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Quantum magnetomechanics: Towards the ultrastrong coupling regime
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In this paper we investigate a hybrid quantum system comprising a mechanical oscillator coupled via magnetic
induced electromotive force to an LC resonator. We derive the Lagrangian and Hamiltonian for this system and find
that the interaction can be described by a charge-momentum coupling with a strength that has a strong geometry
dependence. We focus our study on a mechanical resonator with a thin-film magnetic coating which interacts with
a nanofabricated planar coil. We determine that the coupling rate between these two systems can enter the strong
and ultrastrong coupling regimes with experimentally feasible parameters. This magnetomechanical configuration
allows for a range of applications including electromechanical state transfer and weak-force sensing.
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I. INTRODUCTION

Coupling between electromagnetic and mechanical degrees
of freedom is central to a number of quantum science exper-
iments and enables the development of many quantum tech-
nologies. Mechanical oscillators can act as coherent interfaces
between different electromagnetic fields [1,2] and are a promis-
ing tool for the development of future quantum technologies
oriented to communications, memories, and metrology. Addi-
tionally, due to their relatively large mass, mechanical systems
offer a promising route to perform fundamental tests of quan-
tum physics [3–5]. A multitude of approaches in both opto-
and electromechanics have been suggested and experimentally
studied such as suspended mirrors forming an optical cavity
with variable cavity length formed by microtoroids carrying
whispering gallery modes [6], LC resonators with a mobile
drum mode capacitor [7], the motion of superfluid [8,9], and
nanophononic crystals [10].

The basic coupling in optomechanics and electromechanics
is fundamentally similar but physically different. In both cases
a mechanical displacement produces a shift in the resonance
frequency of an electromagnetic resonator. In optomechanics
optical resonators are formed by mobile elements that change
the length of the cavity. In electromechanics, capacitors used
in LC circuits are commonly formed by one mobile plate,
so the resonance frequency is position dependent. Since the
optomechanical coupling rate is related to the momentum
transfer between the photon and a mechanical oscillator [11], it
is usually small, such that reaching beyond the strong coupling
regime is complicated. In recent literature, the term optome-
chanics is used to refer to both opto- and electromechanical
systems [12]; we follow this convention along the rest of the
text.

At the quantum level, many experimental control protocols
require quantum-coherent exchange of excitations between the

light and mechanical systems [13], which is possible when
the optomechanical interaction is faster than the dissipation of
the light and mechanics, known as strong coupling condition.
Significant progress has been made in a variety of architectures
that enables this strong coupling to be observed [14]. Strongly
coupled systems have been used, for instance, to cool down
the state of motion of mechanical oscillators to their ground
state [15] and the preparation of entangled states of motion
of a macroscopic mechanical oscillator [7]. The magnitude of
the coupling rate defines two other main regimes that remain
unexplored in optomechanics. The first one, referred to as ul-
trastrong coupling regime, is accessible when the coupling rate
is a considerable fraction of the resonance frequency [16–18].
In optomechanical systems, the ultrastrong coupling regime
has been proposed to exhibit novel physics at the quantum
level [19,20].

Approaches that explore mechanical oscillators coupled
to electric circuits through magnetic interactions have been
referred to as magnetomechanics and have been little explored
compared to electromechanics [21]. Quantum magnetome-
chanics explores different techniques to prepare and control
quantum states of motion of a mechanical oscillator using
magnetic interactions. Several approaches to quantum mag-
netomechanics have been proposed and include magnetically
levitated mechanical oscillators with the aim of reduce de-
coherence [22,23] and coupling the motion of a mechanical
oscillator to a superconducting circuit [24]. The applications
of quantum magnetomechanics can be expanded to systems
with intrinsic magnetic properties such as electric circuits,
superconducting qubits [25], or spin qubits [26].

In this paper we reexamine an electromechanical scheme,
dating back as far as 1980 [3], that utilizes inductive coupling,
placing it on a solid theoretical formulation by deriving the
Lagrangian and the associated Hamiltonian. We further explore
experimental regimes that may be achieved using modern
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FIG. 1. (a) Simplified scheme of the magnetomechanical system
described in cylindrical coordinates z′ and r ′. A cylindrical magnet
of mass m and thickness hm attached to a spring of stiffness k0

forms a mechanical oscillator. The mechanical oscillator is inductively
coupled to an LC resonator. The magnet produces a magnetic field
Bm that induces a flux in the inductor L placed at z′ = u0, which is
connected to a capacitor C. The equilibrium position of the center
of mass of the magnet is z′ = u0 and it displaces z(t) around it.
(b) Coupling rate G(u) [a.u.] normalized to the maximum, which
is proportional to the Faraday flux force on the magnet, as a function
of the separation between the magnet and the coil u. The region where
the linear (green) interaction is presented on both sides and where the
dominant interaction is quadratic (red) is in the center.

fabrication techniques. The magnetomechanical system that
we study is composed of a mechanical oscillator coupled mag-
netically to an LC resonator as shown in Fig. 1(a). In contrast to
optomechanics, where the mediating force is due to the radia-
tion pressure, in our magnetomechanical system the mediating
force is the Lorentz force. Using micro/nanofabricated designs
which are experimentally achievable we find that strong and
ultrastrong coupling are attainable.

An outline of the paper is as follows. In Sec. II we determine
the Lagrangian of the coupled mechanical-LC system and then
derive the quantized Hamiltonian. The quantum Hamiltonian
exhibits either an adjustable linear or quadratic coupling
(Sec. III). In the linear coupling regime IV we find that the
LC circuit couples to the mechanical momentum identical to
the velocity sensor studied in [3]. We explore the linear system
in the strong coupling regime in Sec. IV A, and the generalized
dynamics beyond the strong coupling in Sec. IV B. We find the
energy spectrum and the eigenstates of the magnetomechanical
system and estimate the occupation for its ground state,
finding signs of entanglement between the mechanics and the
electronics in Sec. IV B 2. We study the system in the presence
of decoherence and analyze some of the spectral properties of
the mechanical system in the presence of the inductive coupling
in Sec. V. Properties of the proposed experimental device are
discussed in Sec. VI where we consider an implementation
with high Q mechanical oscillators and a superconducting
LC resonator. The linear dependence of the Hamiltonian on
the mechanical momentum also suggests that the Hamiltonian
is not invariant under the reversal of time, i.e., t → −t , and
thus breaks time-reversal symmetry and we discuss this in the
Appendix.

II. SEMICLASSICAL PICTURE

We define a cylindrical coordinate system (r ′,z′), where
we consider a small cylindrical magnet with magnetization
M and vector M = Mez′ . The magnet generates a magnetic
field Bm(z′,r ′) = Bzez′ + Brer ′ [27]. In Fig. 1(a) we represent
a scheme for the magnet’s position of the center of mass z(t)
placed at its equilibrium position z′ = 0. The magnet, with
effective mass m, is attached to a spring with spring constant
k0, forming a mechanical oscillator which resonates at the fre-
quency ωm = √

k0/m. The equation of motion for the center of
mass of the magnet is given by m[z̈(t) + �mż(t) + ω2

mz(t)] =
Fext(t), where �m represents the mechanical damping rate and
Fext(z,t) is an arbitrary external driving force.

Here we use a planar electric coil with inductance L placed
vertically below the magnet at z′ = u0 and connected to a two
plate capacitor C. This combination of capacitor and inductor
creates a cavity with resonance frequency centered at ωe =
1/

√
LC. The equation of motion for an LC resonator that is

driven with an arbitrary external voltage Vext(t) is given by
L[q̈(t) + �eq̇(t) + ω2

eq(t)] = Vext(t), where �e = R/L is the
dissipation rate and R is the resistance of the entire circuit.

The planar inductor follows a geometrical path in three
dimensions, which we define via a vector path S whose
transversal area element da = da ez′ is normal to the plane
where the inductor lays. The magnetic flux crossing the area
enclosed by the inductor is �B = ∫

Bm(u) · da, where u =
z(t) − u0 represents the relative vertical separation between
the magnet and the coil. Here we treat the Lorentz force FL(t)
as the dominant force acting on the magnet so Fext(t) = FL(t).
and the electromotive force (EMF) E(t) as the main source of
voltage Vext(t) = E(t). In Sec. V we discuss the case where the
system is thermally driven.

As the magnet displaces along z′, it fluctuates around an
equilibrium position z′ = u0. The mechanical vertical motion
creates an ac magnetic field which couples the LC circuit-
mechanical system via mutual inductance. The change in
position induces then a change in flux generating an EMF in the
electric circuit E(t) = − d�B

dt
. The displacement is restricted to

the z′ axis and it is parallel to the area component a; using the
expression for the time derivative of flux [28], the EMF can be
reexpressed in terms of the magnetic field

E(t) = −ż(t)
∮

coil
ez′ · (Bm(u) × dS). (1)

The induced E(t) produces an small current in the LC

circuit, and the inductor carrying the current generates a
magnetic field which interacts with the magnetic field of the
permanent magnet exerting a Lorentz force FL(t) between the
mechanical oscillator and the LC circuit

FL(t) = −q̇(t)
∮

coil
Bm(u) × dS. (2)

The Lorentz force FL(t) = Fz(t)ez′ + Fr (t)er ′ has a radial
component Fr (t)er ′ which points radially inwards; therefore,
around a closed loop 〈Fr (t)〉 ≈ 0. The simplified expression for
the Lorentz force is the contribution of the vertical component
Fz(t) = −q̇(t)(

∮
coil Bm(u) × dS) · ez′ . The effect of this force

acting on the mechanical oscillator produces a modification of
the stiffness of the mechanical spring constant and we denote
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it as the Lorentz spring constant kL. By altering the current in
the inductor this spring constant can be modified allowing one
to electrically tune the mechanical resonance frequency. From
Eq. (1) and Eq. (2) we define

G(u) =
∮

coil
[Bm(u) × dS] · ez′ , (3)

as the magnetomechanical coupling term G ∝ M , which
couples the mechanical and electrical interactions through a
magnetic interaction.

The magnetomechanical coupling rate G(u) is a function
of the relative separation between the magnet and the coil
u = z(t) − u0. In Fig. 1(b) we plot the coupling rate G(u) as a
function of u, which can be freely controlled in an experiment.
We set the initial equilibrium separation u0 with u0/hm ∈
[0,1], where hm is the thickness of the magnet [Fig. 1(a)].
The small displacement of the magnet around u0 allows us to
expand G(u) → G(u0 + z(t)) as a function of z, the canonical
coordinate of the center of mass mechanical motion. For small
displacements around u0, we define the linear coupling rate
G0 = G(u0) and expand G(z) ≈ G0 + Gjz

j where the gen-
eralized expression Gj = ∂jG(z)/∂zj |z′=u0 and j = 1,2. The
choice of u0 will define two different regions that correspond
to different dominant nonlinear terms of G(z). The first region
is shown in color green in Fig. 1(b) (bottom); the dominant
interaction in this region is defined by the first order term
(j = 1). The second region is illustrated as a red colored area in
Fig. 1(b) and the dominant nonlinear term is the second order
one (j = 2). The following analysis is equivalent for j = 1,2.
For the sake of simplicity, we will focus on the interaction up
to first order (j = 1).

Now we consider that the two oscillators are driven exter-
nally, with the force Eq. (2) for the mechanics and the voltage
Eq. (1) for the electronics. The dynamics of the coupled system
is then described by the set of coupled equations of motion:

m
[
z̈(t) + �mż(t) + ω2

mz(t)
] = −q̇(t)G(z),

(4)
L

[
q̈(t) + �eq̇(t) + ω2

eq(t)
] = ż(t)G(z).

Clearly, the magnetomechanical system is coupled through
G(z). Keeping in mind that our goal is to obtain a quantum
description of the system, we require the calculation of the
lossless magnetomechanical Lagrangian L from which we
can derive the equations of motion (4). We find that this lossless
Lagrangian is

L (z,q,ż,q̇) =
(m

2
ż2 − m

2
ω2

mz2
)

+
(

L

2
q̇2 − L

2
ω2

eq
2

)

+G(z)zq̇ + d

dt
[q ϕ(z)], (5)

where the first two terms in Eq. (5) describe the two oscillators.
The third term in Eq. (5) is the magnetomechanical coupling
rate between the motional displacement and the small currents
q̇. The last term is a total gauge derivative; although the gauge
ϕ(z) is a free parameter and can be arbitrarily chosen, it
is common that some specific physical conditions influence
the choice of gauge. The fourth term is easily expanded
as ∂t [q ϕ(z)] = qż∇ϕ(z) + ϕ(z)q̇ (∂t is the time derivative
operator) leaves the coupled equations of motion (4) invariant.

The canonical flux φ and the canonical momentum p are
obtained through the equations

∂L
∂q̇

= φ = Lq̇ + z G(z) + ϕ(z),

(6)
∂L
∂ż

= p = mż + q ∇ϕ(z).

As we observe, the canonical momentum p is a gauge de-
pendent quantity, in our very particular case we chose ϕ(z) =
−G0 z, that simplifies the ultimate form of the Hamiltonian
plus recovers the external capacitance in the readout circuit
Ck = m/G2

0 due to the coupling rate G0 [3]. Applying the Leg-
endre transformation H (z,q,p,φ) = żp + q̇φ − L to Eq. (5),
one obtains the canonical momentum and canonical flux of the
oscillators

p = mż − G0 q, φ = Lq̇ + z G(z). (7)

The canonical momentum p of the coupled system includes the
kinetic momentum mż and the momentum in the field −G0q.
The canonical flux φ involves the current Lq̇ and an induction
term G1 z. Therefore, the total classical Hamiltonian is derived
from the Lagrangian through the Legendre transformation and
it is given by

H =
(

p2

2m
+ ω2

m
mz2

2

)
+

[
φ2

2L
+

(
ω2

e + G2
0

mL

)
Lq2

2

]

+
(

G0

m
pq + G1

L
φz2

)
. (8)

We have so far found the Hamiltonian (8); in order to quantize
it, it is required to analyze the magnetomechanical single
photon-phonon interaction. We define the effective linear
coupling g0 in terms of the zero point fluctuation of the elec-
tric charge qZPF = √

h̄/(2Lωe) and mechanical momentum
pZPF = √

h̄ωmm/2 such that

h̄g0

2
≡ G0 qZPF

pZPF

m
,

h̄g1

2
≡ G1 z2

ZPF
φZPF

L
, (9)

where we also defined the nonlinear coupling g1 in terms
of the zero point motion zZPF = √

h̄/(2mωm) and zero point
fluctuation of the electrical flux φZPF = √

h̄Lωe/2. Within this
paper, we mostly study the regime near to resonance in which
the single photon-phonon effective linear coupling is simplified
as

g0 = G0√
Lm

. (10)

The linear coupling is commonly characterized using spec-
troscopic techniques, which we discuss in Sec. V B. The
geometrical dependence of the linear coupling g0 is described
in Sec. VI.

III. QUANTUM DYNAMICS

In this section we explore the quantum magnetome-
chanical Hamiltonian and some potential applications of a
quantum system of these physical characteristics. Following
the standard process in opto- and electromechanics [29],
we quantize the classical Hamiltonian (8) with the stan-
dard commutation relations [q̂,p̂] = [ẑ,φ̂] = [ẑ,q̂] = [p̂,φ̂] =
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0 and [q̂,φ̂] = [ẑ,p̂] = ih̄. The quantum magnetomechanical
Hamiltonian Ĥm is given by

Ĥm =
(

φ̂2

2L
+ (

ω2
e + g2

0

)Lq̂2

2

)
+

(
p̂2

2m
+ �m(φ̂)2 mẑ2

2

)

+ g0

√
L

m
p̂q̂, (11)

where the mechanical frequency is modulated by the flux in
the LC circuit as

�2
m(φ̂) = ω2

m − 2g1√
Lm

φ̂. (12)

The Lorentz force exerted between the permanent magnet and
the field generated by the current induces the modulation of
the mechanical frequency �m. The effect is known as Lorentz
spring constant kL = −2g1

√
m/L as a result of the modifi-

cation of the total stiffness k = k0 + kL of the mechanical
oscillator.

The magnetomechanical Hamiltonian clearly allows one to
perform mechanical frequency modulation through the Lorentz
force:

F̂L = −∂Ĥint

∂ẑ
= 2g1

√
m

L
ẑφ̂. (13)

One of the applications of the Lorentz force at the mesoscale
is the implementation of its backaction to cool down the
mechanical motion of mechanical oscillators [30]. The non-
linear properties of the Hamiltonian in Eq. (11) represent
an introduction for the nonlinear dynamics of mechanical
systems [31]. The second order nonlinear interaction (φ̂ẑ2) of
Eq. (15) induces an x-squared-type nonlinearity, allowing one
to produce mechanical squeezing [32], mechanical amplifica-
tion [33], mechanical entanglement [34], or cooling through
mechanical frequency modulation [35].

In the general magnetomechanical interaction, we look at
two different regimes of interest depending on the strength
of the coupling rates g0 and g1. Since, in general |g0| � |g1|,
the terms involving g2

1 are usually negligible, we may write
the magnetomechanical Hamiltonian as a sum of linear and
nonlinear terms, i.e., Ĥm = ĤL + ĤNL, where

ĤL = φ̂2

2L
+ (

ω2
e + g2

0

)Lq̂2

2
+ p̂2

2m
+ ω2

m
mẑ2

2
+ g0

√
L

m
p̂q̂

(14)

and

ĤNL ≈ g1

√
m

L
ẑ2φ̂. (15)

With HL alone we recover a scheme proposed for quantum
nondemolition measurements and velocity sensing [3].

In the optomechanics community, the Hamiltonian is typ-
ically expressed in the boson representation. In order to
facilitate the comparison between magnetomechanics and
optomechanics, here we reexpress our magnetomechanical
Hamiltonian (11) in the boson operators representation:

Ĥm = h̄ωeâ
†â + h̄�m(φ̂)b̂†b̂ + i

h̄g0

2
(â† + â)(b̂ − b̂†)

+ h̄g2
0

4ωe
(â + â†)2. (16)

We introduce the boson creation â† (b̂†) and the annihi-
lation â (b̂) operators for the electromagnetic (acoustic)
field. The boson operators are defined by the relations q̂ =
qZPF(â + â†), φ̂ = iφZPF(â† − â), ẑ = zZPF(b̂ + b̂†), and p̂ =
ipZPF(b̂† − b̂). The boson operators act on the eigenstates of
the electromagnetic (acoustic) field mode |ne〉 (|nm〉) follow-
ing the standard raising â†|ne〉 = √

ne + 1|ne + 1〉 (b̂†|nm〉 =√
nm + 1|nm + 1〉) and lowering â|ne〉 = √

ne − 1|ne − 1〉
(b̂|nb〉 = √

nm − 1|nm − 1〉) relations. The eigenvector basis
for the magnetomechanical states is described by |ne,nm〉 =
|ne〉 ⊗ |nm〉.

IV. LINEAR QUANTUM MAGNETOMECHANICS

In this section, we focus our study on the linear magne-
tomechanical Hamiltonian ĤL, where g0 � g1. This raises a
dominant linear interaction defined by the charge-momentum
coupling q̂p̂. In regular optomechanics, the interaction is
commonly described by a linearized model with a bilinear
position-position coupling [36]. In the magnetomechanical
linear interaction picture we explore two different regimes:
the so-called strong coupling regime and ultrastrong coupling
regime. Charge-momentum coupling remains little explored,
and to the best of our knowledge there are no proposals
demonstrating that ultrastrong coupling for mechanical sys-
tems can be achieved in this fashion. We also note that our
magnetomechanical system breaks the time-reversal symmetry
(Appendix).

A. Strong coupling regime

In the magnetomechanical strong coupling regime the
interaction between the mechanics and the electronics is faster
than the decoherence for each individual resonator g−1

0 <

�−1
m ,�−1

e . In the strong coupling regime g0 � ωm,ωe and the
term g2

0/ωe � g0. The elements in (14) in the boson basis with
terms proportional to g2

0/ωe are negligible and the simplified
Hamiltonian in the strong coupling regime is

ĤSC = h̄ωeâ
†â + h̄ωmb̂†b̂ + i

h̄g0

2
(â† + â)(b̂ − b̂†), (17)

which is easily diagonalized as the sum of two normal modes
ĤSC = h̄ωSC+ĉ

†
+ĉ+ + h̄ωSC−ĉ

†
−ĉ−. The normal modes ĉ± are

a hybridized mode that contains phonon and photon modes.
The energy levels for the hybrid system are

ESC± = h̄√
2

(
ω2

m + ω2
e ±

√
4g2

0ω
2
e + (

ω2
m − ω2

e

)2)1/2
. (18)

The spectrum for the first eight eigenvalues are shown in
red dashed lines in Fig. 2(a) as a function of g0/ωm for values
that lay within the strong coupling regime (�m/ωm < g0/ωm �
0.1); in blue are the values obtained for the general solution
discussed in the next section. In this regime we observe a very
typical linear dependence and good agreement between the
general and strong coupling approximation.

The Hamiltonian Eq. (17) shows that, in the strong coupling
regime, the magnetomechanical linear system allows one to
perform linear operations available in optomechanics such
as state swap between the mechanics and the electronics,
cooling or heating of the mechanical oscillator through a
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FIG. 2. In blue lines, the generalized spectrum and in red dashed
lines the approximation for the spectra in the strong coupling regime.
(a) Energy spectra of the magnetomechanical system within the strong
coupling regime g0/ωm. (b) Energy spectra of the magnetomechanical
system in two different perturbative regimes, strong coupling (orange
background 0 � g0/ωm � 0.1) and ultrastrong coupling (green back-
ground 0.1 � g0/ωm � 1/

√
2). The green line represents the Juddian

points that delimit the perturbative ultrastrong coupling regime. The
spectra (a) and (b) were calculated considering in resonance a resonant
system ωe = ωm. (c) Expectation value of the total excitation number
populating the ground state 〈ne + nm〉. The calculation was performed
using a truncation of 15 Fock states.

magnetomechanical protocol, and squeezing of the mechanical
mode or implementation of quantum nondemolition protocols.
The terms ∝(â†b̂ − âb̂†) in the Hamiltonian Eq. (17) represent
the energy exchange between electronic and mechanical mode,
commonly known as beam splitter interaction and crucial
for state transfer protocols. Meanwhile, the terms ∝(âb̂ −
â†b̂†) are simultaneous excitations of the mechanical and
electromagnetic field, known as two mode squeezing inter-
action [37,38]. The magnetomechanical system in the linear
regime reveals an interface to implement hybrid mechanical
systems with strong interactions.

In Sec. V we expand the discussion of spectral properties
and suitable measurements for the strong magnetomechanical
coupling regime.

B. Perturbative ultrastrong coupling regime

The magnetomechanical system offers a new platform
for the exploration of regimes beyond the strong coupling,
where relevant phenomena have been described in modern
literature [20,39,40]. The ultrastrong coupling regime has been
predominantly explored with electronic circuits [39,41,42].
Our system opens the possibility for mechanical systems to
reach this developing regime.

0
0

0.05

0.1

0.15
g0/ m=0.1

g0/ m=0.25

=0.5g0/ m

FIG. 3. Examining the dependence of the validity of the RWA
on the coupling strength g0/ωm. We consider the linear system with
ωe/ωm = 2 and plot the time dependence of the total occupation nT (t),
under the full Hamiltonian for increasing coupling strengths g0/ωm =
(0.1,0.25,0.5) for the initially unoccupied state |ψi〉 = |ne,nm〉 =
|0,0〉. For g0/ωm = 0 the evolution under the full Hamiltonian agrees
perfectly with with nT (t) = 0. Under the RWA nT (t) = 0 for all times
and all coupling strengths. For 0 < g0/ωm � 0.1 (red) the evolution
exhibits a periodic oscillation with very small amplitude nT (t) > 0.
However, the full dynamics shows that the total occupation increases
substantially for larger coupling strengths indicating that the RWA
breaks under ultrastrong coupling in our model (green and blue).

As has been demonstrated [18], the transition between
coupling regimes is smooth as a function of g0/ωm and can be
identified through the spectral properties of the system [18,43],
but it is also common to characterize the transition from the
strong coupling regime to ultrastrong coupling analyzing the
rotating wave approximation (RWA). In our system we look
at the evolution of the initial state |ψi〉 = |ne,nm〉 = |0,0〉,
which has no initial excitations in either the electrical or
mechanical oscillators under the Hamiltonian (14), for the case
ωe/ωm = 2, with an optomechanical coupling initiated at t = 0
and with strength g0/ωm = 0, 0.1, 0.25, 0.5. We compare the
mean total occupation nT (t) ≡ 〈n̂e + n̂m〉(t), under the full
linear Hamiltonian and with the RWA approximation which
involves dropping the fast rotating terms in the interaction term
∼p̂q̂ ∼ (â†b̂ − âb̂†). For g0 = 0, |ψi〉 is the ground state with
no excitations and evolution by the full dynamics and truncated
RWA agree. This is no longer the case when 0.1 � g0/ωm > 0;
as we can see in Fig. 3 the evolution of nT (t) > 0 is periodic
oscillating between a maximum value and a periodic minimum
close to zero.

For g0/ωm > 0.1 the maximum of nT (t) increases and the
dynamics becomes less periodic with minimum only approach-
ing to zero after several oscillation cycles. We can define the
boundary between the strong and ultrastrong coupling regimes
at a given value g0/ωm at which the dynamics starts changing,
the periodicity of nT (t) in the strong coupling regime starts
to break, and the amplitude of nT (t) starts to increase. This
boundary is not an exact numerical value but according to our
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calculations the dynamics starts to change for g0/ωm ∼ 0.1,
which agrees with the typical value considered in the literature.

The treatment for ĤL in the ultrastrong coupling becomes a
more complicated task when terms in the Hamiltonian are not
negligible any more. Here we consider a lossless environment
�m,e = 0 and find a general diagonalization for ĤL and the
construction of the eigenstates of the magnetomechanical
system and spectral properties.

1. Eigenstates of the magnetomechanical system

To construct the eigenstates of the magnetomechanical
system beyond the strong coupling approximation is needed
to diagonalize the Hamiltonian ĤL into its normal modes.
The normal modes are given by ĤNM = ÛĤLÛ †, which is
diagonal and has normal mode frequencies ω±. The unitary
transformation Û is a two mode squeezing operator Û =
exp {iβ(e−γ p̂φ̂ − eγ ẑq̂)} following [44] with complex squeez-
ing parameter eγ = i Lm ωm

√
ωmωe. The diagonalized linear

lossless Hamiltonian ĤNM is expressed in the normal mode
basis as

ĤNM = ω2
−

2
(X̂2

− + P̂ 2
−) + ω2

+
2

(X̂2
+ + P̂ 2

+), (19)

where the eigenfrequencies are given by
ω2

± = 1
2

(
ω2

m + ω2
e + g2

0

)
± 1

4

√
4g2

0

(
ω2

e + g2
0

) + (
ω2

m − ω2
e − g2

0

)2
. (20)

The dimensionless quadratures in the normal mode basis for
position X̂± and momentum P̂± follow the standard commu-
tation relations [X̂±,P̂±] = i and each one of the quadratures
is defined as

X̂+ = 1√
2qZPF

(q̂ cosh β + e−γ p̂ sinh β),

P̂+ = 1√
2φZPF

(φ̂ cosh β + eγ ẑ sinh β),

(21)

X̂− = 1√
2zZPF

(ẑ cosh β + e−γ φ̂ sinh β),

P̂− = 1√
2pZPF

(p̂ cosh β + eγ q̂ sinh β),

where i tanh (2β) = 2g0ωm

g2
0+ω2

e −ω2
m

.
As a matter of completeness, we introduce the boson

creation and annihilation operators for the ± modes, defined
as

â+ = 1√
2

(X̂+ + iP̂+), â
†
+ = 1√

2
(X̂+ − iP̂+),

â− = 1√
2

(X̂− + iP̂−), â
†
− = 1√

2
(X̂− − iP̂−). (22)

With the boson operators Eq. (22) defined, it is straightforward
to determine the eigenstates of the magnetomechanical system
in the linear regime, which are

|n+,n−〉 = 1√
n+!n−!

(â†
+)n+ (â†

−)n−|0,0〉, (23)

with the raising operators â± acting on the vacuum state
|0,0〉. Some of the relevant properties of the boson operators
Eq. (22) are the standard commutation relations [â+,â

†
+] =

1 and [â−,â
†
−] = 1. Similarly, the number operator for the

bosonic modes are n̂+ ≡ â
†
+â+ and n̂− ≡ â

†
−â−, with expecta-

tion values n± = 〈n̂±〉. Once the system has been expressed in
the boson operator representation, it is clear that, neglecting the
vacuum energy, the system has the following energy spectrum:

En+,n− = h̄ω+n+ + h̄ω−n−. (24)

The energy spectrum Eq. (24) as a function of g0/ωm with its
first eight eigenvalues is shown in Fig. 2(b) in continuum blue
lines. In red dashed lines is shown the spectrum Eq. (18) which
corresponds to the strong coupling regime approximation. It
is clear that for small values of 0 � g0/ωm � 0.1 the strong
coupling spectrum of Fig. 2(a) accurately describes the energy
levels of the system as the red dashed lines mostly overlap the
blue lines. A modern quantitative definition for classification of
coupling regimes according to spectral properties [18] suggests
that the so-called ultrastrong coupling regime can be separated
into perturbative and nonperturbative ultrastrong coupling
regimes, where the perturbative ultrastrong coupling regime
is defined as the region where g0/ωm � Jn, where Jn are the
first Juddian points of the spectra. We calculated the Juddian
points for the spectra of the magnetomechanical system

Jn = 1√
n− + n2−

, (25)

which are shown in Fig. 2(b) as black crosses. According
to Rossatto et al. [18], the perturbative ultrastrong coupling
regime will be delimited by the first Juddian point for n− = 1.
The magnetomechanical perturbative ultrastrong coupling
regime is then defined for coupling within g0/ωm � 1√

2
. The

coupling rate g0 can be experimentally measured directly
from the electrical resonance frequency shift ωe → �e,

with �e =
√

ω2
e + g2

0 . If the value of the frequency shift is
negligible, the energy spectrum (18) defines the energy levels.

2. Entangled ground state

As we defined the diagonalized Hamiltonian in the normal
mode basis Eq. (19), when they act on a on an eigenstate
|n+,n−〉, we obtain ĤNM|n+,n−〉 = En+,n− |n+,n−〉. We can
transform these eigenstates back to the laboratory frame using
the unitary Û †, and denote them as |n+,n−〉 ≡ Û †|n+,n−〉.
We note that in the laboratory basis such eigenstates may
be entangled. To see this we look at the expectation values
for the standard occupations for the number operators for
the electric and mechanical excitations n̂e = â†â, n̂m = b̂†b̂,
in this laboratory frame. In particular, we compute the sum
〈n̂m + n̂e〉 ≡ 〈0,0|n̂e|0,0〉 + 〈0,0|n̂m|0,0〉 (with a Fock trun-
cation of 15), and in Fig. 2(c) we plot this sum as a function
of ωe/ωm and γ /ωm. We see that when γ = 0, i.e., when
there is no coupling between the electric and mechanical
systems, the ground state has no excitations. However, this is
no longer true when |γ | > 0 and ωe �= ωm. By squeezing the
zero-point fluctuations of the magnetomechanical system the
ground state becomes entangled. Ground-state entanglement
induces the emergence of negative energy-density regions
in quantum systems [45]. The entanglement present when
〈n̂m + n̂e〉 > 0 represents a signature of the quantum nature
of the magnetomechanical system. This magnetomechanical
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system presents an approach for the generation of negative
energy-density which can be implemented in protocols of
quantum energy teleportation [45].

V. NONEQUILIBRIUM SYSTEM

So far, we have described the magnetomechanical system
in an isolated environment, i.e., in the absence of decoherence.
In this section we consider a semiclassical description in the
presence of decoherence channels �e,�m �= 0 and the response
of the mechanical system to thermal excitations. In Sec. V A
we describe observable properties such as magnetomechanical
damping and magnetomechanical frequency shift.

The simplest dynamics of the magnetomechanical system
out of equilibrium arises when we consider the mechani-
cal system to be in contact with a thermal bath through
the decoherence channel �m �= 0. In this case we con-
sider the external driving force Fext(t) no longer dominated
by the Lorentz force FL(t) but by the random thermal Langevin
force Fth(t). The mechanical system is then driven by Fth(t) and
as a result it has a randomly time-varying amplitude and phase.
In most experiments, the oscillations of microscale mechanical
systems are analyzed as a noise spectrum in frequency space.
Here we describe the stationary spectral properties of the
magnetomechanical system and analyze the influence of the
LC circuit on the mechanics.

The fluctuations of the mechanical displacement are a
consequence of Brownian motion due to the fact that the
mechanical oscillator is driven by a noisy thermal force. We
describe the system using the Langevin equation ∂Ô/∂t =
(i/h̄)[ĤL,Ô] + N̂O for an arbitrary observable Ô, where N̂O
represents the noise introduced by the interaction of the
observable Ô with its environment. We calculate the Langevin
equation for the coupled system of observables ẑ, p̂, q̂, and φ̂,
which reads as

˙̂z = p̂

m
+ g0

√
L

m
q̂,

˙̂p = mω2
mẑ − �mp̂ − F̂ext(t),

(26)

˙̂q = φ̂

L
,

˙̂φ = L�2
e q̂ − �eφ̂ − g0

√
L

m
p̂ + V̂ext(t).

It is clear that the noisy elements are introduced in the “momen-
tum” terms as they are commonly associated to friction forces.
From the experimental point of view, it is easier to measure
the properties of the system in the frequency domain, looking
at the stationary case. For the stationary case it’s possible to
consider that we measure continuously for a finite time τ ; in
this situation, the frequency components of the displacement
are (and the definition is extended to all the other operators)

z̃(ω) = 1√
τ

∫ τ

0
ẑ(t)eiωtdt. (27)

For the limit τ → ∞, the response of the mechanical oscillator
to an external drive is z̃(ω) = χm(ω)F̃ext(ω), where the suscep-
tibility of the mechanics is χm(ω) = (m(ω2

m − ω2 + iω�m))−1.
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FIG. 4. (a) Plot of the position displacement
√

〈|z|2〉 = √
Sxx(ω)

[a.u.] considering the parameters (�m,�e,g0) = (0.025,0.05,0.1) ×
ωm as a function of the frequency ω/ωm and ωe/ωm, where we
set m = L = 1. The normal mode frequencies �± are shown as
red dashed lines and avoided crossing is observed. For ωe = 0.8ωm

(green dashed line) and ωe = 1.2ωm (orange dashed line) we show
the profile in (c) which is normalized to the maximum. (b) Plot of
the mechanical response considering the parameters (�m,�e,g0) =
(0.025,0.05,0.3) × ωm as a function of the frequency ω/ωm and
ωe/ωm. The normal mode frequencies �± are shown as red dashed
lines and avoided crossing is observed. For ωe = 0.8ωm (green dashed
line) and ωe = 1.2ωm (orange dashed line) we show the profile in (d),
which is normalized to the maximum.

In the regime where g0 > 0, we calculate the expected
value of the operators that we obtained from the Langevin
equation and transformed into the frequency domain 〈z̃〉, 〈p̃〉,
〈q̃〉, and 〈φ̃〉. One obtains a set of coupled equations represented
in matrix form as Y = (R + iωI)Y, which has normal mode
frequencies,

�2
± = 1

2�2 ± 1
2

√
4g2

0ω
2
m + �4 − 4ω2

m�2
e, (28)

where �2 = ω2
m + �2

e + �e�m, the vector Y =
(〈z̃〉,〈p̃〉,〈q̃〉,〈φ̃〉), and

R =

⎛
⎜⎜⎜⎜⎝

0 1
m

√
L
m

g0 0

−mω2
m −�m 0 0

0 0 0 1
L

0 −
√

L
m

g0 −L�2
e −�e

⎞
⎟⎟⎟⎟⎠. (29)

The normal mode frequencies are shown in Figs. 4(a)
and 4(b) as red dashed lines. The coupling g0 is characterized
experimentally by the splitting �+ − �− ≈ g0 in the power
spectral density (PSD) [14]. If the splitting is observable, it is
a signature of strong coupling between the modes. Below we
find that strong coupling can be achieved in the linear regime
of this magnetomechanical system.
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A. Mechanical susceptibility

In a self contained fashion, the presence of the magnetome-
chanical coupling g0 > 0 creates a “circulation” of energy.
The mechanical displacement generates a voltage in the LC

resonator, while this one generates a magnetic field that exerts
a force on the mechanical resonator. Intuitively, it is clear that
the coupling might modify the bare mechanical susceptibility
χ (ω). This modified mechanical susceptibility is now called
the effective susceptibility χeff(ω) and is obtained from the
solution for the set of coupled equations Y. We can express
χeff(ω) in terms of the mechanical bare susceptibility plus a
magnetomechanical modification �(ω) such that

χeff(ω) = 1

m
(
ω2

m − ω2 + iω�m
) + �(ω)

, (30)

where similar to optomechanics, �(ω) represents the so called
self-energy [36]. The modification of the mechanical suscep-
tibility can be classified into a magnetomechanical induced
damping rate �mm(ω) = −Im[�(ω)]/mω and a magnetome-
chanical induced frequency shift δωm(ω) = Re[�(ω)]/2mω.
Explicitly, these parameters take the form of the magnetome-
chanical damping

�mm(ω) = −g2
0

[
ω2(�e − �m) + �mω2

e

�2
e ω

2 + (
ω2 − ω2

e

)2

]
(31)

and magnetomechanical induced frequency shift

δωm(ω) = g2
0ω

2

[
ω2

e − ω2 − �e�m

�2
e ω

2 + (
ω2 − ω2

e

)2

]
. (32)

The control of parameters such as �mm(ω) and δωm(ω) make
it possible to implement protocols such as cooling or heating
of the mechanical oscillator through the LC resonator within
this magnetomechanical approach.

B. Spectral properties

Commonly, the properties of the mechanical systems are
experimentally characterized by measuring the power spectral
density (PSD), which we define as

Sxx(ω) = 〈|z̃(ω)|2〉 = 〈|χeff(ω)|2F̃th(ω)〉. (33)

The PSD has units of m2/Hz and represents the distribution
of energy in each frequency component of the signal [12]. In
the case where the thermal energy drives the mechanical
oscillation, it is possible to relate the variance of the
amplitude of the oscillation to the thermal energy stored
in the oscillator by the fluctuation dissipation theorem
〈|z̃(ωm)|2〉 = kB T �eff(mωm)−1, where �eff = �m + �mm.
The amplitude of the oscillation is then related as

√
Sxx(ω) =√

〈|z̃(ω)|2〉. In Fig. 4(a) and Fig. 4(c) we plot
√

Sxx(ω/ωm)
with values (�m,�e,g) = (0.025ωm,0.05ωm,0.1ωm).
In Figs. 4(b) and 4(d) the considered values are
(�m,�e,g) = (0.025ωm,0.05ωm,0.3ωm). Figures 4(c) and 4(d)
show two plots for z̃(ω) values of ωe, in green ωe = 0.8ωm

and orange ωe = 1.2ωm. Normal mode splitting indicative of
strong coupling might be observed with mechanical oscillators

with quality factor as low as Qm = ωm/�m = 40 for a system
with the characteristics described in the next section.

The solution to the set of coupled equations Y also suggests
that the mechanical response is modified in the presence of an
external driving voltage on the circuit Ṽext(ω). In a particular
case, if the LC resonator is thermally driven Ṽext(ω) = Ṽth(ω),
this thermal drive can be measured with the mechanics. The
response of the mechanical resonator to an external ther-
mal voltage depends on a mechanical-voltage susceptibility
χV(ω) = χeff(ω)

√
m
L

g0(�m−iω)
(i�eω+ω2ω2

e ) . The PSD of the mechanics
due to excitation in the electronics is then

SVV(ω) = 〈|χV(ω)|2Ṽext(ω)〉. (34)

The mechanical response to an external force and an electric
drive is

z̃(ω) = χeff(ω)F̃ext(ω) + χV(ω)Ṽext(ω). (35)

The mechanical spectrum of Eq. (35) will provide a way
to experimentally measure the response of the mechanical
oscillator to external forces applied on itself and external
voltages applied on the LC, as well as its coupling.

VI. MAGNETOMECHANICAL DEVICE

Up to this point, we have treated the magnetomechanical
system in a general fashion. Here we describe a design feasible
to fabricate with currently available photo and e-beam lithogra-
phy techniques and materials. Here we describe some technical
details regarding its fabrication and practical implementation.
Our model considers the state-of-the-art experimental micro-
and nanofabrication techniques. In this particular design we
study mostly the influence on the coupling rate g0 due to the
geometry and factors such as the height of the magnet hm,
relative equilibrium vertical distance between the magnet and
the coil u0, number of turns of the inductor/coil N , and width
w of the wire/separation. The magnetomechanical system is
in principle able to achieve coupling rates g0 that exceed the
values of the mechanical resonance frequency ωm, which is
extremely challenging for optomechanical systems.

The successful implementation of our magnetomechanical
system [Fig. 5(c)] requires a two-chip fabrication process,
separated in two main steps. The first chip [Fig. 5(a)] consist
of a double clamped mechanical resonator (Sec. VI A). The
second chip [Fig. 5(b)] consists of a spiral coil and a planar
capacitor fabricated on a sapphire substrate (Sec. VI B). Each
one of the chips is individually fabricated and later joint
flipping the top chip (mechanical resonator) and adjusting
the separation between them. These flipped joint chips form
a system similar to the state-of-the-art 3D cavities recently
developed [46,47].

A. Mechanical system

In this section we describe the protocol for the microfabri-
cation of the mechanical oscillator of the magnetomechanical
system. The mechanical oscillator could be fabricated as a
double clamped beam 10 μm long and 1 μm wide on a thin
film Si3N4 membrane 100 nm thick on Si substrate. The
membrane can be patterned using standard photolithography
techniques; after exposure and development of the positive
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(a)

(c) (d)

(b)

FIG. 5. (a) Diagram of the fundamental mechanical mode of a
double clamped beam made out of a Si3N4 membrane smoothly
etched. The membrane has a cylinder on top that represents the
magnet. (b) Diagram of the coil on the electronic chip. In blue an
axial plane cut showing the transversal area w × hc of each wire of
the coil. The width and spacing is w and hc is the thickness of the
wire. (c) Representation of the flipped chip approach that places the
double clamped beam resonator above the electronic chip. (d) Plot of
the zero point fluctuation zZPF for the fundamental mode as a function
of the thickness/height of the magnet hm.

photoresist the open regions are etched using Reactive-Ion
Etch (RIE) fabrication technology. The finite element model
(Comsol) in Fig. 5(a) shows the fundamental motional mode
shape of the loaded double clamped beam made out of Si3N4.
It has been reported that Si3N4 has exceptional mechanical
properties under cryogenic conditions [48], which makes it
suitable for future magnetomechanical setups. Mechanical
oscillators made out of Si3N4 membranes have typical values
for mechanical quality factor Qm = ωm/�m = 105.

On top of the patterned beam a second photolithographic
step requires spin coating of a negative photoresist and ex-
posing it with the magnet pattern. After the exposure and
development of the pattern a thin film magnetic material is
deposited, similar to the coating process for cantilever’s AFM
magnetized tips. The final step is the gentle release of the
mechanical oscillator, which can be done using dry etch in
a XeF2 chamber for Si etch. This is an isotropic etch for Si
which will remove the Si under the resonator. The thickness of
the magnet hm can be easily controlled during the deposition
of the magnetic film. The cylindrical magnet is then formed
at the center of the double clamped beam through lift-off
of the negative resist. It is important to highlight that the
remarkable mechanical properties of Si3N4 membranes remain
largely unchanged when thin films are deposited on them [49]
far from the clamping region. The magnetic flux from the
magnet will determine the magnitude of the interaction as
the coupling rate g0 ∝ M . It is desirable to have magnetic
materials that support high density magnetization in thin films.
A magnetic material with such characteristics and which has
been extensively studied is Co-Fe, with a large number of
different alloys [50]. Here we chose a standard one with
density ρ = 7.81 g/cm3 and a conservative value for the
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FIG. 6. (a) Plot of ωm as a function of hm and m of the fundamental
mode. (b) Determination of the ratio g0/ωm as a function of T
for hm = 10 nm, hm = 50 nm, and hm = 200 nm. The parameters
considered here are w = 100 and N = 2 of the inductor. In red the
thickest magnet of hm = 200 nm. In orange the curve that corresponds
to hm = 50 nm. In purple, the curve that corresponds to hm = 10
nm. (c) Estimation of g0/ωm as a function of w. In these results
hm = 200 nm, with the one, the oscillator has an effective mass m =
9.9 × 10−15 kg and a mechanical resonant frequency ωm/2π = 3.2
MHz. The gap considered in this result is T = 10 nm. In blue, the
curve corresponding to N = 15, in green N = 10, in red N = 5,
and in orange N = 2. (d) Ratio g0/ωm as a function of N . The
numerical values were calculated considering a cylindrical magnet
with hm = 200 nm,T = 10 nm, and w = 100 nm. All the calculations
were performed considering a magnetization μ0|M| = 0.264 T. The
blue shaded regions represent the values that lay in the ultrastrong
coupling regime.

magnetization μ0|M| = 0.264T. Modern alloys have reached
saturation magnetization up to μ0|M| = 2.4 T [51]. The radius
of the magnet is fixed to rm = 0.5 μm and is a suitable size
for photo or e-beam lithography; the only degree of freedom
that we explore now is the height of the magnet hm which is
represented as the thickness of the magnetic thin film thickness.
Considering the mass of the double clamped beam and the
load of the magnet with its density, we calculate the effective
mass m and the resonance frequency ωm for the fundamental
mechanical mode of the mechanical system as a function of
hm; it is shown in Fig. 6(a). By controlling the thickness
of the deposited magnetic material, we can easily alter both
ωm, m also on the coupling rate g0. In Fig. 5(d) we plot

the zero point motion zZPF =
√

h̄
2mωm

as a function of the

magnet thickness hm. The control and tuning of the mechanical
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frequency has two different limits. In one limit, films which are
only a few nanometers thick will result in a higher frequency
mechanical oscillator, making the interaction with the LC

circuits technically more feasible. On the other hand, thicker
films result in higher magnetic volumes and therefore stronger
magnetic interactions.

B. Electrical circuit

The electronic component of the magnetomechanical sys-
tem requires one to be fabricated on an individual chip. Follow-
ing standard nanofabrication techniques for coils [15,52,53],
the chip can be fabricated on a sapphire substrate placing the
micro/nanofabricated coil depicted in Fig. 5(b), where a first
layer of metal is deposited on the surface of the chip. Following
a spin coating of e-beam resist (PMMA) for later exposure and
patterning of the central electrode and the flat part of the spiral
inductor, etching the metal through wet etch. A sacrificial layer
of resist is deposited and then exposed to pattern the bridge,
following an oxide removal of a few nm with Ar bombarding on
the surface and the successive second layer of metal deposition
to build the metallic bridge. A last step of resist removal either
wet or dry needs to be implemented to remove the sacrificial
layer.

A schematic representation of a spiral coil is shown in
Fig. 5(b); we also show a transverse cut to define w as
the packing parameter. The packing parameter represents the
width of the wire but also the spacing between each one of
the wires that make a single turn. The maximum resolution of
a nanofabrication system will determine the minimum value
for w.

C. Coupled system

The coupled magnetomechanical system requires a double
chip packaging. This particular packaging resembles the on
chip 3D-cavity implementations, taking the chip with the
mechanical oscillator and flipping it over the second chip with
the LC resonator as the scheme shows in Fig. 5(c).

Considering Eq. (3) and the initial separation u0, we can
numerically estimate the value g0 as a function of several
parameters, such as the gap between the edge of the magnet
T , the number of turns of the coil N , and the packing
parameter w that represents the width and separation between
the wires of the coil. The numerical results for the ratio
of the coupling rate and the mechanical frequency g0/ωm

as a function of three different parameters are shown in
Figs. 6(a), 6(b), and 6(c). In Fig. 6(b) the ratio g0/ωm is
presented as a function of the gap T = u0 − hm/2 between
the coil and the edge of the magnet, for different thickness
of the magnet hm and with (N ; w) = (2; 100 nm). It is observ-
able that the same tendency is followed for different thickness
of the magnetic film. As hm and the magnetic volume increases,
the maximum of the coupling rate achievable increases, but
not linearly. Figure 6(b) shows a region in blue, where ratios
of g0/ωm ≈ 0.1 lead to physics in the ultrastrong coupling
regime. The importance of this result relies on the unexplored
regime for mechanical systems. This regime has been recently
observed in superconducting qubits [54]. Figure 6(c) shows
numerical simulations of g0/ωm as a function of w with

parameters (N ; hm; ωm) = (2; 200 nm; 2π × 3.2 MHz). For
this calculation we considered a magnet with hm = 200 nm
that for the fundamental mode has associated an effective
mass m = 9.9 × 10−15 kg and whose mechanical resonant
frequency is ωm/2π = 3.2 MHz. This magnet is separated
T = 10 nm from the spiral coil.

We calculate the ratio g0/ωm as a function of w for different
values of N . We observe that N is also an important parameter
due to its contribution to the inductance L. The inductance L

of the spiral square inductor was calculated with finite element
methods software (Comsol) and compared with analytical
expressions [55]. The two methods yielded similar results and
thus we chose to use the analytical expressions for simplicity
and accuracy. The last parameter discussed in this paper is
the enhancement of the coupling rate g0 due to the number
of turns of the nanofabricated coil. In Fig. 6(d) we plot the
coupling rate ratio g0/ωm as a function of N keeping the
parameters (T ; hm; ωm) = (10 nm; 200 nm; 2π × 3.2 MHz)
fixed while maximizing over w. We observe that at N = 2 the
maximum ratio is obtained due to the low inductance which
favors the increase in the coupling. As it was described, with the
coupling rate g0 ∝ |M|, we have restricted our calculations to
conservative magnetization values and consider that regimes
such as deep-strong coupling can be achieved using modern
alloys with larger magnetization.

VII. CONCLUSION

The magnetomechanical system that we have proposed in
this work provides a suitable instrument to explore magne-
tomechanical dynamics in the strong coupling regime and
beyond. Our study remains valid for a regime whereg0/ωm > 1
(deep strong coupling).

We have introduced physical effects such as magnetome-
chanical damping, or magnetomechanical frequency shift,
that can be further explored and implemented on cooling
protocols, state swap, and electronic readout of the mechanical
system. The magnetomechanical system provides an interface
for hybrid quantum protocols on the control of mechanical
oscillators using electric circuits. The interaction ∼p̂q̂ repre-
sents an attractive option for the implementation of protocols
to perform backaction evading measurements on mechanical
oscillators via electronics. We also note that the Hamiltonian
breaks time-reversal symmetry due to its linear dependence on
the mechanical momentum. We consider that this particular
feature could help to understand some of the physics of
symmetries at the mesoscale. We estimated the number of
excitations that populate the ground state and observe that
the magnetomechanical system is intrinsically entangled in the
regime of low phonon-photon occupation regime.

Considering the recent rapid progress in experimental tech-
niques and fabrication processes such as photo and e-beam
lithography, we consider that our magnetomechanical system
is a feasible proposal to be fabricated. We predict that a very
large coupling g0 might be potentially achieved. This large
coupling facilitates the implementation of already existing
optomechanical protocols such as manipulation, control, or
cooling.
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APPENDIX: MAGNETOMECHANICAL BREAK
OF TIME REVERSAL SYMMETRY

The magnetomechanical system that we have introduced in
this paper provides a diverse variety of interesting directions
to explore quantum features for mechanical systems at the
mesoscale. The linear character of the momentum coupling
also represents an interesting framework to study the breaking
of time-reversal symmetry in this hybrid electromechanical
interface.

In quantum mechanics, time-reversal symmetry is a bi-
jective mapping of the Hilbert space. This mapping is sym-
metric if and only if it leaves all the observable probabil-
ities invariant. As we show below, the magnetomechanical
linear Hamiltonian (14) is not invariant under time reversal.
The time-reversal symmetry breaking phenomenon is a rare
effect, which has been observed in circuit QED [56] but to
our best knowledge it has not been observed in mechanical
systems.

Following the definition for time-reversal symmetry we
analyze ĤL, which is symmetric if and only if for a time-
reversal operator �̂, there exists a phase ϑ(ẑ), such that
ĤL = �̂ĤL�̂−1 is satisfied [56]. The most relevant properties
described by Koch et al. [56] show that the operator �̂ acting
on an eigenstate of the position |ẑ〉 leaves it invariant, but add

a phase �|ẑ〉 = eiϑ(ẑ)|ẑ〉 and the eigenstates of the position
are time-reversal symmetric �̂ẑ�̂−1 = ẑ. Under the same
time-reversal transformation �̂, the momentum is reflected
and the gradient of a phase is added: �̂p̂�̂−1 = −p̂ + ∇ϑ(ẑ).
The selection of the phase ϑ(ẑ) is determined by the gauge
choice ϕ(z) discussed in Eq. (6). We apply the time-reversal
operator and obtain the transformed Hamiltonian, which
reads as

�̂ĤL�̂−1 = 1

2m
(−p̂ +

√
Lm g0q̂ + ∇ϑ(ẑ))2

+ω2
m

mẑ2

2
+ φ̂2

2L
+ ω2

e
Lq̂2

2
. (A1)

The condition ĤL = �̂ĤL�̂−1 to identify this system as time-
reversal symmetric implies that a solution is given by ∇ϑ(ẑ) =
−2g0

√
Lmq̂. In the particular case when the coupling is

absent g0 = 0 the solution to this condition is satisfied and
the Hamiltonian satisfies the time-reversal symmetry ĤL =
�̂ĤL�̂−1. In any other case g0 �= 0 Eq. (6) suggests that the
gauge choice is related to an electromagnetic auxiliary field
A = ∇ϕ(ẑ); therefore, it must satisfy ∇ × A = 0, which in the
presence of a magnetic field clearly contradicts B = ∇ × A.

Summarizing, the magnetomechanical system described in
this paper satisfies time-reversal symmetry in the absence of
coupling, but breaks it when the linear magnetomechanical
coupling is present. We want to highlight this property for the
magnetomechanical system as an alternative to explore time-
reversal symmetry breaking for mechanical systems.
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