can also be used to compare different
DFT+U parameters. When these structure factors are applied
to CBED pattern generation, Fig. 7 shows that the result-
ing patterns closely agree. This agreement holds even when
absorption is included, and compared to IASF models, the
differences between different DFT methods are minimal.

Figure 8 compares different codes’ intensities when in-
cluding absorption. First, the differences between codes are
much smaller (red line) than the differences between the DFT
results and the experimentally derived structure factor results
(blue lines). GPAW and Wien2K are approximately the same
accuracy, but the details are somewhat different, as shown by
the red line being larger than the naïve difference between the
two blue lines, arising because different parts of the patterns
match, as shown in Fig. 7. Thus, we show that different
DFT codes generate similar CBED patterns, consistent with
previous results showing that different DFT codes generate
similar mean inner potentials [21]. This demonstrates that
different DFT implementations can benchmark and compare
accuracy using TEM simulation methods, including CBED
pattern intensities, and that different DFT codes can yield very
similar and consistent results.

C. Iterative methods: Ferroelectric polarization
retrieval using PRIMES and GPAW DFT

Now, we use iterative GPAW DFT calculations with
TEM data to perform iterative structural optimization for
non-minimum-energy structures. As mentioned above, the
parameter-retrieval method used, PRIMES, is described in
detail elsewhere [16–18]. The layered polarization structure,
seen in Figs. 9(a) and 9(b), is a non-minimum-energy structure,
because DFT-calculated polarized and unpolarized BTO unit
cells have different energies. Examples of the diffraction data
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FIG. 7. Comparison between GPAW and Wien2K using intensity-
normalized CBED patterns at 200 kV with Debye-Waller factors and
with and without absorption. (a) Wien2K pattern without absorption,
under the same conditions as the GPAW pattern in Fig. 2(d) and
(b) difference between (a) and Fig. 2(d). (c) Wien2K pattern with
absorption, under the same conditions as the GPAW pattern in
Fig. 3(b) and (d) difference between (c) and Fig. 3(b).

used are shown in Figs. 9(c) and 9(d), corresponding to a large-
angle rocking-beam electron diffraction (LARBED) dataset
[43]; the left-right difference shows how the polarization
atomic displacements can affect pattern intensities. Figure 9(e)
shows how DFT and IASF can yield measurably different
diffraction intensities. Figure 10 shows the retrieved polariza-
tions for each 10 nm layer as a function of simulation iteration,
showing that a DFT-based approach can be used iteratively to
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FIG. 8. Thickness comparison of CBED pattern intensities (in-
cluding absorption) between Wien2K and GPAW (red line) and
compared against experimental-structure-factor pattern intensities
(both blue lines).
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FIG. 9. BaTiO3 (a) unit cell and (b) specific polarization domain
specimen used for PRIMES in this work, with multiple different
polarized domains and schematic diagram of the CBED technique.
(c) Simulated intensity results for the specimen in (b) generated
using isolated-atom scattering factor (IASF) models and parameters as
given in the text—left-to-right, the direct beam, one 110 reflection, the
six summed 110 reflections (“All-110”), and the difference between
the left and right sides of the “All-110” image shows polarization
effects. (d) As (c) but using DFT models instead of IASF. (e)
Difference between (c) and (d)—demonstrating that DFT models
produce substantially different intensity patterns than IASF models.

determine this non-minimum-energy structure. Interestingly,
Fig. 11 shows that using the IASF model retrieves the wrong
polarizations for a DFT-generated specimen, reinforcing the
above conclusion that accurate structure factors matter, es-
pecially for iterative methods. Figure 12 shows that, for a
DFT-generated specimen, the DFT approach converges well
on the true answer, and would be experimentally noise-limited,
while the IASF model is inaccurate.

This iterative approach is also computationally tractable—
on our 16-core computer, the DFT approach required about
17 hours for the 2000 DFT calculations plus approximately
a half hour for the GPU-accelerated TEM simulations. In
principle, non-minimum-energy structures stretching over tens
or hundreds of nanometers can be characterized using a
combination of TEM and DFT, and TEM simulations can use
DFT instead of IASF models.

D. Iterative methods: PRIMES structure-factor-model
sensitivity

Now, we explore how the PRIMES algorithm handles
a realistic structure-factor model, including experimentally
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FIG. 10. PRIMES-retrieved polarization parameters for the DFT
specimen model against the DFT-generated target. The legend indi-
cates both the correct polarization value (+, −, or 0) and the layer’s
depth in nm. PRIMES successfully retrieves the polarization in every
layer. The mean parameter error from here is the dashed blue line
in Fig. 12.

fitted structure factors and inelastic scattering. While inelastic
scattering is not typically used for PRIMES benchmarks
because inelastic scattering introduces thickness dependence
to the error metric, we extend our analysis to include inelastic
scattering as a full test of our ab initio approach. Correctly
benchmarking PRIMES requires exact knowledge of the target
specimen for quantification of the retrieved-parameter error.
Using the strain components corresponding to crystal tilt,
as we used previously to introduce PRIMES [16], enables

0 20 40 60 80 100
Iteration

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

IA
S
F

:α
T

i−
di

sp
la

ce
m

en
t
(Å
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FIG. 11. PRIMES-retrieved polarization parameters for the IASF
specimen model against the DFT-generated target. Unlike when the
DFT specimen model is used, the retrieved parameters are incorrect
(correct values are shown in Fig. 10). This shows that neglecting
chemical bonding can result in retrieving incorrect specimen param-
eters. The mean parameter error from here is the dashed red line
in Fig. 12.
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FIG. 12. PRIMES results against a DFT-generated target, using
either a DFT specimen model (blue) or a IASF specimen model (red),
showing that the IASF specimen model fails to accurately match
the DFT-generated target. Solid lines show the mean measurement
mismatch between the candidate and target diffraction data. Dashed
lines show the mean error in atomic displacements between the
retrieved specimen and the true specimen.

using unmodified experimental structure factors (no unit cell
distortions or atomic displacements). This is also a large non-
minimum-energy structure, like the ferroelectric polarization
test case discussed earlier. By including inelastic scattering,
a Debye-Waller factor, and DFT-generated elastic structure
factors in our model, and comparing against data generated
from experimental structure factors, this scenario provides
guidance on PRIMES performance using realistically achiev-
able structure-factor models.

Figure 13 shows the result of using PRIMES with a
generated silicon specimen model derived from experimental
structure factors. The silicon specimen has sequentially chang-
ing strain as a function of depth, divided into 11 distinct 10-
nm-thick layers with 0.02◦ crystal tilt between each. PRIMES
is able to retrieve the correct values with an average error of
approximately 0.01◦, thus successfully discriminating between
layers. We note that, because these tests include absorption,
beam attenuation makes the error metrics thickness dependent.

This test shows that PRIMES, using available models, can
successfully retrieve specimen parameters from a realistic
structure-factor target and that DFT retrieval is much closer
to the experimental case than it was to the IASF case in the
previous section.

III. ANALYSIS

These results demonstrate the substantial scope for
future DFT-TEM combinations, especially to understand
three-dimensional nano-to-mesoscale structures. For TEM
simulations, open-source GPAW’s get_all_electron_
density() function yields an electron density that is easy
to integrate into existing TEM simulation routines, yields
substantial accuracy improvements compared to IASF models,
and is fast enough to integrate into iterative TEM simulation
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FIG. 13. PRIMES results for strain retrieval against a silicon
experimental-structure-factor target including absorption at 200 kV
(n = 261); correct values are +0.10◦ to −0.10◦ with 0.02◦ incre-
ments, showing successful parameter retrieval. (a) Individual param-
eter values per iteration; (b) pattern mismatch (solid) and average
parameter error (dotted) per iteration.

routines like PRIMES. Other TEM data-simulation algorithms,
such as atomic-resolution multislice, could run GPAW DFT
simulations on thin films (like those used for mean inner poten-
tials [21]) and potentially solve for three-dimensional atomic
positions and charge densities [50,51] while fully including
surface effects. It is now computationally feasible to integrate
DFT into initial TEM analysis, replacing IASF models, instead
of post-facto comparison [8]. We note that previous studies
have shown that DFT’s utility will likely be material dependent
and that electronic structure could contribute to the Stobbs-
factor (high-resolution TEM image mismatch) [10,52]. Thus,
DFT should be at least assessed when considering accurate
TEM image or diffraction simulations, especially when direct
fitting is not feasible. For DFT codes, in two dimensions,
experimental scattering factors can be another DFT-quality
metric [36]. DFT-TEM advantages are even greater in three di-
mensions, where our parameter-retrieval algorithm, PRIMES,
can decipher non-minimum-energy structures extending over
tens or hundreds of nanometers. For materials with nanoscale

domains, PRIMES presents a versatile framework for applying
DFT in an experimentally verifiable geometry. This algorithm
combines DFT nanoscale self-consistency and TEM mesoscale
verifiability, enabling further three-dimensional nanoscale ma-
terials physics research.

While we treat both elastic and inelastic scattering in this pa-
per, we use ab initio DFT simulations for elastic scattering but
less accurate Bird-King models for inelastic scattering. These
ground-state DFT simulations provide an ab initio model for
elastic scattering, which is by far the largest single component
to the structure factor at accelerating voltages typically applied
in standard TEMs [34]; inelastic scattering is a much smaller
effect requiring a different model. Practically, for high-energy
electrons, the inelastic magnitudes are typically much smaller
than the elastic ones with a different angular dependence (e.g.,
for silicon, |V ′/V | = 0.020111,0.031220) [34], so the common
approach of a fixed absorption multiplier (|V ′/V | = constant)
is questionable [2]. Improved physical models (e.g., that of
Bird and King, which includes thermal diffuse scattering
through an Einstein model and excludes i.a. phonon effects
[47]) are similar to experimentally fitted values [34]; unfor-
tunately, precise and direct fits of inelastic components are
more difficult due to their small magnitude, although the cross
section increases with atomic number [53,54]. Conceptually,
elastic scattering corresponds to a ground state specimen
interaction, but inelastic scattering involves energy transfer,
thus requiring a non-ground-state simulation outside the scope
of this paper. Therefore, this work focuses on ab initio elastic
scattering because it is the most important single component
and provides a clear improvement over IASF models, while
ab initio inelastic scattering is a potential subject for future
research using different simulation methods.

For future work, multiple pathways exist for integrating
these DFT and PRIMES methods with improved inelastic
scattering models. Our absorptive structure factors are based
on Einstein-model isotropic thermal diffuse scattering (TDS)
parametrizations at low angles as calculated by Bird and King
[47]. This physical model can be improved by using ab initio
phonon calculations [55]. In addition to influencing structure
factors, some of the “absorbed” electrons are actually measured
on the detector, even if the measurement is energy filtered.
This TDS intensity influences the diffraction data, and multiple
approaches exist for, e.g., pattern-intensity derivative fitting
[56,57] or multislice supercell ensembles of TDS thermal-
displacement configurations, including potentially using
ab initio phonon information [58]. However, TDS simula-
tions are computationally intensive. Thus, a noniterative pre-
processing step where the TDS contribution is pre-calculated
and removed may be sufficient, or the TDS compensation
could update only when the PRIMES specimen has greatly
changed. Of course, leaving TDS intensity uncompensated
implicitly treats that intensity as noise and would generally
result in an increased background in diffraction data and thus
decreased PRIMES performance. In summary, for future work,
TDS integration options include both improved absorptive
structure factors and TDS intensity quantification, as either a
pre-processing step or part of an iterative routine like PRIMES.

In a broader context, the work described here is a necessary
prerequisite to be able to analyze experimental data using
PRIMES, because TEM specimen models are, by necessity,
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approximations. A model that provides exactly accurate elas-
tic structure factors would also provide the exactly accu-
rate ground-state electron density—i.e., a perfect electronic-
structure calculation. Therefore, it is important to demonstrate
that PRIMES does not rely on a perfect structure factor model,
which we showed here in Sec. II D. These tests use simulated
data because the target specimen must be exactly known to
determine the PRIMES result’s accuracy, especially when the
structure-factor models are different. PRIMES passes these
tests—in the strain case, with parameter error around 0.01◦—
meaning that its structure-factor models, while imperfect and
open to improvement, are still good enough for PRIMES with
DFT to be useful for experimental data, and PRIMES with DFT
is a substantial improvement over PRIMES with IASF models.

IV. CONCLUSIONS

In this paper, we report a combination of DFT and TEM
to improve both TEM and DFT simulation techniques. The
GPAW DFT code is shown to be a good match for TEM—fast,
accurate, and its all-electron densities can be integrated into
advanced algorithms. We verified its accuracy by compar-
ing against experimental measurements of elastic structure
factors for Si, where DFT substantially outperformed IASF
models, and we found close correspondence between structure
factors generated using different DFT codes for multiple

materials. We then demonstrated that PRIMES (our iterative
three-dimensional structural characterization algorithm) can
use DFT structure factors for nanoscale self-consistency and
mesoscale verifiability. We retrieved nanoscale BaTiO3 do-
mains of depth-resolved atomic polarization from simulated
data and depth-resolved silicon strain configurations also
from simulated data including experimentally derived structure
factors. Future work should focus on applying DFT, especially
GPAW DFT, to a wider variety of TEM simulations, including
its applicability to modeling absorption, Debye-Waller factors,
and frozen-lattice/phonon effects. This should also include
using DFT for routine TEM simulations, given how feasible
realistic electronic structure calculations can be. Future work
should also include using TEM methods as a way to apply DFT
to mesoscale structures, including three-dimensional objects.
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