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Nature of the octahedral tilting phase transitions in perovskites: A case study of CaMnO3
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The temperature-induced antiferrodistortive (AFD) structural phase transitions in CaMnO3, a typical perovskite
oxide, are studied using first-principles density functional theory calculations. These transitions are caused by
tilting of the MnO6 octahedra that are related to unstable phonon modes in the high-symmetry cubic perovskite
phase. Transitions due to octahedral tilting in perovskites normally are believed to fit into the standard soft-mode
picture of displacive phase transitions. We calculate phonon-dispersion relations and potential-energy landscapes
as functions of the unstable phonon modes and argue based on the results that the phase transitions are better
described as being of order-disorder type. This means that the cubic phase emerges as a dynamical average when
the system hops between local minima on the potential-energy surface. We then perform ab initio molecular
dynamics simulations and find explicit evidence of the order-disorder dynamics in the system. Our conclusions
are expected to be valid for other perovskite oxides, and we finally suggest how to predict the nature (displacive
or order-disorder) of the AFD phase transitions in any perovskite system.
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I. INTRODUCTION

Materials with crystal structures related to the aristotype
cubic perovskite are one of the most intensively studied class
of materials. Common subclasses include the oxide ABO3

and halide ABX3 (X = F,Cl,Br,I) pervoskites. Varying the
occupying ion (or molecule) on the A and B sites within these
subclasses produces inorganic (or inorganic-organic hybrid)
perovskite materials with a wide range of attractive properties.
As a result, they have found use in diverse applications ranging
from fuel cells and catalysis to thermoelectrics and solar cells
[1–5].

Many perovskites undergo one or several phase transitions
upon heating where the low-symmetry phases at low temper-
atures are related to the high-temperature cubic perovskite by
simple phonon instabilities. One common type is ferroelectric
(FE) transitions, which, in the case of ABO3 oxides, involves
off centering of the B-site cation inside the BO6 octahedra,
typically related to an imaginary phonon mode at the � point of
the first Brillouin zone (BZ) of the cubic perovskite structure. A
second class of phase transitions, known as antiferrodistortive
(AFD) transitions, involve rotations, or tilts, of the BO6

octahedra around one or several of the [100] axes of the cubic
structure. These transitions are a result of unstable phonon
modes at the M and R points of the BZ, corresponding to
in-phase (ip) and out-of-phase (oop) rotations of successive
BO6 octahedra, respectively (see Fig. 1).

These phase transitions are often detrimental to the oper-
ation in the prospective applications. An example is the per-
ovskite oxide CaMnO3 (CMO), which is a promising material,
e.g., for high-temperature thermoelectric applications. There
the thermoelectric figure of merit (ZT = σS2T

κ
, where σ is the

electrical conductivity, S is the Seebeck coefficient, T is the
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temperature, and κ is the thermal conductivity) drops sharply
across the AFD phase transitions [6]. The ability to predict the
occurrence and describe the nature of these transitions thus
becomes of considerable importance.

The mechanism by which these phase transitions occur can
be classified broadly as being of displacive or order-disorder
type [8]. In the former case the low-temperature phases are
obtained simply by “freezing in” one or several unstable
phonon modes into the high-symmetry structure. In the latter
case, the system stays in the low-symmetry phase on the
time scale of the thermal vibrations even above the transition
temperature, and the high-temperature high-symmetry phase
emerges as a dynamical average when anharmonic thermal
excitations cause the system to sample many different local
minima on the potential-energy surface (PES). In the case of
AFD transitions these local minima correspond to different tilt
configurations of the BO6 octahedra. In many cases transitions
may show characteristics of both order-disorder and displacive
types.

FE transitions often have both order-disorder and displacive
characteristics [9,10], whereas the octahedral tilting (AFD)
transitions have mostly been considered to be of pure displacive
character [11], although order-disorder dynamics have also
sometimes been suggested [12–15]. A notable recent exam-
ple is the hybrid perovskite methylammonium lead iodide
(CH3NH3PbI3) where an order-disorder mechanism was at-
tributed to its tetragonal-to-cubic phase transition [16].

Here it should be noted that it is notoriously difficult
to experimentally distinguish between displacive and order-
disorder transitions in perovskites. Mainly because many of
the common experimental techniques have a time resolution
much longer than the average time the system stays in any
one local minimum on the PES and hence will only reveal the
average structure. This is therefore a situation where theoretical
simulations can provide detailed insights not easily accessible
to experiment.

2469-9950/2018/97(2)/024108(10) 024108-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.024108&domain=pdf&date_stamp=2018-01-17
https://doi.org/10.1103/PhysRevB.97.024108


JOHAN KLARBRING AND SERGEI I. SIMAK PHYSICAL REVIEW B 97, 024108 (2018)

FIG. 1. (a) The two unstable octahedral tilting modes in the cubic
perovskite structure. (b) The orthorhombic ground-state structure of
CaMnO3 (CMO) (space-group Pnma) where the octahedra are tilted
oop around the pseudocubic a and b axes and ip around the c axis.
This corresponds to the tilt configuration a−a−c+ in Glazer notation
[7]. (c) The view along the c axis, showing the definition of the tilt
angle around this axis φc. Ca and O ions are represented by light blue
and red spheres, respectively, whereas the Mn ions are in the center
of the pink MnO6 octahedra.

In this paper, we study CMO as an example system and
investigate in detail the nature of its AFD phase transitions.
The ground state is orthorhombic with space-group Pnma.
This structure is related to the cubic perovskite by an oop

tilt of the BO6 octahedra around two of the cubic coordinate
axes and an ip tilt around the third axis. This is conveniently
expressed as a−a−c+ in Glazer notation [7], which is described
in detail in Sec. II. When heated in air CaMnO3 undergoes
two temperature-induced AFD structural phase transitions
[17], first to a tetragonal structure, presumably space-group
I4/mcm and tilt configuration a0a0c− at Tc ≈ 1170 K and
finally to the ideal cubic structure a0a0a0 at Tc ≈ 1190 K.

We use static density functional theory (DFT) to calculate
harmonic phonons and potential-energy landscapes of com-
binations of the unstable octahedral tilting modes. We show,
based on these results and experimental transition temper-
atures, how it is possible to predict the nature (displacive
or order-disorder) of AFD phase transitions in pervoskite
systems. In CMO our results clearly indicate an order-disorder
transition mechanism. We finally perform ab initio molecu-
lar dynamics (AIMD) simulations where the order-disorder
mechanism is seen clearly in the form of fluctuations between
different tilt configurations in the system.

II. METHODOLOGY

Throughout this paper we will use Glazer’s notation [7]
to describe the tilt configurations of the MnO6 octahedra
around the pseudocubic axes. In this notation a tilt pattern is
specified with three letters with associated superscripts. The
letters, a, b, or c denote tilts around the three pseudocubic
lattice vectors. If two letters are the same, the tilt angles
around those axes are of equal magnitude. The superscripts
+ and − signify that rotations of sequential octahedra along
the corresponding axis is taken in phase and out of phase,
respectively, whereas the superscript 0 signifies the absence
of a tilt around the corresponding axis. For example, the
Pnma structure has the Glazer tilt configuration a−a−c+
signifying oop tilts of equal magnitude around the a and
b axes and an ip tilt around the c axis. We note that the
structures are not completely determined by the tilts and we
will take a certain Glazer tilt pattern, when appropriate, to also
include any further relaxations of both ions and lattice vectors
consistent with the space-group symmetry of the structure in
question.

The Pnma and I4/mcm structures have lattice vectors
at , bt , and ct related to the pseudocubic lattice vectors ac, bc,
and cc as

⎛
⎜⎝

at

bt

ct

⎞
⎟⎠ =

⎛
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−1 1 0

1 1 0

0 0 2

⎞
⎟⎠
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⎜⎝
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bc

cc

⎞
⎟⎠ (1)

[see Fig. 1(b)]. We will refer to this unit cell as the tetragonal
unit cell.

In the AIMD simulations the tilt angle φi of an Mn-O bond,
represented by the vector rMnO(t), around a pseudocubic axis
i (i = a,b,c) at time t was calculated as the angle between
the projection of rMnO(t) onto the plane orthogonal to i and
the ideal Mn-O bond vector [see Fig. 1(c)]. The tilt angle of an
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octahedron is then obtained by averaging over the four relevant
Mn-O tilt angles corresponding to that octahedron and axis.

The DFT calculations were performed in the Vienna ab ini-
tio simulation package (VASP) [18–20] using the projector
augmented-wave (PAW) [21] method. Following Ref. [22], we
treat exchange and correlation effects using the PBEsol [23]
form of the generalized gradient approximation and apply a
U = 3 eV effective Hubbard correction to the Mn 3d states
[24]. We used PAW potentials that treat the Ca 3p4s, Mn 3d4s,
and O 2s2p states as valence.

Born-Oppenheimer MD simulations were performed in the
canonical (NV T ) ensemble with the temperature controlled
by a Nosé-Hoover thermostat with the default Nosé mass
parameter as set by VASP and a 2-fs time step. We use a
2 × 2 × 2 repetition of the 20-atom tetragonal unit cell, 160
atoms in total. The three cell vectors are fixed at the ratio√

2 × √
2 × 2, making it essentially equivalent to a cubic

supercell. The deviations of the stress tensor from a hydrostatic
form in this supercell are small (<0.5 GPa) when the volume
is adjusted to keep the average of all components of the stress
tensor <0.5 GPa.

The Kohn-Sham orbitals were expanded in plane waves
up to a kinetic-energy cutoff of 800 and 600 eV for the
static and MD simulations, respectively. In all static cal-
culations the first Brillouin zone was sampled on a 8 ×
8 × 6 Monkhorst-Pack grid of k points for the primitive
tetragonal cell. The grid was reduced appropriately when
the supercell was enlarged. A 2 × 2 × 1 grid was used
for the MD simulations of the 160-atom supercell. Relax-
ations were performed until all ionic forces in the system
were smaller than 0.0001 eV/Å for the three considered
phases.

The phonon calculations were performed using the small
displacement method as implemented in the PHONOPY [25]
software package using the default displacement distance
0.01 Å. These calculations were performed in 2 × 2 × 2 ex-
pansions of the tetragonal unit cell for the Pnma and I4/mcm

structures and a 2 × 2 × 2 (40-atom) cubic supercell for the
cubic Pm3̄m structure.

PESs as functions of various unstable octahedral tilting
modes were calculated in a 40-atom unit cell constructed
as a 2 × 2 × 2 expansion of the cubic unit cell. Ener-
gies were calculated on a 14 × 14 grid with varying (pos-
itive) amplitudes of the octahedral tilts. The energies on
this grid were then interpolated and finally mirrored in the
tilt-coordinate axes to produce the final energy landscapes
(Fig. 4).

Minimum energy paths between equilibrium tilt configura-
tions were calculated using the generalized solid-state nudged
elastic band (GSSNEB) method [26], which takes into account
both atomic and unit-cell degrees of freedom.

For all static calculations we imposed the known low-
temperature G-type antiferromagnetic (AFM) ordering of
the Mn magnetic moments, i.e., both intraplane and inter-
plane couplings are AFM and accordingly all neighboring
Mn moments are oppositely aligned. We simulate the high-
temperature paramagnetic (PM) phase of CMO using the
disordered local moments [27–36] approach where the mag-
netic disorder is modeled by randomly distributed collinear

FIG. 2. Total and site-projected phonon density of states and
dispersion relations along selected paths in the first BZ for the (a)
cubic Pm3̄m, (b) tetragonal I4/mcm, and (c) orthorhombic Pnma

phases of CMO.

magnetic moments. In our case this entails initiating the
simulations with Mn magnetic moments distributed in a
special quasirandom (SQS) sense [37] where an equal num-
ber of atoms is given up and down spins. According to
Ref. [38] this is a valid approximation of the PM phase
as long as the relaxation energy when switching from the
AFM to the SQS distribution of the magnetic moments is
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small. This criterion is fulfilled in the present case where
this relaxation energy is calculated to be ∼2 meV/Mn atom.
In any case, since the structural phase transitions in CMO
occur at temperatures ∼1000 K above the Néel temperature
TN = 124 K [39], it is highly unlikely that the magnetic
order-disorder has any explicit influence. We checked this by
redoing selected simulations with G-type AFM and ferromag-
netic ordering. In all the tests the results were qualitatively
unaffected.

III. RESULTS AND DISCUSSION

A. Ground-state structures and harmonic phonons

We start by investigating the ground-state (0 K) structural
and vibrational properties of the orthorhombic Pnma, tetrag-
onal I4/mcm, and cubic Pm3̄m structures with G-type AFM
ordering. The relaxed lattice parameters and relative energies
are given in Table I. The Pnma and I4/mcm structures are 66
and 46 meV/atom more stable than the cubic Pm3̄m structure,
respectively. As expected Pnma is the lowest in energy by a
significant amount, in agreement with it being the stable phase
at low temperatures.

Next, we investigate the dynamical stability of the three
structures in the harmonic approximation at 0 K. Figure 2(a)
shows the phonon-dispersion relation of the cubic structure. As
is typical of many perovskite structures with a Pnma ground
state the structure exhibits large unstable phonon modes at the
M and R points of the first BZ. As mentioned above, these
modes correspond to ip and oop tilts of successive MnO6

octahedra, respectively, and the Pnma structure can be thought
of as resulting from freezing in a suitable combination of these
two modes into the cubic structure.

We note that there is some discrepancy in the literature
regarding a soft FE mode at the � point in the cubic phase
of CMO. Although Refs. [41,42] report this mode to be
imaginary at the equilibrium volume, Refs. [22,43] report no
such instability at equilibrium volume and with the G-type
AFM ordering. The presence of a weak FE instability in the
cubic phase of perovskite oxides with AFD instabilities is quite
common, and in many cases, such as the present one, the AFD
instability is much stronger and completely dominates over the
FE instability.

Figures 2(b) and 2(c) show the phonon-dispersion relation
and DOS of the I4/mcm and Pnma structures, respectively.
The I4/mcm phase has imaginary modes at the M and
� points. These two modes mainly consist of ip and oop
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FIG. 3. Potential energy as a function of the amplitude of the
unstable M-point ip (the red circles) and R-point oop (the blue
squares) tilting modes in the cubic perovskite structure. The mode
amplitude (tilts) are given as the offset distance of a single O ion
in units of the lattice constant of the cubic perovskite. The lines are
guides for the eye.

rotations, respectively, of MnO6 octahedra, and the structure
is thus, like the cubic structure, unstable to both types of
octahedral tilts. This is an intuitive result considering that
the cubic structure is unstable to both tilt types and that the
I4/mcm is related to the cubic phase by oop tilt around a
single pseudocubic axis.

The Pnma structure, on the other hand, shows no imaginary
frequencies throughout the BZ and thus is dynamically stable
at 0 K, again consistent with it being the ground-state structure
of CMO.

B. Potential-energy landscapes

To move beyond the harmonic approximation we separately
freeze in the two soft tilt modes into the ideal cubic structure
and calculate the potential energies as functions of their
amplitude. The results are presented in Fig. 3 where we see
that the energy curves are typical double-well potentials. This is
to be expected from the harmonic phonon-dispersion relations

TABLE I. Lattice parameters and relative energies (with respect to the cubic structure) of the orthorhombic Pnma, tetragonal I4/mcm, and
cubic Pm3̄m structures. G-type AFM ordering was considered for all three structures. For the Pnma and I4/mcm structures the pseudocubic
lattice vectors are related to their respective unit-cell vectors by Eq. (1). Experimental values at room temperature for the orthorhombic phase
[40] are provided for comparison.

Pseudocubic cell parameters

Structure (space group) Tilt configuration a (Å) b (Å) c (Å) �E (meV/atom)

Cubic (Pm3̄m) a0a0a0 3.727 0
Tetragonal (I4/mcm) a0a0c− 3.678 3.792 −47
Orthorhombic (Pnma) a−a−c+ 3.702 3.737 3.711 −66

Experiment (Pnma) 3.725 3.736 3.729
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(Fig. 2). The depths of these potentials are 36 and 42 meV/atom
for the ip and oop tilts, respectively. Allowing for relaxation of
the lattice vectors and Ca ions deepens the potential wells by
∼5 meV/atom in both cases and shifts the minima to slightly
larger amplitudes.

These types of one-dimensional (1D) double-well potentials
are often used to analyze octahedral tilting transitions in
perovskites [44,45]. The depth of the potential well has, for
instance, been used as an indicator of the nature of the phase
transitions, i.e., deep and shallow wells should correspond to
order-disorder and displacive transitions, respectively.

One of the most common perovskite variant is the
Pnma, a−a−c+ structure. Materials with this structure nor-
mally sequentially lose their tilts via a series of temperature-
induced phase transitions, finally ending up in the ideal cubic
structure at high temperatures.

Care should be taken when analyzing this type of transition
in terms of 1D double-well potentials since, if there are tilts
around several axes present in the system, treating the different
tilts using separate double-well potentials is only physically
reasonable if the different tilting modes are effectively inde-
pendent of each other. This would mean, for instance, that
the double well corresponding to the ip tilt in Fig. 3 should
essentially be unchanged if the tilt is performed not in the
cubic structure but in a system with other tilts present.

To investigate this point, we next calculated PESs as
functions of several different tilts in the system, i.e., essentially
freezing in combinations of the M- and R-point soft phonon
modes with varying amplitudes into the structure. We allow
for full relaxation of both the cell parameters and the Ca ions.
We note that the Mn ions are fixed in the center of the MnO6

octahedra by symmetry.
Figure 4(a) shows the PES in the a−a−c+ tilt system.

Note that in this tilt system there are two degrees of freedom

since the two oop tilts (a−) are of equal amplitude. The four
local minima correspond to symmetry equivalent equilibrium
tilt amplitudes of the Pnma structure, and the origin is the
cubic tiltless structure. The depth of these minima is 64
meV/atom, which corresponds to the difference in energy
between the cubic and the Pnma structures. Note that the small
∼2 meV/atom discrepancy between this energy difference and
the one given in Table I comes from the relaxations of oxygen
ions that are not rigid tilts of the octahedra but still allowed by
the Pnma symmetry.

Performing an ip tilt in the presence of the two a− oop tilts,
denoted a−a−c+ → a−a−(−c)+, gives the double-well poten-
tial traced out when going horizontally between two minima
in Fig. 4(a). The depth of this double well is ∼11 meV/atom,
this is ∼3 times smaller than the depth of the corresponding
well when performing the ip tilt switch directly in the cubic
structure.

In Fig. 4(b) we have fixed one of the oop tilts to its value
at the minimum, taken from Fig. 4(a) and then calculated
the PES as a function of the remaining two tilts. Note that
the origin corresponds to the a−b0b0 (equivalent to a0a0c−)
structure in this case and not to the cubic a0a0a0 structure.
The four minima again correspond to the equilibrium tilt
amplitudes in the Pnma structure. Going vertically between
two minima in Fig. 4(b) corresponds to performing an oop

tilt in the presence of one ip and one oop tilt, i.e., a path
a−a−a+ → a−(−a)−c+, the depth of the double well thus
traced out is also ∼11 meV/atom. This is again remarkably
different from the result obtained by performing the oop tilt
switch directly in the cubic structure.

It is clear then that the energy cost for a tilt switch is
drastically reduced when other tilts are present in the system
since the paths do not go over the high-energy cubic structure.
This conclusion is unlikely a feature of just CMO but should

FIG. 4. Potential-energy landscapes as functions of the amplitude of octahedral tilts in the cubic perovskite structure. The tilts are given as
the offset distance of a single O ion in units of the lattice constant of the cubic perovskite. In (a) the oop tilts around the pseudocubic a and
b axes are fixed to be of the same magnitude, whereas in (b) the oop tilt around the pseudocubic a axis is fixed at its minimum values from
(a) and the remaining oop and ip tilts are varied. Relaxations of both the cell vectors and the Ca ions are included.
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FIG. 5. GSSNEB minimum energy path between equivalent
(a−a−c+)-type tilt configurations. The reaction coordinate is the
cumulative distance along the path divided by

√
N where N is the

number of atoms.

be expected to hold for other perovskites with a ground state
containing tilts around several axes. We thus advise caution in
using 1D double-well potentials to analyze the AFD transitions
in such perovskites.

We have also calculated the minimum energy barriers for
the two tilt switches described above in the fully relaxed Pnma

structures using the GSSNEB method [26]. The resulting
energy curves are shown in Fig. 5. The barriers and the paths
correspond closely to the ones from Fig. 4. We note again that
the minima in Fig. 4 are ∼2 meV/atom too shallow due to
the absence of relaxations of the oxygen ions beyond the rigid
octahedral tilts. This makes the minimum energy paths in Fig. 5
slightly higher than the ones obtained directly from Fig. 4.

We briefly comment on the symmetry of the a−a−c+ →
a−a−(−c)+, a−a−c+ → a−(−a)−c+ transition paths. The
paths obtained from Fig. 4 naturally stay in the a−a−c+
(Pnma) symmetry during most of the paths, but the maximum
is the higher-symmetry a−a−c0 (Imma) and a−b0c+ (Cmcm)
structures, respectively, for the two cases. In the GSSNEB
calculations the symmetry is turned off, but we note that the
maxima on the two corresponding paths still pass very close
to the same higher-symmetry structures, indicating that the
minimum energy paths are essentially those obtained from
Fig. 4.

Another path between two equivalent a−a−c+ tilt configu-
rations is for the tilt sequence around one of the oop tilt axes
to change to ip and the ip sequence to oop, corresponding to a
transition of the type a−a−c+ → a−b+a−. The corresponding
GSSNEB minimum energy path is shown in Fig. 5.

We thus see that there exist many paths of three distinct
types: a−a−c+ → a−a−(−c)+, a−a−c+ → a−(−a)−c+, and
a−a−c+ → a−b+a− with very similar energy barriers be-
tween symmetry equivalent Pnma structures.

C. Discussion: Displacive vs order-disorder phase transitions
and comparison to experiments

We now investigate to what degree the calculated potential
energies in the previous section are commensurate with a
displacive or order-disorder description of the phase transitions
and with the experimentally observed transition temperatures.

The experimentally proposed phase-transition sequence in
CMO is [17] as follows:

Pnma

(a−a−c+)

∼1170 K−−−−→ I4/mcm

(a0a0c−)

∼1190 K−−−−→ Pm3̄m

(a0a0a0)
,

where it should be noted that the transition temperatures
vary with, among other things, oxygen deficiency. A few
other things should be noted here: (1) Several experimental
works have confirmed the presence of two structural phase
transitions [46,47], whereas some other studies [48,49] find
only a single orthorhombic-to-cubic phase transition without
an intermediate tetragonal phase. The existence of the interme-
diate phase is likely related to oxygen deficiency [47]. In fact
straightforward extrapolation of Fig. 3 in Ref. [47] indicates
that the intermediate tetragonal phase should be absent at
perfect oxygen stoichiometry, which is the case treated in this
paper. We may thus expect our results to be consistent with
a single a−a−c+ → a0a0a0 transition. (2) Reference [17] is,
to our knowledge, the only work which performed structural
characterizations for all three phases. In this context we point
out that the determination of the phase-transition sequence
in several other perovskite oxides, e.g., SrZrO3 [50], have
been revised several times, indicating the difficulty of the
experimental task.

We first consider the direct orthorhombic-to-cubic transi-
tion in the case of a pure displacive phase-transition mecha-
nism. Displacive transitions occur once the thermal energy of
the system becomes hight enough so that the relevant energy
wells become effectively negligible. In this case one would
expect an intermediate a−a−c+ → a−a−c0 or a−a−c+ →
a−b+c0 displacive transition since the corresponding energy
wells are significantly smaller compared to going directly to
the a0a0a0 structure.

In the case where an intermediate tetragonal phase exists,
a displacive a−a−c+ → a−b0b0 transition can be seen as the
movement from one of the minima to the origin in Fig. 4.
In the same way as above, there should exist an intermediate
a−b+c0 or a−a−c0 phase. Moving on to the second (a−b0b0 →
a0a0a0) transition we note that this transition is observed to
happen just ∼20 K above the first one whereas the remaining
energy well that needs to be overcome for the displacive
transition to occur has a significant depth of 47 meV/atom.

These considerations make it clear that the phase transitions
are unlikely to be well described by a purely displacive
mechanism. A more coherent picture can be found by instead
considering order-disorder-type transitions. In this case ther-
mal excitations cause the system to hop between different tilt
configurations, corresponding to local minima on the PES.
These tilt configurations can be simple ones, such as a−a−c+,
but the system also may sample more complicated tilt patterns
corresponding to local minima. Here, successive octahedra are
not necessarily exactly in phase or out of phase but form more
complicated tilting patterns. The time-average structure that
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emerges when the system samples the low-symmetry local
minima is a phase of higher symmetry.

The critical temperature of an order-disorder transition
depends on the height of the barriers on the minimum energy
path between local minima on the PES. We saw in the
previous section (Fig. 5) that there exist many paths between
symmetry equivalent a−a−c+ energy minima, all with very
similar energy barriers. This fits into the picture of a single
order-disorder transition where at the critical temperature
many paths are available for the system to hop between
symmetry equivalent minima on the PES. Since these minima
are distributed symmetrically around the tiltless structure the
time-averaged structure will be the ideal cubic perovskite.

We note again that it is the presence of tilts around several
axes in the system that opens up paths on the PES which are
low in energy since they do not pass over the cubic structure.
This allows for the emergence of the cubic perovskite structure
as a dynamical average at lower temperatures than what would
be expected in a picture where the phase transition happens by
a displacive mechanism. A similar situation was found for the
tetragonal-to-cubic phase transition in ZrO2 [51].

We also note that the important energy barriers in this case
are not the depth of the double wells from ip and oop tilts
in the cubic structure but the minimum energy paths between
equivalent a−a−c+ structures in Fig. 5.

It should be noted that, in general, it is rare that a phase
transition can be identified uniquely as either order-disorder or
displacive. It often shows some characteristics of both. In the
present case it is likely that at temperatures moderately above
the transition temperature, some tilt angles will actually ther-
mally oscillate around zero. What is clear from the calculated
potential-energy landscapes, however, is that at least one tilt

has to be present in the system at these temperatures in order
for the system to explicitly avoid the high-energy tiltless cubic
configuration.

It is interesting to note that some hints of an order-disorder
phase transition in CMO can be found in the experimental
literature. In particular, Schrade et al. [52] indicated that,
surprisingly, both the Seeback coefficient and the carrier
mobility varied continuously across the orthorhombic-to-cubic
phase transition. This is, in fact, a feature of an order-disorder
transition since the reorientations of the octahedra take place
on time scales much longer than those relevant to electronic
properties. Thus, the effective electronic structure from the
point of view of electronic conduction will be the same even
across the phase transition.

We finally briefly discuss how the intermediate tetragonal
phase may appear due to the presence of oxygen vacancies. The
a−a−c+ → a−b0b0 transition can be viewed straightforwardly
as the order-disorder transition that occurs when the system
samples the four minima in Fig. 4(b). This should, however,
result in a structure with cubic symmetry since there is an
identical potential-energy landscape as the one in Fig. 4 when
the oop tilt around the pseudocubic b axis is fixed instead of
the a axis. If, however, there are oxygen vacancies present in
the system, and they have a tendency to order, this may induce
a preferential axis in the system so that an oop tilt around this
axis always is present whereas tilt switches around the two
other axes occur. This would produce an average tetragonal
a−b0b0 structure. When the temperature is further increased
this preferential axis will disappear, and the cubic structure
will emerge as the time average. Such a vacancy ordering is,
in fact, expected since the O vacancy formation energy of the
two nonequivalent O ions in the Pnma structure is not equal

FIG. 6. Tilt angles φa, φb, and φc around the three pseudocubic axes for one selected octahedron as functions of simulation time at
temperatures 600, 900 and 1100 K. The black lines correspond to the running average.
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[53]. More detailed studies along these lines are beyond the
scope of the present paper.

D. Ab initio molecular dynamics simulations

To gather explicit evidence for order-disorder-type dynam-
ics in CMO we have performed a set of canonical (NV T )
Born-Oppenheimer AIMD simulations.

We perform simulations at temperatures of 600, 900, and
1100 K. The tilt angles of all MnO6 octahedra around the three
pseudocubic axes are recorded as functions of time as described
in Sec. II.

Figure 6 shows the tilt angles around the three pseudocubic
axes of a single MnO6 octahedron at 600, 900, and 1100 K.
After being initiated in the ideal, tiltless, cubic positions with
random velocities (normalized according to the Maxwell-
Boltzmann distribution at the considered temperature), the
octahedron instantly tilts around all three axes, confirming
that the cubic structure is dynamically unstable at all three
temperatures. At 600 K the structure finds the a−a−c+ con-
figuration after roughly 1 ps and then stays in it for the
remainder of the simulation time. During the 900 K simulation
we observe one single tilt switching event which is identified as
a (a−a−c+ → a−b+a−)-type transition. This single switching
event may be considered as a precursor to the transition,
happening at a higher temperatures. At 1100 K, however,
the octahedron is found to perform many tilt switches in
the investigated simulation time. Although the octahedron is
clearly tilted along all three axes on the time scale of thermal
oscillations, the running average (the black lines in Fig. 6)
approaches zero for long times, and the average structure
will thus appear to be the ideal tiltless perovskite. This result
provides explicit confirmation of the conclusions we drew from
the potential-energy landscapes and minimum energy paths in
the previous sections.

In the 2 × 2 × 2 repetition of the tetragonal unit cell used
in our AIMD simulations, chains of MnO6 octahedra along the
pseudocubic a and b axes contain two octahedra that can tilt
independently whereas such a chain in the c direction contains
four independent octahedra. Since the octahedra are corner
connected, the tilts in a plane orthogonal to the tilting axes
are all fixed by specifying the tilt of a single octahedron. The
full tilt configuration of the supercell can thus be specified by
providing the tilts of all independent octahedra in one chain
in each of the three pseudocubic directions. Figure 7 provides
the tilt angles for the octahedra in three such chains for the
simulation at 1100 K as functions of simulation time. It can
be seen that the system preferentially resides in (a−a−c+)-
type configurations. Other tilt patterns along the c axis can
also be identified, although their lifetimes are shorter, for
instance, two octahedra tilted in one direction followed by
two tilted in the other, indicating that this tilt configuration
corresponds to a shallow minimum on the potential-energy
surface. This particular tilt configuration does, in fact, carry
some resemblance to the type of AFD domains that have been
predicted to appear in CMO [54], although of much smaller
domain size as limited by the supercell used in the AIMD
simulations. A detailed analysis of the effect of AFD domains
would be of interest but is beyond the scope of this paper.

FIG. 7. Tilt angles φa, φb, and φc for a chain of octahedra in the
a (lower panel), b (middle panel), and c (upper panel) pseudocubic
directions. The data is from a simulation at T = 1100 K. For clarity,
tilt angles of different octahedra have been offset vertically.

We invite future studies on the relation between order-disorder
dynamics and AFD domains.

IV. CONCLUSIONS

To conclude, we have studied the temperature-induced
structural phase transitions in CMO using first-principles
density functional theory calculations. We have confirmed that
the ideal cubic perovskite structure is dynamically unstable
with respect to both ip and oop tiltings of MnO6 octahedra,
resulting in the orthorhombic Pnma ground-state structure
with Glazer tilt pattern a−a−c+.

We have further studied the potential-energy landscapes
generated from combinations of the unstable tilting modes.
These calculations have revealed that having tilts around
several pseudocubic axes present in the crystal allows for low-
energy barrier paths between local minima on the potential-
energy surface. The energy barriers on these paths are several
times smaller than the ones passing over the high-energy
tiltless cubic configuration. This implies that 1D double-well
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potentials cannot be straightforwardly used to predict the
nature (displacive or order-disorder) of AFD phase transitions
in perovskites. Instead, the important energy barriers are
those between symmetry equivalent minima on the PES that
correspond to the ground-state structure, such as those in Fig. 5
in the case of CMO.

Based on our results we have argued that the structural phase
transitions in CMO are best described by an order-disorder
mechanism, i.e., when thermal excitations cause the system
to hop via the low-energy paths between local minima on the
potential-energy surface, yielding a high-symmetry structure
on average. We have concluded that our results are consistent
with a single Pnma-to-Pm3̄m transition. We have also pointed
out that the intermediate tetragonal I4/mcm phase may appear
as a result of an ordering of oxygen vacancies, which naturally
appears due to oxygen deficiency at high temperatures.

We have finally performed ab initio molecular dynamics
simulations where we directly observe the hopping events,
which provide direct evidence of the proposed order-disorder
transition mechanism.

In general, we propose the following considerations that
should be made when investigating the nature (displacive
or order-disorder) of a sequence of octahedral tilting phase
transitions in perovskites:

(1) Energy differences between two phases that are the end
points of a tilting phase transition (such as Pnma and Pm3̄m in
the case of CMO) cannot be compared straightforwardly to the
transition temperature as that might ignore the possibility of an
order-disorder transition. The latter can proceed by hopping of

the system between minima on the PES with energy barriers
not related to the energy difference between the two phases.

(2) If the energy difference between the phases is much
larger than the thermal energy at the experimentally deter-
mined transition temperature, this may indicate an order-
disorder transition. In this case, paths between equivalent low-
symmetry structures have to be identified, and the correspond-
ing energy barriers should be calculated. In the typical case of
the Pnma structure examples of such paths are found in Fig. 5.

(3) If there exist such paths with energy barriers signif-
icantly lower than the energy differences between the two
phases this is an indicator of a order-disorder transition mech-
anism. In addition, the existence of many distinct types of such
paths (as, e.g., in CMO, see Fig. 5) is a further strong indicator
of order-disorder behavior.
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